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Introduction

Although survival has improved spectacularly following 
lung transplantation, it still limbs behind that after other 
solid organ transplantations (1). Although improvement in 
surgical techniques and clinical expertise led to an improved 
in initial survival, long-term overall outcome remains poor. 
Graft failure and chronic lung allograft dysfunction (CLAD) 
are the major culprits for this inferior long-term outcome (2). 
CLAD has been introduced recently as an overarching term 
encompassing all forms of chronic (>3 weeks) pulmonary 
function decline. Next to pulmonary function decline with 
a known cause (either graft-related, i.e., acute rejection, 
recurrence of native disease, infection, suture problems; or 
non-graft related, i.e., obesitas, pleural fluid, diaphragm 
dysfunction), there is also a large proportion of patients in 

whom no clear cause can be identified for the decline in 
pulmonary function which is therefore assumed to be due 
to chronic rejection. Within this review, we will describe 
historic and current evidence for CLAD classification and 
its clinical implications (diagnosis, pathology, radiology, 
risk factors and mechanisms) with a particular focus on 
treatment.

History

Historically, the term bronchiolitis obliterans syndrome 
(BOS) has been universally linked with chronic rejection 
post-transplant.  BOS was defined as a persistent, 
obstructive decrease in forced expiratory volume in 1 
second (FEV1) with at least 20% compared to the mean of 
the two best post-transplant values, in the absence of other 
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identifiable causes such as acute rejection, infection, suture 
problems… Further stratification was made according to 
the relative decrease in FEV1 and consequently a grading 
system was introduced being BOS1 (FEV1 66–80% of 
best), BOS2 (FEV 50–65% of best) and BOS3 (<50% 
of best). BOS was thought to be a functional reflection 
of obliterative bronchiolitis (OB). OB was considered to 
be the pathological hallmark of chronic rejection, but 
can also be found in other conditions such as pulmonary 
graft versus host disease after hematopoietic stem cell 
transplantation, auto-immune disorders especially 
rheumatoid arthritis, inhalation of toxins like sulfur mustard 
or as a post-infectious complication following childhood 
viral infection (3). OB is a pathological scarring or filling 
of the airway lumen with collagenous matrix leading to 
airflow limitation. The clinical definition of BOS based 
on serial pulmonary function measurements was deemed 
necessary given the poor sensitivity and specificity to 
diagnose OB on transbronchial biopsies (4). However, 
already in the initial pathological descriptions of explant 
lungs of patients suffering from chronic rejection some 
discrepancies were observed, such as the occurrence of 
a restrictive pulmonary function decline and significant 
pleural thickening (5,6). Nevertheless, in the following 
decades, the term BOS was universally utilized when 
referring to chronic rejection. The first elements to break 
this dogma came in 2003 when Gerhardt et al. found 
a proportion of patients with established BOS, who 
improved their pulmonary function upon azithromycin 
treatment (7). In some patients, this FEV1 improvement 
was so pronounced that criteria for BOS were no longer 
fulfilled. This was confirmed by several other groups (8,9) 
and led to the first proposition of phenotypes of chronic 
rejection, leading to a novel phenotype called neutrophilic 
reversible allograft dysfunction or azithromycin responsive 
allograft dysfunction (10), which is nowadays considered 
as a reversible cause of CLAD and therefore is no longer 
thought to be a manifestation of chronic rejection (11). It was 
only in 2010 that a restrictive pulmonary function defect 
came apparent when Woodrow and colleagues defined 
a group of patients with so called ‘restrictive BOS’ (12). 
However, this description had no clinical implications (i.e., 
no survival difference) and therefore it was only in 2011 
when Sato et al. identified a restrictive allograft syndrome 
(RAS) in patients with a decline in total lung capacity and 
infaust prognosis that general interest was aroused for 
what was thought to be a novel manifestation of chronic  
rejection (13). Typically, these patients presented with a 

restrictive pulmonary function, persistent CT infiltrates 
and most interestingly inferior survival compared to the 
obstructive (BOS) patients. Since literature on known 
causes of CLAD is rare, we will emphasize and contrast 
BOS to RAS and compare clinical characteristics, with 
special emphasis on treatment.

