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Introduction

The statistical inference would be a critical step of 
experimental researches, such as in medicine, molecular 
biology, bioinformatics, agricultural science, etc. It is well 
acceptable that an appropriate significance level α, such as 
0.05 or 0.01, is pre-specified to guarantee the probability 
of incorrectly rejecting a single test of null hypothesis ( 0H )  
no larger than α. However, there are many situations where 
more than one or even a large number of hypotheses are 
simultaneously tested, which is referred to as multiple 
comparisons (1). For example, it is common in clinical 
trials to simultaneously compare the therapeutic effects 
of more than one dose levels of a new drug in comparison 
with standard treatment. A similar problem is to evaluate 
whether there is difference between treatment and control 
groups according to multiple outcome measurements. 
Due to rapid advances of high-throughput sequencing 
technologies, it is also common to simultaneously determine 
differential expression among tens of thousands of genes.

The statistical probability of incorrectly rejecting a 

true 0H  will significantly inflate along with the increased 
number of simultaneously tested hypotheses. In the most 
general case where all 0H  are supposed to be true and also 
independent with each other, the statistical inference of 
committing at least one incorrect rejection will become 
inevitable even when 100 hypotheses are individually tested 
at significance level 0.05α =  (Figure 1). In other words, 
if we simultaneously test 10,000 true and independent 
hypotheses, it will incorrectly reject 500 hypotheses 
and declare them significant at 0.05α = . Of course, 
estimation of error rate would become more complex when 
hypotheses are correlated in fact and not all of them are 
true. Therefore, it is obvious that the proper adjustment of 
statistical inference is required for multiple comparisons (2).  
In the present paper, we provide a brief introduction to 
multiple comparisons about the mathematical framework, 
general concepts and the wildly used adjustment methods.

Mathematical framework

For a simultaneous testing of m  hypotheses, the possible 
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outcomes are listed in Table 1. Let’s suppose that the number 
of true 0H  is 0m , which is an unobservable random variable 
( 00 m m≤ ≤ ). After performing statistical inferences we 
totally found R  0H  being rejected and declared significant 
at the pre-specified significance level; and herein R  is 
an observable random variable ( 0 R m≤ ≤ ). Among the 
statistically rejected hypotheses of R , when 0R > , we 
suppose that there are U  0H  that have been incorrectly 
rejected. Similar to 0m , U  is also an unobservable random 
variable with equal to or larger than 0. Accordingly, counts 
of other possible outcomes could be deduced, including the 
correctly rejected 0H  ( R U− ), correctly retained 0H  ( 0m U− ),  
and incorrectly retained 0H  ( 0m R m U− − + ).

Type I and II errors

For the statistical inference of multiple comparisons, it 
would commit two main types of errors that are denoted as 
Type I and Type II errors, respectively. The Type I error is 
that we incorrectly reject a true 0H , whereas Type II error 
is referred to a false negative. Because the exact numbers 
of Type I and Type II errors are unobservable (as denoted 
in Table 1), we would intend to control the probability of 
committing these errors under acceptable levels. In general, 

the controlled probabilities of committing Type I and Type 
II errors are negatively correlated, for which therefore 
we must determine an appropriate trade-off according to 
various experimental properties and study purposes. If a 
significant conclusion has important practical consequence, 
such as to declare an effective new treatment, we would 
control Type I error more rigorously. On the other hand, 
we should avoid committing too many Type II errors 
when it intends to obtain primary candidates for further 
investigation, which is very common in studies of genomics. 
Here, we specially address the controlling of Type I error 
because it considerably increases for multiple comparisons.

Adjusted P value or significance level

In statistical inference, a probability value (namely P value) 
is directly or indirectly computed for each hypothesis and 
then compared with the pre-specified significance level 
α for determining this 0H  should be rejected or not (3). 
Therefore, there are two ways for adjusting the statistical 
inference of multiple comparisons. First, it could directly 
adjust the observed P value for each hypothesis and keep 
the pre-specified significance level α unchanging; and this 
is herein referred to as the adjusted P value. Second, an 
adjusted cut-off corresponding to the initially pre-specified 
α could be also computationally determined and then 
compared with the observed P value for statistical inference. 
In general, the adjusted P value is more convenient because 
in which the perceptible significance level is employed. 
However, it would be difficult or impossible to accurately 
compute the adjusted P value in some situations.

Measures accounting for Type I error

According to possible outcomes of multiple comparisons 
(Table 1), all efforts would be paid to the control of variable 
U , for which therefore various statistical measures have 
been proposed to account (4). Certainly, each of these 
measures has differential applications with respective 
strengths and weaknesses.

