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Introduction

The molecular basis of lung cancer is complex and heterogenous. 
Improvements in our understanding of molecular alterations at 
multiple levels (genetic, epigenetic, protein expression) and their 
functional significance have the potential to impact lung cancer 
diagnosis, prognostication and treatment. Lung cancers develop 
through a multistep process involving development of multiple 

genetic and epigenetic alterations, particularly activation 
of growth promoting pathways and inhibition of tumour 
suppressor pathways. Greater understanding of the multiple 
biochemical pathways involved in the molecular pathogenesis of 
lung cancer is crucial to the development of treatment strategies 
that can target molecular aberrations and their downstream 
activated pathways (1). Specific molecular alterations that 
drive tumour growth and provide targets for therapy have 
been best defined in adenocarcinomas (ADC) but there is 
increasing interest in the molecular landscape of squamous 
cell carcinoma (SCC) highlighting new potential therapeutic 
targets. In lung cancer as in other malignancies, tumourigenesis 
relates to activation of growth promoting proteins [e.g., v-Ki-
ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), 
epidermal growth factor receptor (EGFR), BRAF, MEK-1, 
HER2, MET, ALK and rearranged during transfection (RET)] 
as well as inactivation of tumour suppressor genes [e.g., P53, 
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phosphatase with tensin homology (PTEN), LKB-1] (1). 
Activation of growth promoting oncogenes can occur by gene 
amplification or other genetic alterations including point 
mutations and structural rearrangements leading to uncontrolled 
signalling through oncogenic pathways. “Oncogene addiction” 
results when cell survival depends on continued activation of 
the aberrant signalling (2,3) making them ideal candidates 
for targeted therapies. Oncogenic driver mutations have been 
identified in over 50% of lung ADC and are almost always 
exclusive of other driver mutations (4,5). Signalling pathways 
regulated by oncogenes and tumour suppressor genes are often 
interconnected with cross-talk between pathways involved in 
carcinogenesis. Added to the complexity is the occurrence of 
mutational evolution of tumours over time during the natural 
course of disease progression and in response to selection 
pressure exerted by therapy.

There is great genetic diversity in lung cancer and they 
harbour among the greatest numbers of genetic aberrations of 
all tumours (1). Understanding of the molecular biology of lung 
cancer has been revolutionised by next-generation sequencing 
technologies that provide a comprehensive means of identifying 
somatic alterations in entire cancer genomes or exomes. Lung 
cancers have highly complex genomes with a recent large-
scale exome sequencing study of 31 non-small cell lung cancer 
(NSCLC) identifying 727 mutated genes not previously reported 
in the literature or in the COSMIC database (6). Genomic 
studies have confirmed previously well known alterations in lung 
cancer such as KRAS, EGFR and BRAF and have also identified 
low frequency but recurrent mutations that are novel in lung 
cancer (6-8) including potentially targetable alterations in JAK2, 
ERBB4 (8), RET (9-11), fibroblast growth factor receptor  
1 (FGFR1) (12) and discoidin domain receptor 2 (DDR2) (13). 
While these studies provide a comprehensive portrait of genetic 
alterations in lung cancers, the challenge remains of identifying 
biologically relevant driver mutations from the vast majority 
of passenger mutations. The relative paucity of high frequency 
recurrent mutations highlights the heterogeneity and complexity 
of the molecular biology of lung cancer with common pathways 
affected by a range of different genetic alterations that poses a 
challenge for providing personalised medicine.

In this review, we discuss the most commonly altered and 
most clinically relevant oncogenes and tumour suppressor genes 
in lung cancer as improved understanding of the molecular 
pathology of lung cancer is crucial for advancements in treatment 
strategies.

KRAS

KRAS is part of the RAS family of proto-oncogenes (KRAS, NRAS 
and HRAS occurring in humans) and encodes a G-protein with 
a critical role in controlling signal transduction pathways which 

regulate cell proliferation, differentiation and survival (14).  
Ras proteins are guanosine diphosphate (GDP) bound and 
inactive in normal quiescent cells. There is a switch to the 
activated guanosine triphosphate (GTP) bound form following 
activation of upstream growth factor receptors. The activated 
Ras-GTP subsequently binds and activates a number of 
downstream pathways including mitogen-activated protein 
kinase (MAPK), RAS/RAF/MEK/MAPK pathway and the 
PI3-K [PI3K/AKT/mammalian target of rapamycin (mTOR)] 
pathways (15). KRAS plays a critical role in downstream signal 
transduction induced by a variety of growth factor receptors 
including EGFR and constitutive activation of the protein 
circumvents the need for growth factor mediated signalling. 
Activating mutations alter the GTPase activity of the protein 
hindering inactivation of the active RAS-GTP to GDP leading 
to increased signalling through multiple downstream growth 
promoting pathways (15). The RAS/RAF/MEK/MAPK signal 
transduction cascade plays a central role in many lung cancers 
with at least one mutation in the pathway identified in 132 of 188 
tumours (7), of which the most common are mutations in KRAS.