BOS

Diagnosis, radiology and pathology

BOS remains the most common phenotype of chronic 
rejection (65–75%). Typical characteristics include an 
obstructive pulmonary function defect and air trapping/
mosaic attenuation on expiratory CT. Median survival after 
diagnosis is between 3–5 years. However, even within 
BOS there is significant heterogeneity: patients with an 
early (<2 years post-transplant) or a high grade onset (FEV1 
decline >35%) have inferior survival compared to patients 
with late and low grade onset (14). Analysis of explant 
specimens at redo transplantation has revealed OB in all 
BOS lungs (15), and the lesions seem to be segmental with 
40–60% of the small airways appearing obstructed as of 
generation 6 on (16), which may explain the obstructive 
pulmonary function. OB is thought to be the end-result of 
persistent damage to the bronchial epithelium leading to 
an excessive inflammatory response, leading to local (myo-)  
fibroblast recruitment, fibrosis and ultimately complete 
obliteration of the airway lumen by fibrotic matrix. 

Risk factors and mechanisms of BOS

Many risk factors for BOS have been identified such as 
acute rejection [specifically acute rejections associated with 
pulmonary function decline (17)], lymphocytic bronchiolitis, 
infection and colonization with micro-organisms (i.e., 
Pseudomonas aeruginosa and Aspergillus fumigatus), donor and 
recipient genetics, primary graft dysfunction, particulate 
matter and presence of HLA antibodies, or antibodies to 
self-antigens (18). Especially regarding the latter, progress 
has been made the last years. De novo development of 
donor specific antibodies occurs frequently (35–60%) and 
is independently associated with CLAD (19,20). Similarly, 
antibodies to self-antigens (like K-α1 tubulin and collagen 
V) have been demonstrated to increase the risk for 
subsequent BOS development (21).

Since the mechanisms of BOS remain mostly elusive, 
novel evidence is accumulating with the use of the mice 
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orthotopic lung transplant model. Depending on the type of 
mismatch, immunosuppression and the duration of follow-
up, lesions compatible with OB can be found in transplanted 
mice lung. Given the advantage of genetics knockouts in 
mice and possibility of invasive sampling, this model is 
an excellent set-up to study underlying mechanisms. For 
example, it was shown that progressive loss of self-tolerance 
through epitope spreading promotes airway fibrosis (22). 
In another experiment, it has been shown that the murine 
lung allograft fibrosis originates mostly from the donor (23). 
However, these results cannot be directly extrapolated from 
mice to men as in humans, 32% of OB lesions are occupied 
by recipient and not donor fibroblasts (24). Moreover, 
human OB mostly develops in small airways, yet mice lack 
small airways, which is an additional problem to overcome. 
Therefore, experimental research has also focused on in vitro  
culture of bronchial epithelial cells, which showed that 
transition of epithelial cells to a mesenchymal phenotype can 
contribute to the fibroblast accumulation in OB lesions (25). 
Interestingly, Pseudomonas can significantly aggravate this 
so called epithelial-mesenchymal transition (EMT), which is 
important given that colonization with pseudomonas occurs 
frequently post-transplant and is independently associated 
with a higher prevalence of BOS (26).

For decades, the search has been ongoing to identify 
an appropriate marker for BOS. Given the heterogeneous 
nature of CLAD, it comes to no surprise that at this 
moment, there are no universally applied biomarkers for 
BOS diagnosis. Broncho-alveolar lavage (BAL) analysis 
may provide insights in the lung micro-environment (27). 
Using BAL, the first important markers for BOS came to 
light, which included neutrophils and markers of neutrophil 
activation (CXL-8, MMP-9) (28). Later, however, it became 
clear that patients with elevated BAL neutrophilia and IL-8 
are those who display the best response to treatment with 
neomacrolides (most commonly azithromycin which was 
denominated azithromycin responsive allograft dysfunction 
or neutrophilic responsive allograft syndrome, see above). 
The same was later seen with BAL IL-17, which has been 
implicated in BOS. IL-17 is a major pro-inflammatory 
molecule inducing the release of IL-8, but is also implicated 
in the response to self-antigens. However, IL-17 staining 
in the lamina propria later revealed no difference in BOS 
compared to stable patients (29), while orthotopic lung 
transplantation in major mismatch mouse strains did not 
reveal a difference between wildtype and IL-17 knock-
out mice (30). In patients with lymphocytic bronchiolitis, 
who were treated with azithromycin, IL-17 positive cells 

disappear from the lamina propria and FEV1 increases (31).  
Nevertheless, these patients may later still develop BOS, 
without IL-17 involvement. Evidence from other groups 
nevertheless suggest an important role for IL-17 in 
CLAD as treatment with an anti-IL-17 antibody or with 
halofuginone (which reduces IL-17), may attenuate features 
of chronic rejection in a murine transplant model (32,33).

Overall, none of the historically identified proteins 
seem to be a good biomarker for BOS development. In 
fact, a recent BAL cytokine and chemokine analysis, could 
not detect any molecule that was differentially regulated 
between stable (non-rejecting) patients and patients with 
BOS (34). Consequently, some groups have tried to identify 
blood markers blood for BOS development, but so far none 
have proven to be very sensitive and specific.

