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Introduction

Lung cancer is the single most important cause of cancer deaths 
in all developed countries (1). In the upcoming countries such 
as China, it is expected that lung cancer will have epidemic 
proportions within a few decades (2). Radiotherapy plays an 
increasing role in all stages of lung cancer: stage I non-small 
cell lung cancer (NSCLC) is treated with stereotactic body 
radiotherapy (SBRT) (3), also called stereotactic ablative 
radiotherapy or SABR with results that equal those of surgery. 
Stage III NSCLC and small cell lung cancer (SCLC) is most 
often treated with combined chemotherapy and radiotherapy and 
patients with oligometastases may experience long-term disease-
free survival with treatment that includes radiotherapy (4,5).

However, a thorough definition of the tumour to be irradiated 
is a prerequisite for successful radiotherapy. Visualisation of the 

tumour boundaries using morphological imaging techniques such as 
computed tomography (CT) or magnetic resonance imaging (MRI) 
are of importance, but also the biological characteristics of the 
cancer and of the organs at risk (OAR) can nowadays be visualized 
using molecular imaging e.g., positron emission tomography (PET) 
techniques. Assessment of this biological heterogeneity of tumours 
using imaging may lead to more individualized therapy. Using the 
knowledge of characteristics of the tumour and of the OARs should 
enable an optimised therapeutic ratio. Although seemingly obvious, 
reality shows that achieving this goal has been proven to be difficult. 
Definition of the tumour boundaries with high accuracy and low 
inter- and intra-observed variability is hampered by the lack of 
validated automated systems that work well for complicated volumes 
that are surrounded by OARs with similar densities. Biological 
characteristics can be imaged, but their implementation in standard 
practice requires prospective clinical studies showing improved 
outcomes.

The present manuscript will focus on the delineation and 
characterization of primary tumour and lymph node involvement 
in lung cancer patients using the latest available imaging 
techniques. Some of these techniques are already applied in 
clinical practice and some of them are still on a research level. 
Furthermore, an outlook is given how to use these methods in 
the future to individualize lung cancer treatment and to optimize 
the balance between local tumour control and organ toxicity.
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Imaging modalities for target volume delineation 
and quantification

FDG-PET/CT

The accuracy of FDG-PET is higher than CT for the staging of 
mediastinal lymph nodes in advanced stage lung cancer. Hence, 
the incorporation of PET in the treatment planning process of 
radiotherapy is logical. In many planning studies in NSCLC, 
the use of FDG-PET has resulted in a decrease of the irradiated 
volumes of the OARs, which may lead to less side effects or 
to the possibility of radiation dose-escalation with the aim to 
improve local tumour control (6,7). Prospective studies both in 
NSCLC and in SCLC indeed showed that selective mediastinal 
node irradiation based on FDG-PET scans did not lead to higher 
isolated nodal recurrences (8-10).

The use of FDG-PET in radiotherapy planning was shown 
to reduce variability of tumour delineation amongst radiation 
oncologists and allows automatic tumour delineation that 
can be followed with manual editing if required (11-13). To 
use PET/CT equipment directly for radiotherapy treatment 
planning purposes, some additional criteria have to be 
considered. A detailed overview on the basic technical aspects 
and recommendations for radiotherapy treatment planning is 
described in Thorwarth et al. (14). On a standard 3D PET/
CT acquisition, small lesions might be difficult to detect due to 
the intrinsic blurring of breathing motion and might also lead to 
inaccurate quantification of the standardized uptake value (SUV) 
compared to respiratory correlated 4D acquisitions (15). PET/
CT scanners have options for acquiring the images in a respiration 
correlated (4D) mode to compensate for breathing motion in 
thorax. Furthermore, several publications have shown that 4D 
PET indeed improves lesion detectability (16,17). The 4D scan 
is usually reconstructed as a set of 5, 8 or 10 3D PET/CT scans 
representing the different phases of the respiratory cycle (18). 
Acquiring such a 4D PET scan together with a 4D CT scan is 
however not yet widely implemented in practice. A drawback of 
the 4D image acquisition is the somewhat prolonged acquisition 
times that might limit throughput on the PET/CT scanners and 
not all software systems are able to visualize this large amount of 
imaging data. However by using more advanced reconstruction 
algorithms that use only the part of the acquisition without 
breathing motion (e.g., the exhale phase) (19,20) or (non-rigidly) 
register the various breathing phases of the PET image to a single 
image (21) the workflow might be improved.