Activating mutations in the KRAS  oncogene are the 
commonest oncogenic alteration in lung ADC occurring in 
about 25-40% of cases (4,5,7,16-18) while HRAS and NRAS 
mutations are very rare (17). Differences in the prevalence of 
KRAS mutations in lung ADC most likely relate to different 
patient populations as KRAS mutations are more common in 
Western populations compared to Asian populations (19-22) 
and are more frequent in males and smokers (7,18,22). ADC in 
never smokers have been reported to harbour KRAS mutations 
in between 0-15% of cases (16,23). In addition, KRAS mutations 
are very rare or absent in SCCs and small cell cancer (17,24). 
Comprehensive genomic analysis of 188 SCCs identified only 
1 KRAS mutation in codon 61 (12). KRAS mutations in lung 
adenocarcinoma consist of single amino acid substitutions in 
hotspots located mostly in codon 12 but also more rarely in 
codons 13 and 61 (14,17). The commonest mutations in KRAS 
are G to T transversions (~84%) in smokers while never smokers 
are more likely to harbour G to A transitions (16).

In keeping with the role of KRAS alterations as driver 
mutations, they do not occur in association with EGFR 
mutations (5,7,21,22), although rare exceptions do occur (18).  
A meta-analysis has shown KR AS  mutant tumours are 
resistant to EGFR tyrosine kinase inhibitors (TKIs) (25), as 
KRAS mutations lead to constitutive activation of pathways 
downstream of EGFR. There is evidence that different KRAS 
mutant proteins have differing clinical significance. Interestingly, 
using data from the BATTLE trial (prospective phase II 
Biomarker-integrated Approaches of Targeted Therapy for 
Lung cancer Elimination), either G12C or G12V mutant KRAS 
predicted shorter progression free survival compared to other 
KRAS mutations or wild type KRAS (26). Furthermore, different 
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amino acid substitutions were associated with activation of 
different pathways (PI3-K and MEK with Gly12Asp and Ral 
with Gly12Cys or mutant Gly12Val) resulting from divergent 
protein conformations from specific mutations leading to altered 
ability to associate with downstream protein mediators (26). 
This highlights that appropriate use of targeted therapies and 
clinical trial design needs to carefully evaluate the clinical and 
therapeutic significance of specific genetic alterations in lung 
cancer. The high frequency of KRAS mutations in lung cancer 
makes it an ideal therapeutic target but unfortunately clinical 
trials of targeted agents have generally been disappointing.

EGFR

Alterations of EGFR are involved in the pathogenesis of many 
tumours including NSCLC. EGFR encodes a transmembrane 
tyrosine kinase with an extracellular ligand-binding domain and an 
intracellular component including a tyrosine kinase domain (27). 
Binding of the ligand epidermal growth factor leads to receptor 
homo or heterodimerisation with other members of the EGFR 
family and activation of the tyrosine kinase domain (28,29). 
Signal transduction stimulated by EGFR occurs through the 
PI3K/AKT/mTOR , RAS/RAF//MAPK and JAK/STAT 
signalling pathways (28-30). EGFR is involved in regulation 
of numerous oncogenic functions such as cell proliferation, 
survival, differentiation, neovascularisation, invasion and 
metastasis (29,30). Activating mutations in EGFR lead to 
constitutive tyrosine kinase activation (30,31) and oncogenic 
transformation of lung epithelial cells in vitro (31). A transgenic 
mouse model with inducible expression of the commonest 
EGFR mutations showed development of multiple lung ADC 
that were sensitive to small molecule inhibition (32). Other 
mechanisms of increased EGFR signalling include increased 
protein expression or increased gene copy number (33,34).

