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Introduction

Aging is a pivotal contributor to several diseases and a 
major risk factor for numerous chronic conditions affecting 
the whole body (1). The aging process is responsible itself 
for several structural and functional changes and for the 
increased incidence of several cardiovascular risk factors 
such as hypertension, dyslipidemia and diabetes (2,3). The 
concepts that circulating factors may regulate the aging 
process have shed the light on this issue contributing to 
the development of novel therapeutic strategies to promote 
healthy aging (4-6). 

The aim of this review is to retrace the potential role 
of circulating and soluble factors to halt, reverse or even 

ameliorate the pathophysiological process of cardiac aging.
 

Aging, the magnitude of a problem

Aging may be considered a modern pandemic, associated 
with a serious social and economic impact. By 2050 more 
than two over nine billions of estimated people will be older 
than 60 years and yet in 2017 there will be more people 
over 65 than under 5 years old (7). In the European Union 
(EU), by 2060, approximately one third of the population 
will be aged 65 or over (Commission, 2012 #3816) whereas 
in the United States, 1 every 7 Americans is already older 
than 65 (8).

The progressive increase in life expectancy is associated 
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with higher prevalence of chronic age-related disease (9). 
In this light, understanding the mechanisms underlying 
this process and the changes that physiologically occur with 
time, is pivotal to improve the quality of life of the elderly 
and reduce the burden of age-related diseases (10). 

Aging is considered an invariable and progressive 
time-dependent decline in organism functions due to the 
constant gait of time (11) and is associated with deleterious 
changes leading to functional impairments typical of the 
elderly (12).

Aging is itself a major risk factor for several diseases, 
mostly chronic. Cardiovascular disease, cancer, degenerative 
disorders, immune-mediated diseases show indeed a higher 
prevalence in the elderly population, mainly because of the 
loss of the adaptive response to insults and an imbalance 
in tissue homeostasis (13). The aging process undeniably 
affects the cardiovascular system and the prevalence of 
cardiovascular diseases increases overtime. As early as in 
the 1970s, McKee and coll. identified in the Framingham 
study that older age was an independent risk factor for 
heart failure (HF) and aging was a predictor of worse 

prognosis in those patients (14). Aging indeed contributes 
significantly to the global burden of cardiovascular risk 
factors, HF, cardiomyopathies and ischemic heart disease (2).  
In particular, HF represents a major clinical and socio-
economical problem characterized by significant morbidity 
and mortality and progressive increase in healthcare 
expenses, especially in those older than 65 years (15,16). 

The aging process induces structural and functional 
changes such as vascular stiffening, myocyte hypertrophy 
and increased wall thickness, increased myocardial fibrosis 
and extracellular matrix (ECM) remodeling leading 
together to diastolic dysfunction characterized by reduced 
active filling of the left ventricle. These changes may 
explain the higher prevalence of heart failure with preserved 
ejection fraction (HFpEF) in the aging population (17-19). 
While aging may not represent the direct cause of HF, this 
process is associated with a lower threshold for clinical signs 
and symptoms of the disease (15,20). 

Patients with HFpEF present normal ventricular volumes 
and ejection fraction, as opposed to heart failure with 
reduced ejection fraction (HFrEF), and a severe impairment 
in ventricular relaxation (21,22). Furthermore, those 
patients are often female and usually older with numerous 
comorbidities such as obesity, diabetes, and hypertension 
when compared to patients with HFrEF (23). 

Despite several efforts, to date there are no specific 
treatments for this condition, therefore it appears 
crucial to develop novel strategies to understand the 
pathophysiological background and the possible therapeutic 
targets for patients with HFpEF (24).

Circulating factors in cardiac aging

A number of recent evidences indicate a pivotal role for 
circulating factors associated with aging in affecting the 
function of the cardiovascular system (Figure 1). While 
until recently the concept that circulating factors may affect 
cardiovascular health was limited mainly to lipids (25) and 
systemic factors mainly represented useful biomarkers for 
the diagnosis and for risk stratification of individuals at 
higher risk of cardiovascular disease (26-29), their role in 
promoting aging and pathological process has been recently 
highlighted (30-33).