Tumour delineation for radiotherapy treatment planning 
purposes is a time-consuming manual procedure that is 
associated with a lot of intra- and inter-observer variability (22).  

Although the use of strict delineation protocols decrease 
variability (23), the time investment for delineation still remains 
and is limiting for adaptation protocols as well. As in radiotherapy 
the CT scan is used as the primary dataset because of the 
accurate quantification of (electron) density necessary for the 
dose calculation of the radiotherapy treatment plan, automatic 
segmentation based on CT scans are logical. Moreover, 4D-
CT scans have been implemented in routine practice and this 
movement information can readily be accounted for in automatic 
delineation protocols. On the other hand, FDG-PET scans do 
correlate better with anatomical boundaries than CT if the tumour 
is surrounded by lung (24). Combining CT and FDG-PET  
is therefore logical and automatic segmentation methods 
could reduce delineation time. However, only few studies have 
validated their automated segmentation method with pathology 
(22,25-28) and there is a lack of technical validation and 
accuracy as well (29,30). Fully automated tumour segmentation 
has therefore not been implemented in routine clinical practice.

Hypoxia PET

Tumour cell hypoxia is a known characteristic of solid tumour 
lesions, which negatively influences treatment efficacy (31). 
Accurate identification of tumour hypoxia is of importance to select 
patients which will benefit from specific anti-hypoxic treatments. 
The use of the Eppendorf electrode is the gold standard to assess 
tumour hypoxia, however this method has the disadvantage 
to be invasive, limiting its use to well accessible superficial 
tumours (32). Hypoxia PET imaging allows a non-invasive  
detection and quantif ication of tumour hy pox ia and it 
provides the opportunity to display the spatial distribution of 
hypoxia, which is essential for its integration in radiation dose 
distribution. The most common mechanism to detect tumour 
hypoxia is the use of 2-nitroimidazoles PET tracers which show a 
selective binding and retention in the hypoxic tumour cells.

Several 2-nitroimidazoles, labelled with fluor-18 [18F], have 
already been applied in patients to identify hypoxia. The first and 
most familiar hypoxia PET tracer is [18F]MISO, however, a slow 
accumulation in the hypoxic lesions and limited normal tissue 
clearance limits its clinical use (33). Therefore, alternative tracers 
are developed to improve the pharmacokinetic properties of the 
hypoxia tracer by enhancing the hydrophilicity and clearance of 
the tracer, examples are [18F]AZA, [18F]ETNIM, [18F]EF3, [18F]
HX4 and the nucleoside conjugate Cu-ATSM.

Quantification of tumour hypoxia based on PET imaging can 
be performed on static images, acquired at a certain time-point 
post-injection, or based on dynamic acquisitions, which takes 
also perfusion of the lesion into account (34). Figure 1 shows an 



Journal of Thoracic Disease, Vol 6, No 4 April 2014 321

example of a lung cancer patient having both an FDG-PET/CT  
scan and an hypoxia [18F]HX4-PET/CT scan. In NSCLC 
patients, hypoxia PET has shown to be correlated with prognosis 
and to give different information than FDG uptake (35,36). 
Studies with hypoxia PET imaging show the presence of tumour 
cell hypoxia in the majority of NSCLC lesions (37-40). The 
extent of tumour hypoxia correlates with tumour response and 
risk of relapse after radiotherapy (41,42). Recent theoretical 
studies show that boosting or dose painting by numbers based on 
hypoxia imaging is feasible and that an increased radiation dose 
to the radio-resistant/hypoxic areas may result in an increased 
local control (43-45).

MRI

MRI provides high-resolution anatomical information with 
excellent soft-tissue contrast. Its use for delineation of the 
tumour and lymph nodes has been investigated. A major issue is 
obviously the movement of tumours that may cause significant 
artefacts. To deal with motion, two particular acquisition 

sequences have been useful: fast low-angle shot (FLASH) 
and true fast imaging with steady-state precession (TrueFISP) 
(46,47). Both techniques showed regular and synchronous 
diaphragm and chest-wall motion of diagnostic quality. Dynamic 
MRI can be used to define an Internal Target Volume (ITV) as 
it allows imaging of the entire lung volume over the breathing 
cycle. However, dynamic MRI scans of the lung are still prone to 
artefacts, which affect registration accuracy.