Activating mutations of EGFR have been reported in 10-15%  
of unselected Western patients (5,21,35,36) and 30-40% of 
Asian populations (19,37,38). Differences in the reported 
prevalence rates of various mutations may in part relate to 
different patient populations but also depends on the sensitivity 
of mutation analysis techniques utilised in different studies. In 
NSCLC, EGFR mutations occur in the first four exons of the 
intracellular tyrosine kinase domain, most commonly exon 19 in 
frame deletions (~45%), of which there are over 20 variants, the 
commonest being delE746-A750. The next commonest EGFR 
mutations are missense mutations, particularly L858R, a single 
nucleotide point mutation in exon 21 leading to a single amino 
acid change from leucine to arginine at codon 858 (~40%). 
However, we found in an Australian population that exon  
18 activating mutations constituted 14% of EGFR mutations 
in patients with early stage lung cancer and L858R mutations 
comprised only 29% of EGFR mutations present in this cohort (5). 

There are also a range of less common mutations including in 
frame duplications or insertions in exon 20 (~5-10%), of which 
there are many variants that are often associated with resistance 
to EGFR TKIs (22,39).

In lung cancer, almost all EGFR mutations occur in ADC 
(19,21,40,41) although they may also be seen in adenosquamous 
carcinomas. Mutations in EGFR are more commonly but not 
exclusively found in patients who are female, younger and with 
no history of smoking (7,19,21,22,37,40). EGFR mutations 
occur only very rarely, in histologically well sampled pure SCCs 
(24,42). However, comprehensive genomic analysis of 188 
SCCs identified EGFR mutations in 2 cases, both with L861G 
mutations (12). While EGFR mutations are very rare in SCCs, 
variant-III mutations involving the extracellular domain of 
EGFR, copy-number gains and protein overexpression are more 
common in SCCs than in ADCs (43).

Secondary mutations in EGFR develop or are clonally 
selected in patients that develop resistance to EGFR TKIs, the 
commonest being the T790M activating point mutation in exon 
20 which substitutes a “bulkier” methionine for threonine (44) 
that interferes with binding of reversible TKIs. T790M is found 
in about 50% of tumours from patients who develop acquired 
TKI resistance (41,44). Intriguingly, we observed that exon 
20 mutations including T790M mutations associated with 
therapeutic resistance to EGFR TKI were seen in 29% of patients 
with EGFR mutations in a therapy naïve cohort (5). Activation 
of downstream pathways that bypass EGFR inhibition can also 
contribute to EGFR-TKI resistance including activation of PI3K 
pathway through amplification of MET (45).

BRAF

BRAF  encodes a serine/threonine protein kinase that is 
the downstream effector protein of KRAS and activates the 
MAPK signal transduction pathway involved in regulation of 
cell proliferation and survival (46). Upon activation, BRAF 
phosphorylates downstream mediators MEK1 and MEK2 which 
subsequently activate ERK1 and ERK2, involved in regulation 
of growth regulating proteins such as c-JUN and ELK1 (14). 
Activating mutations in BRAF lead to increased kinase activity 
that exhibit transforming activity in vitro (46).

While activating BRAF mutations are common in melanoma (46),  
they occur in only about 3% of NSCLC (18,46-50). The 
mutations in NSCLC differ to those in melanoma and colorectal 
carcinoma with a lower proportion of V600E mutations that 
affect the kinase domain of the protein. In lung ADC, V600E 
mutations in exon 15 account for up to about 50% of BRAF 
mutations followed by G469A in exon 11 and D594G in exon 
15 (48,50). Some of the BRAF mutations in NSCLC occur in 
the kinase domain (such as V600E, D594G and L596R) while 
others occur in the G-loop of the activation domain of the 
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gene (such as G465V and G468A) (46). As BRAF and KRAS 
genes are part of the signalling pathway mediated by EGFR, it is 
not surprising that mutations in these genes are almost always 
mutually exclusive, in keeping with a common downstream 
pathway to transformation. BRAF mutations in lung cancer occur 
almost always in ADC (48). Non-V600E BRAF mutations have 
been associated with current or former smokers while V600E 
mutations appear to be more common in female never smokers 
(48,50). While uncommon, BRAF mutations represent an 
important therapeutic target due to the availability of targeted 
therapies already in clinical use for melanoma although there is 
only limited data about the clinical response to this approach in 
NSCLC (51).

MEK

MEK1 (also known as MAPK1) is a serine-threonine kinase 
that has an important function as a downstream target of RAS 
activation. MEK1 activates MAPK2 and MAPK3 downstream 
of BRAF (14). Rare cases of somatic mutations of MEK1 have 
been reported in NSCLC with 2 of 107 lung ADC found to have 
an activating mutation in exon 2 that did not involve the kinase 
domain (52). The mutations were exclusive of other driver 
mutations and were associated with gain of function in vitro (52).

