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Introduction

Aortic aneurysm (AA) is a potential lethal disease with 
an increasing incidence rate that reaches approximately 
10.4/100,000 people each year (1,2). The general feature of 
AA is a lack of obvious evidence or clinical symptoms for 
determining its presence (3), and death due to ruptured AA 
is common (4,5). Progression of AA leads to unpredictable 
features of this disease and can lead to unexpected rupture. 
The annual incidence of aortic dissection and rupture 
is 3.5/100,000 patients (6). The various histological, 
anatomical, and clinical presentations need to be carefully 
considered before deciding on treatment options for AA. 
Surgical repair of AA is the main treatment with a mean 
30-day mortality rate of 8.2% (95% confidence interval: 

6.4–10.6) (7). In the clinic, physicians usually use medicine 
to delay the progression of AA, such as traditional beta-
adrenergic receptor blockers, when AA does not reach 
the standard for surgery. Recently, molecular targets of 
development of AA have been found with technological 
innovations. These targets include matrix metalloproteinases 
(MMPs), elastin-peptides (SEP), C-reactive protein, and 
PIIINP-collagen, which have provided a new direction for 
diagnosis and management of AA.

Pathophysiology of AA

The aorta is a heterogeneous vessel with different 
components in thoracic aortic aneurysm (TAA) and 
abdominal aortic aneurysm (AAA), as reported in 
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previous reviews (8,9). However, matrix remodeling and 
inflammation are similar between TAA and AAA. Formation 
of the AA is correlated with inflammatory infiltrates in 
apoptosis of vascular smooth muscle cells and extracellular 
matrix degradation (Figure 1) (10). Additionally, a change 
in matrix proteins and a variety of transforming growth 
factor (TGF)-β signals appear to be vital for development 
of TAA (9,11,12). The weaken of the aortic ultrastructure 
and increased the risk of dilatation, dissection, and rupture 
may be caused by this alteration (13,14). TGF-β can affect 
matrix degradation by regulating alternate pathways, 
especially in Marfan syndrome. A previous study showed 
that in patients with TAA, the TGF-β2 signal is decreased 
through cells expressing TGF-βRIIb and mutations in 
this receptor result in an increase in TGF-β2 signal (15). 
This suggests that an increase in TGF-β signal may lead to 
development of aortic pathogenesis. The TGF-β2 signal 
finding has aroused a wide concern in the intracellular 
signaling pathway (16,17). Moreover, pro-inflammatory 
chemokines and cytokines expedite the inflammatory 
process. MMPs, which are a large family of enzymes, are 
derived from smooth muscle cell production and response 
to cyclic strain that can also progress degradation of the 
extracellular matrix (18). The function of increased MMP 
levels in the progression of AAs is important (19,20). In 
certain cases, an imbalance in medial expression of MMPs, 
specifically the gelatinases (MMP-2 and MMP-9) and tissue 

inhibitors of metalloproteinases (TIMP-2 and TIMP-1),  
result in accelerated proteolytic degradation of elastin and 
collagen fibers (21,22). They have found that MMP-9  
levels were increased in TAA (Figure 2) compared with 
controls and the levels of MMP-2 was no obviously change 
in TAA compared with controls (Figure 3). Additionally, 
TIMP-1 and TIMP-2 levels were significantly lower in 
TAA compared with controls (Figure 4). All studies showed 
that the ratio of MMP-9 to TIMP-1 was 3.7 times in TAA 
compared with controls. The ratio of MMP-9 to TIMP-2  
in TAA was 26.5 times that of controls. Notably, MMP-2  
and -9 have elastolytic and collagenolytic properties (23). 
Elastolytic and collagenolytic properties can increase 
stiffness of the thoracic aortic wall and decrease elastic 
ability, which lead to the appearance of AA. Therefore, 
inflammation, matrix degradation and remodeling weaken 
aortic tensile strength and lead to formation of AA.

Current parameters in the diagnosis of AA

Although AA usually develops asymptomatically, once a 
certain size is reached, the risk of dissection, rupture, and 
death could be sharply increases. Due to the asymptomatic 
nature, many patients with AA would not be diagnosed 
until complications occur. Therefore, there are many 
parameters that are used to help diagnosis and management 
of complications.

Figure 1 Schema showing the inflammation process in AA (10). AA, aortic aneurysm.
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Figure 2 MMP-9 levels are increased in TAA compared with controls (21). TAA, thoracic aortic aneurysm.

Figure 3 MMP-2 levels are not significantly different between TAA and controls (21). MMP, matrix metalloproteinase; TAA, thoracic aortic 
aneurysm.

Figure 4 TIMP-1 and TIMP-2 are significantly decreased in TAA compared with controls (21). TIMP, tissue inhibitors of 
metalloproteinase; TAA, thoracic aortic aneurysm.
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Size 

Size is one of the important characteristics in AA. However, 
AA grows in a generally indolent manner, increasing by 
approximately 1 mm each year (24). Interestingly, aneurysms 
with larger diameters incline to expand more rapidly. 
The annual growth rate with a 4.0 cm of ascending TAA 
is 0.10 cm, while the annual growth rate with an 8.0 cm  
of ascending TAA is 0.19 cm (25). In AAA, ruptures appear in 
25–41% of AAAs with a diameter >50 mm over 5 years (26).  
In TAA, large aneurysms, especially the size greater than 
5 to 6 cm, expand more rapidly compared with small 
aneurysms (27-32). Therefore, the size of the AA is a good 
predictor for aortic rupture.