Treatment

The widespread use of the neomacrolides has significantly 
impacted CLAD incidence and long-term survival. In 
fact, a randomized placebo controlled prevention trial 
with azithromycin initiated at hospital discharge following 
transplantation has shown that patients taking azithromycin 
demonstrate better pulmonary function, as well as decreased 
BAL neutrophilia and lower CLAD prevalence (35). A recent 
post-hoc analysis of this trial revealed that these long-term 
beneficial effects persisted and that azithromycin was able 
to significantly postpone the development of CLAD (36). 
Treatment with macrolides in established CLAD also 
seems to be an adequate treatment option (37) but given 
the rarity of randomized controlled trials in this field, we 
do not know if either prophylactic or targeted treatment 
is superior. An expert task force concluded that currently 
available therapies have not shown a significant benefit 
in preventing or treating BOS, although investigation of 
possible underlying gastro-oesophageal reflux and a trial 
with macrolides in BOS is recommended (18). Some other 
therapies have shown promise in smaller, mostly single-
center studies which are briefly discussed below. 

Despite attenuation of neutrophils by azithromycin, in 
a subset of patients elevated airway neutrophilia later can 
redevelop. These patients usually present with a colonized 
graft (mostly pseudomonas) and demonstrate inferior 
survival compared to patients without neutrophilia (38). 
Interestingly, IL-1α is increased in BAL of those patients 
indicating that these alarmins might play an important role 
in the pathophysiology of BOS (39). Macrolide treatment 
does not seem to affect these patients (40). However 
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extracorporeal photopheresis (ECP), a leukapheresis-based 
procedure, was beneficial (41), and seems to be mainly an 
adequate treatment for patient with macrolide resistant 
airway neutrophilia (42). Part of this beneficial effect can 
be explained by effects of ECP on reducing inflammatory 
cytokines, chemokines and donor specific antibodies (43).

Montelukast, a cysteinyl leukotriene inhibitor is another 
possible treatment for BOS. A case series demonstrated 
a less pronounced decrease in pulmonary function in 
patients treated with montelukast compared to never 
treated patients (44). In a randomized placebo-controlled 
trial, montelukast was shown to be beneficial especially 
BOS stage 1 compared to placebo, but in later BOS stages 
no beneficial effects were seen (Ruttens et al. submitted).

As a last option for BOS, redo transplantation can 
be considered, amounting to about 5% of the total 
number of transplantations being performed annually. 
Although survival is not as good compared to a primary 
transplantation, for a well-selected group of patients redo 
transplantation may be the only option to improve outcome 
and quality of life (45). Given the scarcity of donor organs, 
this is not an option offered at every transplant center.

Restrictive CLAD (rCLAD)

Diagnosis, radiology and pathology

Besides the most commonly known BOS phenotype, 
the rCLAD seems to be gaining a lot of interest lately. 
Diagnostics remains troublesome at the moment. The initial 
report by Sato et al. used a decline in TLC of at least 10% 
to diagnose patients suffering from a restrictive pulmonary 
function defect (13), while Todd et al. used a FVC decrease 
>20% (46) and Verleden et al. used a combination of TLC 
and FEV1/FVC (47). The common denominator in all these 
patients is the presence of persistent pleuroparenchymal 
infiltrates on CT imaging. Therefore Suhling et al. 
proposed to use a combination of pulmonary infiltrates on 
CT and pulmonary function measurements, specifically 
a TLC decrease >20% (48). In single-lung transplanted 
recipients, accurate rCLAD diagnosis is more complicated, 
given the confounding effect of the native lung, but a FVC 
decrease >20% was also associated with a poor outcome 
in a multi-center cohort study (49). This poor outcome is 
also a common denominator in all aforementioned studies: 
independent of the criteria used to diagnose restriction, 
outcome was worse in patients with a restrictive (rCLAD) 
vs. an obstructive (BOS) pulmonary function defect, with a 

median post-diagnosis survival of 6–18 months in rCLAD 
compared to 3–5 years in BOS (50). Prevalence of rCLAD 
is quite similar across different centers with 25–35% of 
CLAD patients affected (50). It is important to note that 
this classification is not absolute and that patients can evolve 
at any time during their post-transplant course from BOS 
to RAS or vice versa. Most often, patients evolve from an 
obstructive to a restrictive form of CLAD, however the 
opposite has also been described (13). Evolution from BOS 
to rCLAD is very difficult to diagnose, given the underlying 
severe obstruction, but it does not seem to imply a worse 
prognosis (51). A representative case with an initial BOS 
diagnosis is shown in Figure 1, as well as his evolution 
towards later rCLAD.