MET

The proto-oncogene MET located on chromosome 7q21-q31 
encodes a membrane tyrosine kinase receptor that is also 
known as hepatocyte growth factor receptor (53). Upon binding 
of its ligand hepatocyte growth factor, there is receptor 
homodimerisation, kinase activation and signalling through 
downstream pathways including RAS/RAF/MEK/MAPK, 
PI3K/AKT and c-SRC kinase pathways (53). In NSCLC, MET 
is altered by gene amplification in about 1-7% of treatment 
naive patients (54-57) but in one study amplification was found 
in 21% of patients (58). Increased MET copy number may be 
more common in SCC than ADC (57) and is mutually exclusive 
with KRAS mutations (56,58). MET amplification results in 
overexpression of MET protein and activation of downstream 
signal transduction pathways. The oncogenic activity of MET has 
been demonstrated in vitro with evidence of gene amplification 
associated with constitutive receptor phosphorylation, activation 
of the PI3K/AKT pathway and sensitivity to MET inhibition 
(45,59). Amplification of MET is a known mechanism of 
secondary EGFR-TKI resistance with this kinase switch 
occurring in approximately 20% of patients with acquired 
resistance (45,54,55). In this scenario, MET amplification 
drives and maintains the PI3K/AKT pathway bypassing EGFR 
blockade by TKIs (45), suggesting concomitant MET inhibition 
may be a means of overcoming TKI resistance. Mutations of 

MET also occur uncommonly in about 3-5% of ADC (7,56).

HER2

The human epidermal growth factor receptor 2 (HER2/ERBB2) 
gene encodes a membrane bound receptor tyrosine kinase that 
is a member of the ERBB family of receptors, along with EGFR. 
Unlike other ERBB receptors, it does not bind ligand directly 
but can form heterodimers with other ligand-bound members of 
the receptor family (60). Activation leads to signalling through a 
variety of signal transduction pathways including PI3K, MAPK 
and JAK/STAT pathways (61). Activation of HER2 occurs 
in a small proportion of lung cancers with overexpression in 
approximately 20% of cases, gene amplification in 2% (62) and 
activating mutations in 1.6-4% of NSCLC (63-65). Activating 
mutations of HER2 are exon 20 in frame insertions of 3 to 
12 base pairs in length (63). There is in vivo evidence of the 
oncogenic activity of HER2 with multiple adenosquamous 
carcinomas developing in a transgenic mouse model expressing 
mutant HER2 and exhibiting susceptibility to small molecule  
inhibition (66). Alterations of HER2 occur mostly in ADC (63-65)  
and mutations occur in tumours that are wild-type for EGFR and 
KRAS (63,64) and in some studies, are associated with female 
gender, Asian ethnicity and non-smoking status (63,65), similar 
to the clinical profile of EGFR mutant tumours.

PI3K/AKT/mTOR

The PI3K/AKT/mTOR pathway is an important signal 
transduction pathway involved in regulation of cell proliferation, 
sur vival, differentiation adhesion and motility (67,68). 
Alterations of this pathway have been implicated in both 
NSCLC and small cell carcinoma (69,70). The pathway is 
activated through activation of a variety of membrane tyrosine 
kinase receptors including EGFR, HER2, insulin-like growth 
factor receptor, vascular endothelial growth factor receptor 
and platelet derived growth factor receptor (71,72). Activated 
receptor tyrosine kinases recruit PI3K to the cell membrane 
where it phosphorylates PIP2 to PIP3 [phosphatidylinositol 
4 , 5 - b i s p h o s p h a t e  ( P I P 2 )  t o  p h o s p h a t i d y l i n o s i t o l 
3,4,5-triphosphate]. PIP3 in turn recruits the serine threonine 
kinase AKT to the membrane where it is phosphorylated by 
3-phosphoinositide-dependent kinase 1 (PI3 kinase) and 
mTOR. mTOR is a serine/threonine kinase that is a downstream 
target of AKT (72). Activated AKT in turn activates multiple 
targets including tuberous sclerosis 2 and Bcl-2 associated 
death promotor leasing to cell proliferation and survival 
[reviewed in (71)]. There is also interaction with other pathways 
including RAS/RAF/MEK (Rat sarcoma/rapidly accelerated 
fibrosarcoma/MAPK or Erk kinase) with RAS having the 
capacity to directly activate PI3K (72).
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The PI3K/AKT/mTOR pathway is frequently deregulated in 
many tumours including 50-70% of NSCLC (7,71). Significant 
alterations involving the PI3K pathway were identified in 47% 
of SCCs in the Cancer Genome Atlas project (12). Pathway 
activation in lung carcinogenesis occurs through a variety of 
mechanisms including activating mutations in EGFR, KRAS, 
PI3K or AKT (68,71) as well as PIK3CA amplification, or loss of 
negative regulation by the tumour suppressor gene PTEN (72).