Blood, circulating factors and in vivo parabiosis

The concept that blood carries either beneficial or 
detrimental factors is not a novel finding. Hippocrates 

Figure 1 Aging is characterized by systemic changes that lead 
to a progressive decline in tissue function. Circulating factors 
contribute to activate molecular pathways that regulate cardiac 
aging. The profound interconnection between heart and brain 
becomes more evident with aging and thus understanding the 
specific role of these factors may represent a novel therapeutic 
opportunity for chronic disorders. 
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from Kos identified the four “evil humors” responsible 
for several disease and proposed the bloodletting, known 
as phlebotomy, as effective treatment for those conditions 
(34,35). In most recent times, bloodletting was considered 
still an available option for untreatable disease (36) and 
Sir William Osler recommended the phlebotomy as a 
therapeutic choice in his textbook “The Principles and 
Practice of Medicine” (37,38).

Blood carries circulating factors, like hormones, which 
can affect organs distant from their site of production. 
The diversified world of the hormones has not yet been 
completely characterized and a number of circulating 
factors with this role have yet to be identified (39). While 
circulating factors are important biomarkers in different 
conditions, growing evidences indicate their role as a 
therapeutic option for cardiovascular disease (40,41), liver 
disease (40), cancer (42), and neurological disease (43).

To study the possibility that a shared circulatory system 
may affect a specific condition, Paul Bert, in the mid-1800s, 
introduced the surgical technique of parabiosis in which, he 
hypothesized, surgically connected animals may develop a 
shared circulation (44). Animals joined in parabiosis develop 
a shared blood circulation, with rapid and continuous 
exchange of cells and soluble factors at physiological 
levels through their common circulatory system (45). 
This surgical technique has been underemployed until the 
1970s when, Coleman and Coll., conjoined obese mice and 
diabetic mice in parabiosis with WT mice, paving the way 
to discover the role of leptin and leptin receptor in diabetes 
(46,47). More recently, in a revival of this interesting old-
fashioned technique, heterochronic parabiosis, a specific 
experimental procedure whereby two animals of different 
ages are joined together, allowed to study the role of shared 
circulation in several conditions, such as muscular atrophy, 
neurodegenerative disorders, cardiovascular diseases, and 
to discover several soluble factors that can affect specific 
phenotypes in experimental animals (48-52). 

Growth differentiation factor 11 (GDF11) was identified 
as the factor that recapitulates the effect of heterochronic 
parabiosis on cardiac muscle, reversing age-related cardiac 
hypertrophy (50). Further studies have extended the effect 
of GDF11 to restoration of skeletal muscle function and 
improved angiogenesis in the brains of aging mice (49,53).

Other studies have challenged these results, in part 
because of the homology with myostatin (GDF8), that 
render difficult to discriminate the effect of the specific 
proteins (54,55). Some of these discrepancies may be 
explained by the complexity and redundancy of the 

pathways and by the role of specific post-translational forms 
of GDF11, including specific antagonists (56,57). GDF11 
has shown a dose-dependent effect on cardiac mass (58) and, 
although further studies are needed to clarify its specific 
role, the possibility of targeting specifically cardiomyocytes 
and other cells with aging hormones may represent a novel 
therapeutic option.

Circulating factors in aging: the intersection 
between brain and heart

Heart and brain have an intimate relationship, more evident 
in aging when the link between heart dysfunction and the 
brain activity become manifest (59). 

Cardiovascular pathologies, cerebrovascular disorders 
and neurodegenerative diseases are prominent features of 
aging and dementia and cognitive impairment represent the 
main cause of disability in older people. The most common 
forms of dementia, Alzheimer’s disease (AD) and vascular 
dementia (VaD), cover about 80-90% of all dementias (59) 
and these pathologies are usually associated with risk factors 
for cardiovascular disorders and heart dysfunction. 

Traditionally VaD, a pathological condition due to 
embolic stroke, cardiac dysfunction or age-related vascular 
stiffening responsible for chronic hypoperfusion, was 
formerly considered the entity promoted by diabetes 
mellitus, hypertension, hypercholesterolemia, obesity or 
closely related to cardiac pathologies. Recently, a large body 
of evidence shows that cardiovascular risk factors are also 
associated with AD, considered a purely neurodegenerative 
disorder (60).