Nowadays diagnostic guidelines for rCLAD are lacking, 
CT is not implemented as a diagnostic criterium for 
rCLAD. However, rCLAD typically shows significantly 
different radiology compared to BOS, as there are signs of 
(sub)pleural thickening and pleuroparenchymal infiltrates. 
The land-mark study of Sato et al. showed an apical 
predominance in a significant subset of patients (13), which 
was in line with the earlier observation of upper-lobe 
dominant fibrosis post-lung transplantation (52). However, 
we recently demonstrated that there are also patients 
with diffuse or basal-dominated infiltrates on CT and 
interestingly, these patients had a worse outcome compared 
to patients with apical dominated fibrosis (51), while the 
degree of consolidation, ground glass or reticulation did 
not correlate with survival post diagnosis (53). CT could 
also be used as alternative tool to diagnose rCLAD, as lungs 
have significantly lower lung volume compared to baseline, 
while the volume of lungs in BOS remains stable or even 
increases (54). This could provide an easy to interpret, add-
on tool to diagnose rCLAD when pulmonary function tests 
are inconclusive. Thorough investigation of rCLAD explant 
lungs using CT and microCT demonstrated disappearing 
airways on CT, with OB in 30–40% of the remaining 
airways. Further, microCT showed a decrease in the 
number of terminal bronchioles (the last conducting airway 
before the alveoli). Therefore, this indicates that the airways 
are also involved in rCLAD, although the proportion of OB 
lesions was not that high as in pure BOS (55). Next to this 
airway involvement, the alveoli looked completely different 
reflecting interstitial and/or alveolar fibrosis.

On pathological examination pleuroparenchymal 
fibro-elastosis is the most common histological pattern 
of rCLAD (56). Molecular analysis of this alveolar fibro-
elastosis pattern revealed that the initial changes are a non-
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Figure 1 A patient underwent heart lung transplantation for Eisenmenger’s syndrome with an initial uneventful follow-up post discharge 
who developed BOS. 5 years post-transplantation (pulmonary function evolution in A), but without decrease in TLC (B). However 10 years  
post-transplantation there was a sudden TLC drop (red line indicates 10% decrease) and therefore diagnosis was changed to rCLAD/RAS.  
CT evolution is shown in panel 1C-D-E-F. Initially, the patient had a normal CT (C), which remained unchanged after BOS diagnosis 
(D). However, when the decrease in TLC was found, persistent apical infiltrates were seen on CT (E), which deteriorated at the last 
CT before successful redo transplantation (F). The histological analysis of this explant lung confirmed rCLAD diagnosis as a pattern of 
pleuroparenchymal fibro-elastosis and OB was observed. 

specific fibrin reaction to a yet unknown injury, which 
progresses to a failed attempt to resolve this, resulting in 
manifest fibro-elastosis (57). The Melbourne group first 
described such a pattern consistent with acute fibrinous and 
organising pneumonia (AFOP) on transbronchial biopsy, 
which is also associated with a non-obstructive pulmonary 
function decline, persistent infiltrates and poor outcome in 
surviving patients (58). Thus, AFOP and rCLAD are likely 
to represent two entities (acute-chronic) of the same fibrotic 
spectrum.

Risk factors and mechanisms

The body of evidence for risk factors specific for rCLAD 
is not that robust as for BOS, although it seems that 
many risk factors are similar between both phenotypes. 
Indeed, acute cellular rejection, lymphocytic bronchiolitis, 
colonization with Pseudomonas, infection, and BAL 

neutrophilia were equally important for later BOS and 
rCLAD (59). Of interest BAL and blood eosinophilia, a 
cell that is mostly discarded in lung transplantation because 
of its low relative abundance, shows a strong association 
with subsequent development of rCLAD (60). Moreover, 
in patients diagnosed with rCLAD, BAL and blood 
eosinophilia are also able to dissect those rCLAD patients 
with the worst prognosis, indicating that eosinophilia 
could serve as an easy marker for rCLAD development and 
prognosis following diagnosis (51). Other studies focused 
on particular (inflammatory) cytokines and chemokines. 
For example, specific increase in pro-inflammatory alveolar 
alarmins (61), IL-6 and IP-10 (34) could be important in 
the pathophysiology of rCLAD. An immunohistochemistry 
study of rCLAD explant lungs revealed pronounced 
inflammation, with a significant increase in macrophages, 
neutrophils, mast-cells, eosinophils, CD8 T-cells and 
interestingly B-cells. These B-cells were organized in 
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lymphoid follicles, which is a common finding in other 
chronic respiratory diseases (62). Given this presence 
of lymphoid follicles, it comes as no surprise that 
immunoglobulin levels were also increased in rCLAD (63). 
Therefore, this raises the question to which extent rCLAD 
overlaps with chronic antibody-mediated rejection (AMR). 
AMR is an acute or subacute form of graft injury wherein 
antibodies against donor human leukocyte antigens cause 
characteristic lung histology (for instance neutrophilic 
capillaritis) with or without evidence of endothelial C4d 
staining (64). The presence of HLA antibodies seems to be 
more associated with rCLAD compared to BOS which is in 
line with the hypothesis of (at least part) overlap (65).

