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Introduction

Severe acute respiratory syndrome (SARS) caused by a novel 
human coronavirus (SARS-CoV) emerged from Guangdong 
Province, China, in late 2002. By the end of 2003, it had spread 
to more than 30 countries, affecting 8,096 people and causing  
774 deaths (a case fatality rate of about 10%) (1-3). Although the 
global SARS pandemic was brought under control in July 2003, 
reports of sporadic cases in China from late 2003 to early 2004 (4) 
raised concerns about the reemergence of SARS-CoV through 
either zoonotic reintroduction or laboratory escape (5,6).

Most recently, a close relative of SARS-CoV, Middle East 
respiratory syndrome (MERS) coronavirus (MERS-CoV), has 
been identified as the pathogen causing outbreaks of SARS-like 
illness with a case fatality rate of 55% in the Middle East, Europe 
and Africa (7-9). These reports have raised concerns over the 

possibility of a reemergence of SARS-CoV and, hence, call for 
the development of effective and safe SARS vaccines to combat 
any future SARS pandemic (10).

Identification of the receptor-binding domain (RBD) 
in the SARS-CoV spike protein and its role in viral 

entry into the target cell

SARS-CoV is a single, nonsegment and positive-stranded 
RNA virus with envelope. Its genomic RNA consists of 29,736 
nucleotides, two thirds of its 5'-encoding nonstructural RNA 
replicase polyprotein and one third of its 3'-encoding structural 
proteins, including spike (S), envelope (E), membrane (M), and 
nucleocapsid (N) proteins (11). 

The S protein of SARS-CoV is a type I transmembrane 
envelope glycoprotein (Env), which plays a significant role in 
receptor binding, membrane fusion and virus entry. The entry 
of SARS-CoV is initiated by binding of the S protein to the 
cellular receptor angiotensin-converting enzyme 2 (ACE2) (12). 
The virion-ACE2 complex is then translocated to endosomes. 
Cathepsin L inhibitors could significantly block the entry of 
SARS-CoV, indicating that S protein is cleaved by endosomal acid 
proteases (cathepsin L) to activate its fusion activity (13). After 
the fusion peptide (FP) inserts into the endosomal membrane, 
the heptad repeat 1 and 2 (HR1 and HR2) domains in the S 
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protein interact with each other to form a six-helix bundle  
(6-HB) core, which brings the viral envelope and the cellular 
plasma membrane into close proximity for fusion. The viral 
RNA genome is then released into the cytoplasm (14,15) 
(Figure 1). Alternatively, SARS-CoV may also enter the target 
cell through plasma membrane fusion in a manner similar to 
HIV. After the S1 subunit of SARS-CoV S protein binds to 
ACE2, the S2 subunit changes conformation by inserting the 
fusion peptide into the plasma membrane. The HR2 domain 
interacts with the HR1 trimer to form 6-HB core, leading to 
the fusion between the viral envelope and the cellular plasma 
membrane (16).

Subsequently, the genomic RNA genome serves as a template 
for synthesizing full-length and subgenomic-length negative-strand 
RNAs, which then serve as template for synthesis of mRNA. Viral 
proteins are translated and then transported to the lumen of the ER-
Golgi intermediate compartment (ERGIC) (18). From genomic 
RNA and N protein in the cytoplasm, viral nucleocapsids are 

assembled. Through exocytosis, virions are then released from 
the cell (Figure 2).

The SARS-CoV S protein consists of S1 surface subunit, 
which is responsible for receptor-binding, and S2 transmembrane 
subunit, which mediates membrane fusion. A fragment spanning 
the residues 318-510 in S1 subunit is the minimal RBD (19,20). 
The RBD contains a loop region (residues 424-494), termed 
receptor-binding motif (RBM) (Figure 3A), which makes 
complete contact with the receptor ACE2. Interestingly, the 
RBM region is tyrosine-rich. Six out of 14 residues of RBM that 
are in direct contact with ACE2 are tyrosines. Two residues in 
RBM, Asn479 and Thr487, determine SARS disease progression 
and SARS-CoV tropism (22,23). Substitutions of these two 
residues may change the animal-to-human or human-to-human 
transmissibility of the virus (Figure 3B) (21). The multiple 
cysteine residues in the RBD region are important for maintaining 
the functional conformation of the RBDs of SARS-CoV (21) and 
MERS-CoV (24). 