To the best of our knowledge, there have been no contouring 
studies comparing MRI to CT or FDG-PET-CT in lung cancer, 
neither have there been validation studies with pathology. 
Nevertheless, to differentiate benign from malignant nodules, 
Diffusion Weighted MRI (DW-MRI) may have similar accuracy 
as FDG-PET scans (48).

Dynamic contrast-enhanced CT (DCE-CT)

DCE-CT (or perfusion CT) imaging is a relatively new method 
for tumour characterization. It offers a fast way to assess functional 
parameters in lung cancer patients. To date DCE-CT is still a 

Figure 1. Example of a NSCLC patient having both an FDG-PET/CT scan (left) and a hypoxia HX4-PET/CT scan. Clearly visible is the tumour 
heterogeneity both on the metabolic (FDG) and hypoxic (HX4) PET image.

[18F] FDG PET/CT [18F] HX4 PET/CT
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research tool, but initial results are showing promising results for 
the future. DCE-CT scans give information on the blood flow 
(BF), blood volume (BV) and permeability of the vessels (49-52). 
Whereas in the literature some DCE-CT studies were hampered 
by the limited field-of-view (e.g., 3-5 cm) of the scanner in the 
cranial-caudal direction, the technical infrastructure nowadays has 
the ability to capture DCE-CT scans of large volumes up to 12 cm. 
The reproducibility of the extracted parameters of the DCE-CT  
scan is also within an acceptable range (49,50,53) and allows 
larger patient studies to look at prognostic factors for treatment 
outcome. These parameters are related to accessibility for 
chemotherapy or anti-angiogenesis drugs (54) and shown to be 
different between treatment responders and non-responders (53).  
In some series, DCE-CT extracted values correlated with 
prognosis and with the histological subtype of NSCLC (55). 
DCE-CT values give other information than FDG uptake and 
therefore may be complementary to characterise tumours. The 
clinical and prognostic implications are not yet fully understood 
and the number of patients who have been studied with DCE-CT  
is still low. Thus further clinical studies are need to assess the 
value of DCE-CT for the future individualized treatment 
and prognosis. In a recent study by Mandeville et al. DCE-
CT parameters were evaluated in relation to markers of 
hypoxia (56). It was shown that BV and BF was inversely 
correlated to immuno-histochemical markers for hypoxia. 
Recently it has been shown by Lee at al. that reproducibility 
is high in DCE-CT (57). If DCE-CT is used to measure 
enhancement curves over time Hwang et al. could show that 
enhancement patterns correspond to tumor staging (58).  
Interestingly, looking into other body regions DCE-CT 
parameters might be able to predict survival, as, e.g., was 
shown by Koh et al. in patients with colorectal cancer (59).  
Spira et al. evaluated DCE-CT parameters in correlated these 
to histopathological f indings, showing good correlation 
especially for microvascular density (MVD) (60). Fraioli et al. 
could demonstrate the correlation between altered perfusion 
parameters after treatment–indicating treatment response (61).

Dual energy CT (DECT)

Newest CT scanner technology is capable of applying two 
different kV setting simultaneously or rapidly after each 
other. The two different resulting scans can be used for tissue 
characterization and iodine mapping. Some studies tried to 
use iodine mapping for lung tumour characterization, showing 
initially promising results (62-64). Initial differentiation between 
benign and malignant pulmonary nodules seems possible, but 

the number of studied patients is still too low and the real clinical 
problem of small pulmonary nodules <8 mm currently cannot be 
solved sufficiently (65-67).

Imaging modalities for normal tissue 
characterization

Radiotherapy is always pushing the optimization of maximum 
tumour control with an accepted (low) level of side-effects. 
Radiation induced lung toxicity (RILT) is one of the major 
dose limiting factor in escalating the dose to lung tumours; 
Therefor assessment of the lung function could potentially 
play an important role in the design of the treatment plan. 
Various imaging techniques can be utilized to quantify the lung 
function also on a local scale, besides the general pulmonary 
lung function tests that only give a global assessment of the 
lung function.

SPECT/CT

The use of SPECT/CT for quantification of perfusion and 
ventilation defects in the lung is a frequently used modality 
for assessing lung function using imaging although the spatial 
resolution of the SPECT scan is limited. Radiotherapy has been 
shown to cause lung perfusion alterations in NSCLC patients 
with perfusion (68-70). Knowledge about the regional sensitivity 
and functioning of the lung may also guide the treatment plan 
design to avoid highly functioning regions inside the lung (71-74).  
However the hypothesis of reduced lung toxicity still has to be 
validated in clinical trials.