A simple and straightforward measurement is the 
expected proportion of variable U  among all simultaneously 
tested hypotheses of m , which is referred to as the  
per-comparison error rate (PCER):

( )PCER
E U
m

=
.

If each hypothesis is separately tested at significance 

Table 1 Framework of simultaneous hypotheses testing

Null hypothesis, H0

H0 rejected  
(significant)

H0 not rejected  
(non-significant)

Total, m R m–R

True, m0 U m0–U

False, m–m0 R–U m–R–(m0–U)

Figure 1 The increased error rate of multiple comparisons.

P
ro

ba
bi

lit
y 

of
 re

je
ct

in
g 

at
 le

as
t o

ne
 tr

ue
 H

0

Number of simultaneously tested hypotheses

0.01

0.05

0.1

1   5 10 20       50       100                         300               500

α

1.0

0.8

0.6

0.4

0.2

0.0



1727Journal of Thoracic Disease, Vol 9, No 6 June 2017

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2017;9(6):1725-1729jtd.amegroups.com

level α, PCER will be equal to α when all 0H  are true 
and independent with each other. Obviously, it becomes  

0PCER m mα α= ≤  when not al l  0H  are true in fact. 
However, control of PCER would be less efficient because 
we would obtain at least one false positive at significance 
level 0.05α =  when 20 true 0H  are simultaneously tested.

In practical applications, it is more reasonable to 
jointly consider all hypotheses as a family for controlling 
Type I error; and therefore the most stringent criterion 
is to guarantee that not any 0H  is incorrectly rejected. 
Accordingly, the measure of familywise error rate (FWER) 
is introduced and defined as the probability of incorrectly 
rejecting at least one 0H :

( )FWER 0P U= > .

The control of FWER has been widely used especially 
when only a few or at most several tens of hypotheses are 
simultaneously tested. However, FWER is believed to be 
too conservative in cases that the number of simultaneously 
tested hypotheses reaches several hundreds or thousands.

Another popular measure for controlling Type I error of 
multiple comparisons is the false discovery rate (FDR), which 
is defined as the expected proportion of incorrectly rejected 

0H  among all rejections:

   if  0 
FDR

0           if  0

UE R
R

R

⎧ ⎛ ⎞ >⎪ ⎜ ⎟= ⎝ ⎠⎨
⎪ =⎩ .

Therefore, FDR allows the occurrence of Type I errors 
under a reasonable proportion by taking the total number 
of rejections into consideration. An obvious advantage of 

FDR controlling is the greatly improved power of statistical 
inference, which would be useful when a large number of 
hypotheses are simultaneously tested.

Common methods for adjustment

Suppose that there are m  hypotheses of 1H , …, mH  being 
simultaneously tested, which correspond to the initially 
computed P values of 1p , …, mp . Accordingly, the adjusted 
P values of multiple comparisons are denoted as 1p′ , …, 

mp′ . The pre-specified and adjusted significance levels are 
further denoted as α and αʹ , respectively. Furthermore, we 
assume that all hypotheses are ordered as (1)H , …, ( )mH  
according to their observed P values of (1) ( )... mp p≤ ≤ ; and 
the associated P values and significance level are denoted as 

( )ip , ( )ip′  and ( )iαʹ  for the thi  ordered hypothesis of ( )iH .  
We here provide an illustrative example for demonstrating 
differences among various adjustment methods. Let 

6m =  and 0.05α = ; and the initially computed P values 
corresponding to six hypotheses are 1 0.1025p = , 2 0.0085p = ,  

3 0.0045p = ,  4 0.0658p = ,  5 0.0201p =  a n d  6 0.0304p = , 
respectively.

Bonferroni adjustment

Bonferroni adjustment is one of the most commonly used 
approaches for multiple comparisons (5). This method tries 
to control FWER in a very stringent criterion and compute 
the adjusted P values by directly multiplying the number of 
simultaneously tested hypotheses ( m ):

{ }min , 1i ip p mʹ = ×  (1 i m≤ ≤ ).

Equivalently, we could let the observed P values unchanging 
and directly adjust the significance level as 0.05 6mα αʹ = = .  
For our illustrative example the adjusted P values are compared 
with the pre-specified significance level 0.05α = , and the 
statistical conclusion is obviously altered before and after 
adjustment (Figure 2). Bonferroni adjustment has been well 
acknowledged to be much conservative especially when there 
are a large number of hypotheses being simultaneously tested 
and/or hypotheses are highly correlated.

Holm adjustment

On the basis of Bonferroni method, Holm adjustment was 
subsequently proposed with less conservative character (6). 
Holm method, in a stepwise way, computes the significance 
levels depending on the P value based rank of hypotheses. 