In normal brain aging and in AD pathology, two 
neuropathological hallmarks characterize the brain tissue: 
extracellular deposits of amyloid beta (Aβ) protein in which 
misfolded Aβ fibrils are organized in senile plaques and 
intraneuronal aggregates of hyperphosphorylated and 
misfolded tau protein that become extraneuronal (“ghost” 
tangles) when tangle-bearing neurons die (61). Aβ protein 
spontaneously self-aggregates into other multiple physical 
forms than fibrils and one of them consists of oligomers. 
Most evidences support the notion that the early stages of Aβ 
oligomerization rather than the fibrils in senile plaques are 
responsible for the toxic effects of Aβ at synaptic level (62).  
During aging and in the progression of AD, synaptic 
plasticity, capacity of sprouting and neuronal integrity 
is compromised. Recent studies suggest that the direct 
abnormal accumulation of Aβ oligomers in the neuronal 
terminals might contribute to the synaptic damage and 
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plasticity deficit, leading to cognitive impairment although 
the biological metastable nature of Aβ oligomers makes 
difficult their synaptic detection (62).

 In addition to Aβ and Tau effects, multiple and complex 
factors have been identified in AD pathogenesis including 
oxidative stress, mitochondrial damage, inflammatory 
responses and changes in cellular communication. This 
complexity is the main reason by which there is still a lack 
of understanding of initiating disease mechanisms and the 
absence of effective treatment options (63). A large body 
of evidence shows that caloric restriction, exercise, mental 
activity and the control of cardiovascular risk factors can 
counteract the aging brain (52). 

Recent findings have highlighted the importance of 
circulating factors in determining and reversing the course 
of brain aging and the profound intersection between 
heart and brain (49,51,52). The exposure of old animals 
to young blood in the later phase of their life is able to 
rejuvenate synaptic plasticity and to improve cognitive 
function therefore counterbalancing the aging process (52). 
Furthermore, in Xenopus oocytes, macrophage-derived 
soluble factors may directly activate N-methyl-d-aspartate 
(NMDA) receptor subtype NR1a/NR2B delaying the onset 
of AD (43). The exposure to young blood enhanced the 
complex interplay between vascular system and cognitive 
function. Indeed, circulating factors in young animals 
improved vascular function in the aging mouse brain, 
leading to increased blood flow and ultimately to increased 
neural activity and functioning (49).

Taken together these notions suggest that blood-
borne factors are essential to ameliorate the brain aging 
phenotype (51,64).

Although these experiments have been performed 
in rodents, these results have sufficiently convinced the 
researchers to initiate a human study, testing the transfusion 
of young human plasma in patients with different types of 
dementia. The study (Plasma Study), started in September 
2014 with final data collection in November 2016, 
enrolled 18 demented subjects and the preliminary data 
are not yet known (65) (http://clinicaltrials.gov/ct2/show/
NCT02256306). More recently a pay-to-participate trial 
(Ambrosia’s trial) started in Monterey (CA) (66). Healthy 
volunteers and not necessarily elderly—the trial is open 
to anyone 35 and older—are enrolled in order to receive 
transfusion of plasma from donors under age 25 to test for 
more than 100 biomarkers that may vary with age. For the 
study characteristics, the trial is giving rise to huge ethical 
problems.

Systemic inflammation

Inflammation is the common pathway occurring within 
the vasculature and throughout the body in response 
to an injury (67). Systemic inflammation associated 
with aging, even in absence of a specific pathological 
process (68), has a key role in determining structural 
and functional changes in the aging myocardium (13), 
underlying the pathophysiological process of cardiac frailty 
and cardiovascular pathology (69). Even in the absence 
of chronic conditions, circulating inflammatory factors, 
such as interleukin (IL)-6, tumor necrosis factor (TNF)-α 
and soluble TNF receptor-1 (TNFR-1), and C-reactive 
protein (CRP) are usually two to four folds higher in the 
elderly compared to young subjects (70). The inflammatory 
response is tightly associated with increased production of 
reactive oxygen species (ROS), mitochondrial damage, and 
accelerated senesce (71). Furthermore, subtle inflammatory 
processes lead to arterial stiffening and endothelial 
dysfunction resulting in age-related inflammatory chronic 
disease, i.e., atherosclerosis and hypertension (69,72,73). 
Hosford-Donovan and Coll. demonstrated that higher level 
of CRP were independently associated with hypertensive 
phenotype in 65–70 years old women, postulating that 
chronic inflammation may influence blood pressure’s 
regulation in the elderly leading to increased vascular 
stiffening and accelerated atherosclerosis (74). 