CT

CT density changes have been described after radiotherapy 
and show remarkable variability between patients (75,76). In 
depth analysis of CT characteristics of the lungs may lead to the 
definition of risk groups for radiation-induced lung damage.

PET/CT

The uptake of FDG in the lungs probably ref lects the 
inflammatory status. It was found that a high FDG uptake in 
the lungs before radiotherapy is an independent risk factor to 
develop subsequent radiation pneumonitis (77). FDG-avid areas 
in the lungs were at the highest susceptibility for pneumonitis. 
Further studies are needed to elaborate on these findings before 
this can be used to change radiation dose distributions in the 
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lungs on the basis of FDG uptake patterns.

MRI

MRI scans using inert hyperpolarised helium-3 gas that is 
inhaled by the patient show ventilated areas in the lungs (78). 
Non-ventilated regions do not show an MRI signal. In theoretical 
studies, the incorporation of this information decreased the V20 
of the lungs significantly (78). However, this strategy was never 
investigated in prospective trials and thus remains investigational.

DECT

DECT for visualizing lung perfusion is often used in the context 
of the detection of pulmonary embolism (PE) (79-83). An iodine 
contrast material (CM) is administered and using 2 energy settings 
of the CT scanner (usually 80/140 kV) it is possible to visualize 
the distribution of iodine in the lungs. CT is the method of choice 
to rule out acute PE, nicely showing the emboli up to the sub-
segmental level. With the use of DECT it has become possible 
not only to show the embolus, but also to show corresponding 
perfusion defects. This is of clinical importance, as was shown 
in earlier studies—single sub-segmental emboli (not causing 
significant perfusion defects) can be left untreated (84). Based 
on the assumption that radiation therapy of the lung may also 
alter CM perfusion in the lung, this technique offers potential 
for further assessment of patients treated for lung cancer with 
radiotherapy. Figure 2 shows an example of a PE in the right 
lower lobe causing a large perfusion defect.

While DECT is primarily used for iodine perfusion maps 
of the lung, Xenon ventilation consequently adds the missing 

part of ventilation maps for the patients. In the last years some 
study groups could show that the use of Xenon ventilation is 
feasible and safe and could also show that ventilation maps may 
add additional value in different pathologies such as asthma, in 
intensive care patients or even in children (85-93).

Treatment individualization using imaging

The next major step forward that is currently tested in clinical 
trials is the dose-painting hypothesis (94,95). The rationale 
for this is the heterogeneous nature of tumours. Differences 
in biological characteristics throughout tumours make them 
respond non-uniformly to treatment (96). Hence treatment 
resistant parts of the tumours are with the current homogeneous 
irradiation treatment techniques not optimally treated. 
Individualizing the treatment by using imaging information to 
guide or define the actual dose-response relationship is the next 
phase of treatment individualization (97). A currently on-going 
multi-centric trial in advanced NSCLC is testing the hypothesis 
whether a uniform dose or a boost dose to the high metabolic 
active volumes gives rise to better local control rates (98).

Another way of using imaging information to individualize 
treatment is in the context of response assessment. Using 
repeated imaging during treatment may provide predictive 
information to treatment success. Hypoxic (e.g., HX4, FAZA, 
FMISO), metabolic (e.g., FDG) or proliferation [e.g., FLT, (99)]  
PET tracers allow early in the course of treatment already 
an assessment of treatment (100). MRI scans can be used to 
evaluate changes in tumours during radiotherapy as well (101). 
DW-MRI derived ADC (apparent diffusion coefficient) values 
changes correlate well with survival. However, ADC and FDG 

Figure 2. An example of a patient with emboli in the segmental arteries causing a large perfusion defect of the right lower lobe.
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changes also correlate significantly. It remains unclear what the 
clinical value is of these predictive parameters.

With the current fractionated radiotherapy schedules in 
lung cancer of 4-6 weeks, there is still room for adaptation of 
the treatment. As previously stated, these adaptations of the 
treatment plan can be based either on reducing side-effects or 
increasing the chance of local tumour control.

Conclusions

Imaging is an integral part of target volume delineation used in 
current clinical practice. Tumour characterization is the next 
step that needs to be exploited. To fully optimize the therapeutic 
ratio also normal tissue toxicity is of importance. Assessment 
of imaging features to characterize tissue functioning should 
be explored as well in the context of individualized treatment 
optimization.
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