The PI3K protein family (phosphatidylinositol 3-kinases) 
are intracellular lipid kinases and the main catalytic subunit, 
the p110alpha isoform, is encoded by the PIK3CA gene (71). 
Activating mutations and amplification of PIK3CA cause 
constitutive ligand-independent pathway activation (73,74). 
PIK3CA mutations mostly involve the catalytic domain and have 
been identified in approximately 1-3% of NSCLCs (7,73,75) 
and are more common in SCC than ADCs (4,75). Unlike most 
oncogenic driver mutations, PIK3CA mutations may occur in 
association with EGFR or KRAS mutations (5,73,75) suggesting 
they may not represent true driver mutations. However, in 
vitro studies of lung cancer cell lines with PIK3CA mutations 
or copy number gains show increased PI3 kinase activity 
sensitive to small molecule inhibition (73) and in vivo mouse 
models with PIK3CA mutation expression develop numerous 
ADC, suggesting oncogenic activity (74). PIK3CA may also be 
amplified in NSCLC, especially in SCCs (73,76) and increased 
copy number of PIK3CA has been reported in ~5% of small cell 
carcinoma cell lines (73). Although rare, PI3K/AKT/mTOR 
pathway activation can also occur through AKT mutations which 
have been reported in 0.5-2% of NSCLC (5,7,77), particularly 
SCCs (77).

ALK

Rearrangements of the receptor tyrosine kinase ALK resulting 
most commonly in fusions of the intracellular kinase domain 
with the amino terminal end of echinoderm microtubule 
associated protein-like 4 (EML4) occur in a subset of lung 
cancers (78-80). The rearrangement results from a short 
inversion in chromosome 2p, whereby in the commonest variant, 
intron 13 of EML4 is fused to intron 19 of ALK {ALK [inv (2) 
(p21; p23)]} (79). Numerous variants of EML4-ALK fusions 
have been identified due to differing lengths of EML4, the 
commonest being exons 1-13 of EML4 joining to exons 20-29 
of ALK (78,81,82). More recently, different partner genes have 
been identified in a small subset of ALK rearrangements (<1% 
of cases) including KIF5B (kinesin family member 5b), TFG 
(TRK -fused gene) and KLC-1 (kinesin light chain1) (83,84). 
The oncogenic EML4-ALK fusion protein has a constitutively 
activated kinase and has gain of function activity in vitro (80) 
and in vivo mouse models expressing EML4-ALK develop 
multiple lung ADC that are susceptible to pharmacologic ALK 

inhibition (85). Activation of ALK is linked to cell proliferation 
and inhibition of apoptosis mediated through the RAS/RAF/
MAPK1, PI3K/AKT and JAK3-STAT3 signalling pathways (82).

ALK rearrangements have been identified in approximately 4% 
of unselected NSCLC (86) although some studies have found 
a slightly lower prevalence (5,87). They are more commonly 
found in ADC from younger patients who are never smokers or 
light smokers (78,87-91) and almost always occur in ADCs (90). 
While ALK rearrangements are usually mutually exclusive with 
EGFR and KRAS mutations (5,87,91,92) cases of coexistent 
EGFR mutations have been reported and provide a mechanism 
for TKI resistance (78,93-95). While ALK inhibition with the 
tyrosine kinase inhibitor crizotinib produces profound responses, 
drug resistance develops with evidence of secondary ALK point 
mutations and activation of EGFR signalling implicated in some 
cases (81,93).

ROS1

ROS1 is a proto-oncogene located on chromosome 6q22 which 
encodes a transmembrane tyrosine kinase receptor that has high 
homology with ALK in its protein kinase domain (96). ROS1 
activation leads to signalling through the PI3K/AKT/mTOR, 
STAT3 and RAS/MAPK/ERK pathways (96). In 2007, a large 
scale phosphoproteomic screen for tyrosine kinase activity in 
lung cancer identified ROS1 fusion in a NSCLC cell line (1 of 41)  
and a patient sample (1 of 150) (SLC34A2-ROS1  and  
CD74-ROS1 respectively) (83). Subsequently, a novel KDELR2-
ROS1 in-frame fusion was identified in an adenocarcinoma 
from a non-smoker using whole genome and transcriptome 
sequencing (8).  In 2 large studies  using FISH, ROS1 
rearrangements were found in 18 of 694 ADCs (2.6%) (97) and 
13 of 1,116 ADCs (1.2%) (98). A variety of 5' fusion partners 
have been identified in ROS1 gene rearrangements (including 
FIG, KDELR2, TPM3, SDC4, LRIG3, EZR, SLC34A2 and CD74) 
and it is uncertain what role, if any, the partner plays in the 
oncogenic function of the fusion kinase (8,83,98). Interestingly, 
ROS1 rearrangements appear to be more common in patients 
who are younger, never smokers or of Asian ethnicity (97)  
similar to ALK rearrangements (90). Furthermore, there is in 
vitro and early clinical evidence that lung cancers with ROS1 
rearrangements are sensitive to kinase inhibitors including the 
ALK/MET inhibitor crizotinib (97).