IL-6 levels are a marker of cardiovascular disease and 
serum concentration of this cytokine increases with age 
(13,75). Elevate levels of IL-6 are found in aged mice hearts 
and deletion of myocardial Insulin-like Growth Factor 
(IGF)-1 Receptor rescues the aging cardiac phenotype 
suggesting a possible link between these two factors (76). In 
humans, elevated level of IL-6 were associated with higher 
cardiovascular mortality over a period of 3 years of follow-
up indicating that systemic inflammation may contribute to 
the cardiac aging process (77).

The measurement of serum concentration of CRP is 
a well-known useful marker for patients at higher risk of 
atherosclerotic disease and the prognostic value of this 
evaluation is comparable to blood cholesterol measurements 
(78,79). Furthermore, CRP concentration increases 
significantly with age, without gender differences, and 
provides a reliable measurement in assessing the risk of 
future cardiovascular events (80,81). Although CRP can be 
considered as a useful marker for cardiovascular disease, it 
is unlikely that specific treatments targeting this molecule 
may provide a net clinical benefit (82). 
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While several attempts to target this condition using 
therapeutic anti-inflammatory regimens to reduce 
cardiovascular mortality have failed (83), targeting the 
whole CRP/IL-6/IL-1 axis with monoclonal antibodies 
could open new therapeutic lines in cardiovascular 
pathology and offer novel insights for the aging process of 
the heart (82). An interesting finding indicates an inverse 
relationship between serum level of testosterone and CRP, 
warning regarding the increased risk of cardiovascular 
disease in aging men and linking the neurohormonal axis to 
the inflammatory process (84). 

While targeting systemic inflammation may represent 
an interesting therapeutic option, so far little evidence are 
available indicating its employment in the near future (83).

Vitamin D

Vitamin D deficiency is a serious health issue worldwide, 
requiring special attention (85-87). Vitamin D is a fat-
soluble vitamin responsible for calcium and phosphorus 
homeostasis (88,89). Vitamin D deficiency has been 
previously associated with poorer neuropsychological 
function, metabolic syndrome, arrhythmias and coronary 
artery disease, and shares a complex interplay with other 
cardiovascular risk factors (88-93). Numerous studies 
hypothesized that low levels of Vitamin D are inversely 
associated with cardiovascular disease and cardiac aging, 
however evidences and data from large clinical trials are 
limited (94-96). By contrast, higher levels of Vitamin 
D have been associated with longer leukocyte telomere 
length (LTL) suggesting a potential beneficial effect of 
this vitamin on the aging process (97). Therefore, besides 
the well-known effect of sun exposure on bone’s health, 
preservation of normal values of Vitamin D appears 
beneficial for cardiovascular health and healthy aging 
process (85,94).

Neurohormonal factors

Sympathetic nerve stimulation (SNS), Renin Angiotensin 
Aldosterone System (RAAS) and Natriuretic Peptides 
(NP), are part of the defense system adopted by the body 
to maintain fluid homeostasis and vascular resistance and 
provide proper perfusion to distant organs (98). Aging is 
associated to increased activation of the neurohormonal 
system, in part as a result of an imbalance between 
production and clearance of vasoactive molecules (99) and 
can in part explain the high incidence and prevalence of HF 

in the elderly (15). While the activation of these systems 
during the early phase of HF may normalize cardiac output 
and perfusion, chronic activation has a deleterious impact 
on the outcome of this condition, promoting structural and 
functional changes in the myocardium and the vasculature 
that eventually contribute to decompensated HF (100-103). 
Thus, in order to prevent the progression of HF and to 
improve morbidity and mortality, several treatments targeting 
this axis and modulate their activity have been developed 
(104,105). HF is also a risk factor for neurodegenerative 
disorders, possibly because impaired blood flow and 
neurohormonal activation favor accumulation of Aβ plaques 
and neurofibrillary tangles (106), indicating the strict link 
between aging and chronic disorders.