Of interest is also that in BAL, VEGF levels are decreased 
in rCLAD patients (34), which is in line with the hypothesis 
that the capillary network is of importance, which was also 
demonstrated in a descriptive pathological study (66). In 
contrast, the lymphatics do not seem to be altered in rCLAD, 
which is surprising given the predominant distribution 
(pleural and septal) of fibrosis in rCLAD (67). Despite these 
interesting observations, more research is needed to elucidate 
the pathophysiological mechanisms in rCLAD.

Treatment

Similar as  in BOS, treatment of  rCLAD remains 
troublesome. The disease course is very unpredictable, 
given that the disease evolution follows a stepwise pattern 
of decline: an acute phase characterised by acute lung 
injury (diffuse alveolar damage, DAD), followed by a 
resolution stage, during which fibrosis further develops (68).  
Therefore, patients who at first seem stable can evolve 
rapidly to a more severe (sometimes even life-threatening) 
disease stage requiring urgent redo transplantation or death. 
In that respect, it is important to realize that survival after 
redo transplantation for rCLAD is inferior compared to 
BOS, which by itself is already worse compared to survival 
after primary transplant [3-year survival of 67% in BOS 
and 33% in rCLAD (69)]. Also, CLAD more frequently 
redevelops following redo transplantation for rCLAD, again 
limiting long-term survival. Given these disappointing 
results, anti-fibrotic treatment may be a good option, based 
on the positive experience in IPF patients, where it has 
been shown to slow down the FVC decline (70). Although 
the experience in treating rCLAD patients is limited at 
this moment, case reports of successful treatment with 
pirfenidone (71) and nintedanib (72) described stabilization 
of the disease, which may be considered a success given 

the bad prognosis after diagnosis. Nevertheless, no large 
cohorts have been described so far and therefore more 
evidence is needed before antifibrotics can be introduced 
in general clinical practice. ECP therapy does not seem to 
be able to slow down rCLAD progression and therefore 
does not seem a viable option (42). Another drug with 
potential to slow down disease progression is alemtuzumab 
(Campath-1H), an antagonist of CD52 which is expressed 
on B-cells, lymphocytes, dendritic cells and monocytes. This 
drug was found to improve interstitial changes and lung 
function in four patients who likely had rCLAD (73), while 
it was also described in successful treatment of persistent 
acute rejection (74). Another approach of treating rCLAD 
might be trying to decrease or erase HLA antibodies by 
using plasmapheresis, intravenous immunoglobulins and 
rituximab, which has shown to be partly successful in 
at least reducing the antibody titre (75). However, true 
efficacy in treating or stabilizing rCLAD remains unknown. 
Therefore, at present, there are little effective therapeutic 
options for rCLAD. Hopefully, a better understanding of 
the pathophysiological mechanisms will lead to a rapid and 
efficient therapeutic strategy which is desperately needed 
given the poor outcome of these patients. 

Conclusions

BOS and rCLAD are separate entities within CLAD, 
with their own clinical, radiological and pathological 
characteristics (see Figure 2 for illustration). To what 
degree these syndromes differ is at this moment unknown. 
Given the overlap in risk factors and the fact that OB 
lesions are detected in both syndromes, and the possible 
evolution of one syndrome to another, there is likely at 
least some degree of overlap between BOS and rCLAD. 
More importantly, rigorous identification of the different 
phenotypes is clearly needed for both clinical and scientific 
purposes. Further advance in this field is limited by the 
absence of uniform diagnostic criteria for rCLAD, which 
makes the design of multicentre studies nearly impossible. 
Yet, given the rather low incidence of rCLAD in individual 
centers, monocentric studies are currently hampered by 
the number of patients that can be included. Only by 
doing so, we can adequately power and design clinical 
trials which are desperately needed given the disappointing 
outcome after lung transplantation compared to other solid 
organ transplantations. These different phenotypes are 
nonetheless an indication that the future will probably lie in 
individualized therapy, needed to further improve survival.
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