RET

RET is located on chromosome 10q11.2 and encodes a receptor 
tyrosine kinase involved in neural crest development. Alterations 
of RET have long been known to play a role in papillary and 
medullary thyroid carcinoma (99) but it was not until recently 
that activation of RET through chromosomal rearrangement 
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has been identified in a small proportion of lung cancers (9-11). 
The translocation fuses the functional RET kinase domain from 
exons 12-20 to KIF5B (kinesin family 5B gene), that is 10Mb 
from RET on chromosome 10 and encodes a coiled coil domain 
involved in organelle trafficking (9,10). KIF5B-RET fusions have 
been identified in 1-2% of lung ADC using massively parallel 
sequencing technologies (10,11) and to date have been found to 
be mutually exclusive of other driver mutations involving EGFR, 
KRAS or ALK. In a highly selected cohort of lung ADC from 
never smokers or light smokers known to be wild type for other 
driver mutations (EGFR, KRAS, ALK, HER2, BRAF and ROS1), 
10 of 159 (6.3%) harboured RET rearrangements (11). Similar 
to ALK and ROS1, rearrangements of RET also appear to be 
associated with ADC from never smokers (9-11). Importantly, 
there are several multi-kinase inhibitors that are effective against 
RET and there is in vitro evidence that cell lines expressing 
KIF5B-RET fusions are sensitive to RET inhibition (10,11).

FGFR1

Somatic gene amplifications have been found in SCCs in a 
number of genes including SOX, PDGFRA (12) and FGFR1 
(12,100). FGFR1 is a membrane receptor tyrosine kinase that 
regulates cell proliferation through activation of the MAPK 
and PI3K pathways (101). Amplification of FGFR1 has an 
oncogenic effect on NSCLC cell lines in vitro that is sensitive to 
small molecule inhibition (102). About 20% of SCCs have been 
shown to harbour FGFR1 amplifications but the abnormality is 
uncommon in ADCs (100,102).

DDR2

Recently, a sequencing screen including the entire tyrosine 
kinome was undertaken in SCCs and mutations were identified 
in DDR2 in 3.8% of cases (13). DDR2 encodes a membrane-
bound receptor tyrosine kinase that binds collagen and is 
involved in regulation of cell proliferation and survival (103). 
Mutations of DDR2 are associated with oncogenic activity in 
vitro that is sensitive to inhibition with dasatinib (13).

Tumour suppressor genes

Tumour suppressor genes are crucial negative regulators of 
normal cell growth. Loss of tumour suppressor gene (TSG) 
function is an important mechanism of carcinogenesis and 
requires inactivation of both gene alleles, as outlined in 
Knudson’s two hit hypothesis (104). In one allele, the individual 
gene is often inactivated by mutation, epigenetic silencing or 
other aberrations, while the second allele is often inactivated 
through loss of heterozygosity (LOH) whereby a region of the 
chromosome is lost by deletion, nonreciprocal translocation or 

mitotic recombination. In lung cancer, TSGs that are frequently 
inactivated include TP53, retinoblastoma 1 (RB1), serine-
threonine kinase 11 (STK11), CDKN2A, FHIT, RASSF1A and 
PTEN (1,7,105) and these genes map to chromosomal regions 
commonly identified in LOH studies. For example, regions 
frequently exhibiting allelic loss in lung cancer involve known 
TSGs such as TP53 (17p13), RB (13q12), p16 (9p21), and 
PTEN (10q22) (105). In a study by Ding et al. (7), mutations 
were identified in several TSGs not previously known to play a 
significant role in lung adenocarcinoma including the TSG NF1 
(involved in neurofibromatosis type 1), that was mutated in 13 
tumours and the TP53 regulator ATM in 13 patients.