Activation of RASS, which is pivotal for fluid and 
blood pressure homeostasis (98), leads to increased 
level of Ang-II, which has a pro-hypertrophic and pro-
fibrotic effect. High levels of Ang-II are tightly associated 
with cardiomyocyte hypertrophy, ECM remodeling and 
increased collagen deposition and ultimately to cardiac 
fibrosis (13,107,108). These changes at the tissue level 
contribute to clinical manifestations of cardiac aging, such 
as diastolic dysfunction, impaired relaxation and reduced 
compliance of the ventricle, and promote the progression 
to heart failure with ejection fraction either preserved 
(HFpEF) or heart failure with ejection fraction either 
reduced (HFrEF), both in humans and in animals (109). 
Recent studies in hypertensive and aging animals have 
shown how hyperactivation of the RAAS system reduces 
ventricular compliance through increased titin-based 
myocardial stiffness, ultimately contributing to diastolic 
dysfunction and development of HFpEF, underlining the 
pleiotropic negative effects of the persistent increased 
activation of RAAS (110,111). Persistent activation of RAAS 
also stimulates β-amiloid production (112), an important 
link between cardiac and neuronal aging (113). Ang-II has 
important pro-inflammatory effects, leading to increased 
secretion of TNFα, IL-1β, and IL-6 (114). With aging, 
increased levels of Ang-II stimulate NADPH oxidase 
4 (NOX4) on the mitochondrial membrane enhancing 
the oxidative damage, a cornerstone of the aging process  
(115-117). Ang-II enhances cardiac fibroblast proliferation 
through NOX4/ROS-dependent IL-18 induction, MMP9 
and p38 MAPK activation, promoting cardiac remodeling 
and diastolic dysfunction (118,119), while blockade of the 
RAAS delays the fibrotic response of the myocardium (120). 

In humans, proteins of the RAAS system can be found 
in the urine of healthy aged individuals (121) suggesting 
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an increased activity of this system, possibly explaining 
the progressive cardiac and kidney failure (122-124), the 
increased incidence of hypertension, due endothelial 
dysfunction and arterial stiffness (125), the high incidence 
of metabolic syndrome and diabetes (126), and the aging 
phenotype (127,128).  

RAAS blockade with angiotensin converting enzyme 
inhibitors (ACE-I) or angiotensin receptor blockers (ARBs) 
is able to reduce cardiovascular mortality independently 
from blood pressure lowering, either in humans or in 
animals (129-131), ameliorates cardiac hypertrophy and 
myocardial fibrosis (132), endothelial dysfunction and 
arterial stiffness (133) and improves animal survival (134). 
Furthermore, treatment with ACE-I and ARBs represent 
a valid therapeutic option for aged people (105,135,136), 
improving cerebral blood flow and reducing the 1-year risk 
of fall in elderly people (137), even though in hypertensive 
patients it is associated with worse gait performance (138) 
and appears to have no effect on walking distance or on age-
related decline of muscle strength (139).

Aging is also associated with elevated levels of 
endothelin-1 (ET-1), in part stimulated by Ang-II (140), 
promoting the development of the an aging phenotype 
characterized by ECM remodeling, increased collagen 
deposition and endothelial dysfunction contributing to 
a progressive impairment of the diastolic function and 
eventually to HFpEF (141,142). ET-1 stimulates collagen 
deposition through both endothelin receptor type A (ETA) 
and type B (ETB), and administration of ETA receptor 
antagonists is able to reduce either cardiac or renal fibrosis 
(141,143,144). Furthermore, antidepressant treatment with 
venlafaxine, commonly used in elderly population, is able to 
modulate TGF-β expression and to reduce brain damage in 
a rat model of ET-1 induced stroke, confirming the key role 
of ET-1 in the progression of vascular damage (145).

NP are a family of different peptides acting directly 
on cardiovascular and renal systems, balancing fluid 
homeostasis (146) and promoting vasorelaxation, natriuresis 
and diuresis (147). Plasma levels of NPs are crucial in the 
evaluation of patients with HF (146,148). Elevated serum 
levels of brain natriuretic peptide (BNP) are independently 
associated with poorer outcomes (149,150) and predict 
higher in-hospital mortality in very elderly patients 
admitted for HF (151). BNP levels are elevated in the aging 
population compared to the younger counterparts even 
in the absence of a clear diagnosis of HF (152,153). BNP 
levels are persistently elevated in the elderly independently 
from blood pressure changes, renal function, atrial volumes, 

myocardial mass or other age-related changes (154,155) 
suggesting the importance of these circulating factors in 
normal aging. NPs increase the production of cGMP (156) 
and are degraded mainly through the enzyme Neprilysin 
(NEP), a zinc-dependent enzyme widely expressed 
throughout the body (157). 