Figure 2 Differences of the adjusted P values among various 
methods. The dashed horizontal line denotes the pre-specified 
significance level.
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For the thi  ordered hypothesis ( )iH , the specifically adjusted 
significance level is computed:

( ) 1i m i
α

αʹ =
− + .

The observed P value ( )ip  of hypothesis ( )iH  is then 
compared with its corresponding ( )iαʹ  for statistical 
inference; and each hypothesis will be tested in order 

from the smallest to largest P values ( (1)H , …, ( )mH ). The 
comparison will immediately stop when the first ( ) ( )i ip αʹ≥  
is observed ( 1, ..., i m= ) and hence all remaining hypotheses 
of ( )jH  ( , ... , j i m= ) are directly declared non-significant 
without requiring individual comparison (Figure 3).  
Alternatively, it could directly compute the adjusted P value 
for each hypothesis and produce same conclusion (Figure 2).

Hochberg adjustment

Similar to Holm method, Hochberg adjustment employs 
same formula for computing the associated significance 
levels (7). Therefore, the specifically adjusted significance 

level for thi  ordered hypothesis ( )iH  is also computed:

( ) 1i m i
α

αʹ =
− + .

However, Hochberg method conducts statistical 
inference of hypothesis by starting with the largest P 

value ( ( )mH , …, (1)H ). When we first observe ( ) ( )i ip αʹ<  
for hypothesis ( )iH  ( , ..., 1i m= ), the comparison stops and 

then concludes that the hypotheses of ( )jH  ( , ... , 1j i= ) will 
be rejected at significance level α. The adjusted P values of 
Hochberg method are shown in Figure 2. It is also known that 
Hochberg adjustment is more powerful than Holm method.

Hommel adjustment

Simes [1986] modified Bonferroni method and proposed a 

global test of m  hypotheses (8). Let (1) ( ){ , ..., }mH H H=  be the 
global intersection hypothesis, H  will be rejected if ( )ip i mα≤  
for any 1, ..., i m= . However, Simes global test could not be 
used for assessing the individual hypothesis iH . Therefore, 
Hommel [1988] extended Simes’ method for testing individual 

iH  (9). Let an index of { }{ }( )max 1, ..., :  for 1, ..., m i kj i m p k i k iα− += ∈ > =  
be the size of the largest subset of m  hypotheses for which 

Simes test is not significant. All iH  ( 1, ..., i m= ) are rejected 
if j  does not exist, otherwise reject all iH  with ip jα≤
. Although straightforward explanation for computing the 
adjusted P values of Hommel method would be not easy, this 
task could be conveniently performed by computer tools, 
such as the p.adjust() function in R stats package (http://cran.
r-project.org).

Benjamini-Hochberg (BH) adjustment

In contrast to the strong control of FWER, Benjamini 
and Hochberg [1995] introduced a method for controlling 
FDR, which is herein termed BH adjustment (10). Let q  be 
the pre-specified upper bound of FDR (e.g., 0.05q = ), the 
first step is to compute index k :

( )max : i
ik i p q
m

 = ≤ 
  .

If k  does not exist, reject no hypothesis, otherwise 
reject hypothesis of iH  ( 1, ..., i k= ). BH method starts 
with comparing ( )iH  from the largest to smallest P value 
( , ... , 1i m= ). The FDR-based control is less stringent 
with the increased gain in power (Figure 2) and has been 
widely used in cases where a large number of hypotheses are 
simultaneously tested.

Benjamini and Yekutieli (BY) adjustment

Similar to BH method, a more conservative adjustment 
was further proposed for controlling FDR by Benjamini 
and Yekutieli [2001], and this method is also termed BY 
adjustment (11). Let again q  be the pre-specified upper 
bound of FDR, the index k  is computed as:

Figure 3 Schematic illustration for Holm adjustment
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( )

1

max :  with  1i m

i

i qk i p q q
m

i=

 = ≤ = 
  ∑

 

.
If k  does not exist, reject no hypothesis, otherwise reject 

hypothesis of iH  ( 1, ..., i k= ). BY method could address the 
dependency of hypotheses with increased advantages.

Conclusions

Although substantial literature has been published 
for addressing the increased Type I errors of multiple 
comparisons during the past decades, many researchers are 
puzzling in selecting an appropriate adjustment method. 
Therefore, it would be helpful for providing a straightforward 
overview on the adjustment for multiple comparisons to 
researchers who don’t have good background in statistics. Of 
course, there are many theoretical topics and methodological 
issues having not been addressed yet in the present paper, 
such as resampling-based adjustment methods, choice of 
significance level α, and specific concerns for genomics 
data. It is also beyond the scope of this paper to discuss the 
sophisticated mathematical issues in this filed.
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