TP53

TP53  located on chromosome 17p13 encodes a nuclear 
phosphoprotein of 53 kDa that identifies and binds to regions of 
damaged DNA (106) and acts as a transcription factor controlling 
the expression of a multitude of different genes. Damaged DNA 
or carcinogenic stress induces TP53 leading to cell cycle arrest 
by inducing expression of cyclin dependent kinase inhibitors 
to enable DNA repair or apoptosis. TP53 inactivation is one 
of the most significant genetic abnormalities in lung cancer 
with hemizygous deletion of 17p13, containing the locus of 
TP53, occurring in 90% of small cell carcinomas and about 
65% of NSCLC (107). Inactivating mutations in TP53 (mostly 
missense mutations within the DNA-binding domain) have 
been reported in 80-100% of small cell lung carcinomas (108).  
By contrast, a meta-analysis of TP53 in over 4,000 NSCLC 
found alterations by mutation or protein accumulation in only 
46.8% of cases (109), more commonly in SCC than ADC and 
associated with higher tumour stage, grade and male gender. 
Mutations of TP53 were found in at least 81% of SCCs that 
underwent comprehensive genomic analysis as part of The 
Cancer Genome Atlas (TCGA) project (12). Ding et al. (7) 
found TP53 mutations in 85 of 188 ADC (45%). In NSCLC, 
TP53 mutations are associated with a positive smoking history 
or exposure to environmental tobacco smoke (19,110). The 
mutational spectrum of different types of TP53 mutations 
also differs between smokers and non-smokers with smoking 
related cancers having a significantly higher frequency of G to 
T transversions compared to G to C transversions (thought to 
be induced by polycyclin aromatic hydrocarbons in tobacco 
smoke) and G to A transitions at CpG dinucleotides more 
commonly seen in never smokers (110,111). A meta-analysis 
of 74 studies showed that aberrant p53 detected by protein 
expression or mutational analysis is an unfavourable prognostic 
factor in lung NSCLC (112). Genetic alterations of TP53 have 
also been associated with treatment resistance (106). TP53 
gene mutations can occur in association with EGFR and KRAS 
mutations (19).
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PTEN

PTEN encodes a lipid and protein phosphatase on chromosome 
10 that inhibits the PI3K/AKT/mTOR signalling pathway by 
dephosphorylating PI-(3,4,5)-triphosphate (68). Inactivation 
of the TSG function of PTEN leads to unrestricted activation 
of AKT/protein kinase B independent of ligand binding (68). 
Mutations of PTEN occur only rarely in about 5% of NSCLC (113) 
being more common in SCC than ADC (10.2% vs. 1.7%) and 
associated with a history of smoking. By contrast, reduced protein 
expression has been reported in about 75% of NSCLC (114).

LKB1 (STK11)

LKB1 (also known as STK11) is a TSG located on chromosome 
19p13 that encodes a serine-threonine kinase that inhibits 
mTOR and has been implicated in a range of biological processes 
including regulation of the cell cycle, chromatin remodelling, 
cell polarity, and energy metabolism (115,116). Deregulation of 
mTOR pathway components (not including KRAS mutations) has 
been reported in 30% of ADCs (7). Germline mutations of LKB1/
STK11 occur in patients with Peutz-Jeghers syndrome (115). 
In lung cancer, LKB1 may be inhibited by a variety of somatic 
mutations or deletions that produce truncated proteins with 
inactivation of LKB1 occurring in about 11-30% of lung ADC 
(7,117-119), making it the third commonest genetic aberration 
in lung ADC after TP53 and KRAS. LKB1 inactivation is more 
common in lung ADC compared to SCCs (117,119). There is 
some evidence of an association between LKB1 mutations and 
a history of smoking (117) in men (118,120) and a correlation 
with KRAS mutations has also been reported (117,118).

The p16INK4a-cyclin D1-CDK4-RB pathway

The p16INK4A/RB pathway regulates cell cycle progression 
from G1 to S phase. RB1 is a tumour suppressor gene that 
encodes RB protein which regulates cell cycle G1/S transition 
by binding the transcription factor E2F1. RB1 was the first 
TSG described in lung cancer (121) and is inactivated in 
about 90% of small cell lung carcinomas but only about 
10-15% of NSCLC (1). In NSCLC, the pathway is mostly 
switched off through alterations of cyclin D1, CDK4 and the 
cyclin dependent kinase inhibitor p16 (CDKN2A) (105). 
p16INK4A inhibits cyclin D1 dependent phosphorylation of RB 
protein, thereby preventing cell cycle transition through the 
G1/S checkpoint (122). p16INK4A is inactivated in about 80% 
of NSCLC (123,124) and was altered in 72% of lung SCCs 
examined by TCGA, mostly through homozygous deletion, 
methylation or inactivating mutations (12). In addition, there 
is overexpression of cyclin D1 through gene amplification or 
other mechanisms in about 40% of NSCLC (123).