Figure 1. The models of SARS-CoV entry into the target cell. A. SARS-CoV enters into the target cell mainly through endosomal membrane fusion (left 
side) and alternatively via plasma membrane fusion (right side) (16); B. Fusion core structure formed by the HR1 and HR2 domains in the SARS-
CoV S protein; The fusion core is a six-helix bundle (6-HB) with three HR2 α-helices packed in an oblique antiparallel manner against the hydrophobic 
grooves on the surface of the central HR1 trimer (17).
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Figure 2. The life cycle of SARS-CoV. SARS-CoV starts its life cycle from the binding of the virion, via its S protein, to the receptor ACE2 on the target 
cell (12), and the virion is taken in by endocytosis. Its S protein changes conformation in order to facilitate endosomal membrane fusion and release 
of RNA genome into the target cell. Upon transcription and translation, the viral structural and nonstructural proteins and genomic RNA are then 
assembled into virions, which are subsequently transported via vesicles and released out of the target cell (5).

Figure 3. The structure and function of the SARS-CoV S protein. A. The functional domains in the SARS-CoV S protein; SP, signal peptide; RBD, 
receptor-binding domain; RBM, receptor-binding motif; FP, fusion peptide; HR, heptad repeat; TM, transmembrane domain; CP, cytoplasm domain. 
The residue numbers of each region represent their positions in the S protein of SARS-CoV. B. Interaction between the SARS-CoV S-RBD (green) and 
ACE2 (red) as shown by the crystal structure of the RBD/ACE2 complex (12,20,21).
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RBD contains the critical neutralizing domain 
(CND) that induces potent and broad neutralizing 

antibodies

Our previous studies have demonstrated that the antisera 
isolated from SARS patients and from animals immunized 
with inactivated SARS-CoV vaccine could react significantly 
with the RBD of the SARS-CoV S protein, indicating that the 
RBD possesses potent neutralizing activity (25). Depletion of 
RBD-specific antibodies from patient or rabbit immune sera 
by immunoadsorption resulted in significant reduction of the 
serum-mediated neutralizing activity (26). Antibodies purified 
from the antisera against SARS-CoV significantly inhibited RBD 
binding to ACE2, and the affinity-purified anti-RBD antibodies 
exhibited a relatively higher potency in neutralizing infectivity 
(26,27). All these results suggest that the RBD of S protein 
contains a CND and that RBD may therefore be used as an 
immunogen to induce neutralizing antibodies against SARS-CoV.

We previously found that a single amino acid substitution in 
the RBD, such as R441A, was able to abolish the immunogenicity 
of RBD to induce neutralizing antibodies in immunized mice 

and rabbits and that RBD bearing R441A mutation could not 
bind to the soluble and cell-associated ACE2, suggesting that 
some critical residues in the RBM of the RBD are also important 
residues in the CND. However, as demonstrated by Ye et al., the 
mutation of R453A in RBM abolished viral entry, but retained 
the capacity for inducing neutralizing antibodies, suggesting that 
some residues in CND may not participate in the RBD-receptor 
interaction (28). 

A panel of 27 RBD-specific monoclonal antibodies (mAbs) 
was isolated from mice immunized with RBD conjugated 
with IgG Fc (RBD-Fc). Among these, mAbs 4D5 and 17H9 
could recognize linear epitopes of RBD, but they showed no 
neutralizing activity. Using a binding competition assay, the 
remaining 25 RBD-specific mAbs could be divided into six 
distinct groups based on the conformation of the epitopes in 
RBD that they recognized (i.e., Conf I-VI) (Figure 4). We found 
that only the mAbs recognizing Conf IV and V could efficiently 
block RBD binding to ACE2, suggesting that the residues in their 
epitopes are also involved in RBD-ACE2 interaction. The mAbs 
that recognized Conf I and II did not significantly affect RBD 
binding with ACE2. Still, they possessed potent neutralizing 

Figure 4. Epitope specificity of the RBD-specific mAbs determined by binding competition assays. The mAbs that can recognize different 
conformation-dependent epitopes in RBD were characterized by binding competition assays using biotin-labeled mAbs as probes. For example, mAbs 
10E7 and 45B5 were biotinylated, and the inhibitory activity of the 25 conformation-specific mAbs on the binding of 10E7-biotin and 45B5-biotin to 
RBD was measured. Both 24H8 and 31H12 could effectively block 10E7-biotin binding to RBD, while 31H12 could also inhibit 45B5-biotin binding 
to RBD. These results suggest that mAbs 24H8 and 10E7 share the same epitope (Conf I), while 31H12 could bind an epitope (Conf II) which could 
be recognized by both 10E7 and 45B5. In this way, the 25 conformation-specific mAbs were divided into six distinct competition groups (designated as 
Conf I-VI) (27).
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activities, indicating that these mAbs could inhibit SARS-CoV 
infection without interfering in RBD-ACE2 interaction (27). 
These findings suggest that the RBD of SARS-CoV S protein 
contains multiple conformational epitopes responsible for 
eliciting potent neutralizing responses and can therefore serve as 
a target for development of SARS vaccines.