In animals, increased levels of NPs or chronic inhibition 
of NEP are able to prevent the progression of cardiac aging 
(158,159). Similarly, in humans, simultaneous inhibition of 
NEP and Ang-II type-1 receptor (AT1R) with LCZ-696 
(which is composed by Valsartan and Sacubitril) has shown 
to reduce significantly mortality and hospitalization in 
patients with HF (160). It is estimated that this compound, 
recommended in the most recent guidelines on treatment 
of HF (135,136), may add 1 to 2 years to life expectancy in 
these patients (161). 

Organism homeostasis and the correct balancing of 
circulation factors are essential for physiological and healthy 
aging. Imbalance of these axis significantly affects the aging 
phenotype, thus therapeutic strategies acting on these 
targets may ameliorate lifespan and healthspan of the aging 
population.

MicroRNAs (miRNAs) and long non coding RNAs 
(lncRNA)

Circulating miRNAs are single-stranded and non-
coding RNA molecules of approximately 22 nucleotides 
regulating several biological activities (162). miRNAs 
emerged as important biomarkers and therapeutic target 
for several conditions, including HF (163). Numerous 
miRNAs, such as miR-146, miR-155, miR-21, miR-126 
appear to be involved in the aging process (164,165), in 
cardiac remodeling observed with aging (166,167) and 
are associated with prognosis and response to therapy in 
HF (163).

The miR-34 family, which includes miR-34a, miR-
34b and miR-34c and is important in cancer formation, 
metastasis, and cell viability (168), is tightly associated with 
the aging process (169). Indeed, elevated levels of miR-34 
are found in the heart of old mice (170) and the inhibition 
of its downstream target, the protein phosphatase-1 
regulatory subunit-10 (PNUTS) is associated with 
increased cardiomyocyte apoptosis, telomere attrition 
and cardiac contractile impairment, typical hallmarks of 
cardiac aging (171).

Like miRNA, lncRNA, which are the vast majority of 
non-coding RNAs and are longer than 200 nucleotides, are 
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also important modulator of the aging process (172,173). 
lncRNAs are key regulator of the aging process and 
play and important role in the onset and progression of 
cardiac aging (174,175). Senescence-associated lncRNAs 
(SAL-RNAs) may indeed influence the aging phenotype, 
regulating cardiac function and myocardial fibrosis (176). In 
particular, SAL-RNA1 appears to delay cardiac aging (176) 
while SAL-RNA2 and SAL-RNA3 promote the survival of 
the senescent fibroblasts through the increased expression of 
p53 (174). Furthermore, the lncRNA H19 is an important 
modulator of the aging process, negatively affecting cell 
proliferation and promoting cellular senescence (177,178).

miRNAs and lncRNAs,  interest ing and useful 
biomarkers, represent also a potential therapeutic target to 
modulate the aging process. Recently, Kaneko and Coll. 
demonstrated that treatment with ARBs reduces the serum 
level of miR-146a, miR-149, miR-150, and miR-342-3p, 
improving survival rate and ameliorating congestion of the 
animals treated, suggesting possible crossroads between 
these two pathways of cardiac aging (179). Further studies 
are needed to elucidate the mechanism underlying this 
process and to develop tailored therapy to prevent the 
progression of the aging phenotype.

Conclusions

The aging epidemic that we are observing will benefit 
from our understanding of the molecular mechanisms that 
regulate cardiovascular aging with clear repercussions on 
other interconnected systems. The recent notions that 
circulating factors may contribute to control aging and 
the chronic illnesses that are strictly connected to this 
phenotype can be seen as an intriguing finding but also as 
a new therapeutic opportunity. A number of therapeutic 
options that interferes with circulating mediators of cardiac 
aging have shown a clear role in ameliorating the burden of 
chronic cardiovascular conditions. Unraveling the complex 
systemic mechanisms that regulate cardiac aging will 
provide novel pharmacologic strategies with a clear impact 
on quality of life in a progressively aging world. 
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