Molecular targeting in NSCLC

The presence of these molecular targets as described above now 
defines the characteristics of NSCLC, with EGFR mutation and ALK 
rearrangements being the most clinically relevant at present (125).  
The prevalence of these mutations varies in lung cancer arising 
from patient in different regions (126). Activating EGFR 
mutations were found in up to 20% of Caucasians while in the 
Asian populations these EGFR mutations can be present in up 
to 40% of patients with NSCLC (127). These ethnic difference 
in NSCLC properties appears to be not limited to the presence 
of activating EGFR mutations but is also evident in other driver 
oncogenic mutation profiles (including ALK, KRAS, MET etc.),  
histology and hence tumour response to targeted therapy 
treatment (63,126,128). The presence of these driver mutations 
is generally found to be mutually exclusive to others in the same 
tumour (126). In lung ADC among Asians, ALK rearrangement 
is seen in up to 7% of patients with lung ADC (79). Lung 
tumours bearing EML4-ALK rearrangement are non-responsive 
to conventional chemotherapy or EGFR-tyrosine kinase 
inhibitors but are sensitive to a specific tyrosine kinase inhibitor 
named crizotinib (129). Based on our current understanding of 
therapeutic molecular targets of EGFR mutation and ALK gene 
rearrangement in NSCLC and the availability of corresponding 
targeted agents, an algorithm of testing for molecular targets in 
NSCLC is proposed as in Figure 1, which represents a stepwise 
approach to testing for individual targets, beginning with EGFR 
then, if negative, ALK fusion gene or other potential targets if 
appropriate.

Among NSCLC, adenocarcinoma accounts for up to 80% 
of histological subtypes (130). There are previous reports of 
correlations between histological subtypes of ADC demonstrating 
micropapillary features with presence of activating EGFR 
mutations, leading to the suggestions that the presence of 
specific mutations in NSCLC actually represent heterogeneity 
in cancer biology and also response to therapy (131). Given the 
heterogeneity of lung cancer histology, however, histological 
subtypes are difficult to be used as the sole reliable marker for 
guidance to molecular phenotyping and selection of targeted 
therapy (132,133).

Targeting therapeutic oncogenic mutations like EGFR and 
ALK can give dramatic initial treatment response or at least an 
initial stable clinical disease. The response rate is up to 70% in lung 
ADC bearing favourable activating EGFR mutations (134). The 
median progression free survival is usually quoted as 9-11 months  
with different tyrosine kinase inhibitors (135,136), after 
which most patients with EGFR mutations will experience 
disease progression and drug resistance. A proportion of such 
drug resistance is attributed to the development of a second 
mutation, usually T790M at exon 20 (137). It is hard to explain 
the eventual loss of drug sensitivity in tumours bearing those 



Cooper et al. Molecular changes in lung cancerS486

favourable EGFR mutations (exon 19 deletions and L858R) even 
without the acquisition of secondary mutations like T790M 
or the presence of other uncommon or less favourable EGFR 
mutations. This could reflect suboptimal therapeutic targeting 
and better understanding on the biology of EGFR-related 
tumour signalling and other oncogenic mutations will improve 
drug targeting and give patients better prediction of therapeutic 
response and prognostication.

Conclusions

The identification of driver mutations in EGFR and ALK 
heralded a new era of targeted therapy in lung adenocarcinoma 
and advanced sequencing technologies are providing even 
more sophisticated insights into the molecular aberrations 
in oncogenes and tumour suppressor genes underlying lung 
cancer (12,138-142). These studies have identified a range of 
potentially targetable genetic aberrations in lung cancer but 
have also highlighted a troubling complexity and heterogeneity 
which poses significant challenges for molecular diagnosis and 
targeted treatment. Greater knowledge of the molecular biology 

and genomic landscape of lung cancer offers promise for the 
future. Improvements in outcome from lung cancer will almost 
certainly require the identification of increasing numbers of 
ever rarer driver mutations, and diagnostic approaches that can 
identify multiple therapeutic targets offer significant advantages. 
However, the identification of driver genomic aberrations also 
requires the parallel development of effective targeted therapies 
and for many of these changes (such as KRAS) such therapies 
are not yet available. Resistance to targeted therapeutics is an 
increasingly recognised issue into which genomic analyses 
may provide important mechanistic insights underlying future 
rational therapeutic approaches.
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