RBD-based SARS vaccines

Although the inactivated virus-based, DNA-based and viral 
vector-based vaccine candidates could induce effective 
neutralizing antibody responses, their safety is a major concern 
for further development. A double-inactivated SARS-CoV 
vaccine was proven to elicit eosinophilic and immunoenhancing 
pathology (29). The SARS-CoV nucleocapsid protein (NP) in 
the inactivated vaccine may be responsible for this unwanted 
property (30,31). The full-length S protein may also not be safe. 
For example, the vaccine candidates containing recombinant S 
protein are able to cause Th2-mediated immunopathology (32) 
or some immune enhancement in vaccinated animals (33).

Based on our previous studies, we believe that a RBD-
based SARS vaccine is the most effective and safest. First, we 
have demonstrated that the recombinant RBD expressed in 
mammalian cells linked to human IgG Fc (RBD-Fc) could 
induce highly potent neutralizing antibodies in vaccinated mice 
and rabbits (34). Second, the recombinant RBD without Fc 
tag expressed in mammalian (293T) cells, insect (Sf9) cells, 
and E. coli, respectively, could induce highly potent neutralizing 
antibody responses and complete protective immunity against 
SARS-CoV challenge in mice. Third, a 219-mer (residues 
318-536) RBD protein expressed in Chinese hamster ovary 
(CHO)-K1 cells (RBD219-CHO) and a 193-mer (residues 
318-510) RBD stably expressed in CHO cells (RBD193-CHO) 
could induce strong humoral and cellular immune responses 
and protection in all vaccinated mice (35,36). Fourth, a 
recombinant adeno-associated virus (rAAV)-based RBD (RBD-
rAAV) vaccine could induce humoral immune response with 
neutralizing activity in intramuscular (i.m.)-vaccinated BALB/
c mice (37). The intranasal (i.n.) application of RBD-rAAV 
vaccine could induce more potent SARS-CoV-specific systemic 
and mucosal immune responses than i.m. administration (38). 
Fifth, priming with RBD-rAAV vaccine and boosting with RBD-
specific peptides for T cell epitopes significantly elevated anti-
SARS-CoV humoral and cellular immune responses (39). Sixth, 
RBD-based SARS vaccine could induce high titer of S-specific 
antibodies with long-term neutralizing activity and long-term 
protective immunity in an animal model (40). All these results 
indicate that RBD-based vaccines have good potential to be 
further developed as an effective and safe vaccine for preventing 
SARS-CoV infection and combating the recurrence of SARS 
pandemic in the future.

Conclusions and prospect

Considering the recent outbreaks of SARS-like disease caused 
by the newly emerged MERS-CoV and the potential of future 
recurrence of SARS, development of effective and safe vaccines 
against SARS-CoV remains a high priority. Our previous studies 
have demonstrated that the RBD in the S1 subunit of the 
SARS-CoV S protein contains the CND that can induce highly 
potent humoral and cellular immune responses, particularly 
cross-neutralizing antibodies and strong protective immunity. 
Therefore, RBD-based vaccines show considerable promise 
for further development as a highly effective SARS vaccine. 
Furthermore, this strategy could also be employed for the 
development of vaccines against other emerging infectious 
diseases caused by enveloped viruses with class I membrane 
fusion proteins, such as avian influenza A(H7N9) virus (41-43) 
and MERS-CoV (7,24). 

Recently, Chan et al. (44) have demonstrated that sera 
collected from convalescent SARS patients may contain cross-
reactive antibodies against MERS-CoV detected by both 
immunofluorescent and neutralizing antibody tests. Based on 
bioinformatics analysis, they anticipated that the B-cell epitope 
that elicited cross-reactive antibodies may be located in the S2 
subunit HR2 domain of MERS-CoV. Most recently, we have 
shown that the mAbs specific for the RBD of SARS-CoV S 
protein exhibited no cross-reactive or cross-neutralizing activity 
against MERS-CoV, suggesting that the RBDs of SARS-CoV 
and MERS-CoV S proteins may not contain the epitopes for 
inducing cross-reactive antibody responses (45). Therefore, the 
design and development of a RBD-based vaccine against MERS-
CoV will need to follow an experimental path similar to that of 
our RBD-based SARS vaccine. 
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