Genes

The AA is divided into atherosclerotic, syphilitic, 
bacterial, traumatic and congenital aneurysms, and 
dissecting aneurysms in the etiology. In the congenital 
aneurysms, the family factor is a major risk factor in the 
AA appearance and growth, the rate of diagnosed AA 
was lower in patients without family history than ones 
with first-degree relatives have diagnosed AA (33,34). 
The congenital AA forms are associated with Marfan 
syndrome, Loeys-Dietz syndrome and Ehlers-Danlos 
syndrome and relevant genes contains FBN1, ACTA2, 
PRKG1, TGFBR1, TGFBR2 genes. The mutation of this 
genes can benefit to the AA appearance and progression. 
For example, the Marfan syndrome has associated with 
the mutation of FBN1 and the TGF-β activation signal 
moreover the different position mutation of FBN1 has the 
different mechanism in the pathogenesis (35).The family 
genetic examination may have an application prospect 
to screen AA in individuals who have the family history 
using PCR amplification. But detection rate for genes 
mutations in familial AA is <20% and many individuals with 
family history of AA have normal diameter of aortic. Thus, 
the effectively way to screen family AA is ultrasounds. In 
current, there is article suggested the standard of screen 
family AA is the age of screen first-degree relatives is 50 for 
male and 55 for female rather than the less than 60 (36-38).

Mechanical sections

Calculations of the mechanical sections of AA can be 
performed using six independent variables: aortic pressure, 
aortic diameter, and thickness of the aorta in systole and 

diastole. When the size of the aneurysm attached a key 
point, the aorta cannot continue to stretch in systole, which 
could increase the stress to the aortic wall (39). Magnetic 
resonance imaging (MRI) has been reported to be used in 
measuring the mechanical sections of AA. In one study of 
AAA, wall stress in the control group was lower than that 
the AA group by using a three-dimensionally reconstructed 
model (40). Therefore, these measurements can be 
predictive factors for indicating a higher risk of rupture of 
regions of AAs (41,42).

Biomarkers for AA

Most patients with AA are asymptomatic until rupture of 
the aneurysm. Therefore, biomarkers, especially plasma 
proteins, might be useful for diagnosing and monitoring of 
AA in an early phase. Some circulating biomarkers have been 
established for AAA (43-45). Recent studies have shown that 
SEP can be used as a biomarker for predicting expansion of 
AAA (46-48). Additionally, matrix protease, interleukin-6, 
C-reactive protein, TNF-α, D-dimer, and IFN-γ have 
also been studied by many research groups (49-54).  
Although there have been positive results regarding to these 
biomarkers in many studies, the numbers of the patients in 
trials are limited. Therefore, many difficulties need to be 
resolved before their translation into the clinic.

Molecular targets in AA 

In progression of AA, the quantity of production, such as 
MMP and matrix proteins, related to AA appears to change. 
These factors may become molecular targets for diagnosis 
and management of AA. Molecular target therapy has 
become a potential useful plan to treat AA.

Inflammation targets

Inflammation is a major component in progression of AA. 
Endothelial activation, recruitment of leukocytes and the 
up-regulation of adhesion molecules are important events 
in the early pathology of AA. Moreover, pro-inflammatory 
chemokines and cytokines can accelerate the inflammatory 
process of AA (55,56). Therefore, inflammatory activities can 
become targets for the diagnosis and management of AA.

Metabolism activities
There is a general agreement that AAA formation has a 
close relationship with destruction of elastin and collagen 
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at the medial level. Additionally, metabolism of elastin and 
collagen appear to be related to dispensability of AA (57). 
Several European studies have shown that the increased 
metabolic activity is associated with formation of AA, which 
can be used to evaluate inflammation of the aorta. Metabolic 
activity can be measured by an increase in 18F-fluorodeoxy 
glucose (FDG) uptake as measured by positron emission 
tomography (PET) or computed tomography (CT). FDG, as 
a glucose analog that accumulates in high metabolic activity 
in cells is often used for PET imaging of inflammation (58). 
Growing evidence show that an increase in 18F-FDG uptake 
is a latent signal in the aorta with active atherosclerotic 
inflammation (59,60). Many studies have attempted 
to use 18F-FDG to evaluate aortic diseases (61-67).  
One study used 18F-FDG uptake to predict short and mid-
term prognosis in medically controlled patients with AA 
dissection by comparing uptake of 18F-FDG in controls 
and in patients with AAD (Figure 5) (68). This study 
showed that the 18F-FDG standardized uptake value (SUV) 
was greater in unfavorable AA dissection groups than in 
favorable AA dissection groups on 50-minute images (68).  

Through the observat ion of  18F-FDG uptake on 
100-minute images, SUVmax and SUVmean of 18F-FDG in the 
between unfavorable and favorable AA dissection groups 
were no significant difference and both higher than those 
in controls at the proximal, distal, and maximum sites  
(all P<0.05). Therefore, use of 18F-FDG uptake on 
50-minute to stratification patients with AA dissection may 
be useful for predicting short-term and mid-term prognosis 
and achieving better management (68). Additionally, many 
previous studies have shown that FDG in the AA group has 
higher uptake than that the normal aortic group (63,65,69). 
Moreover, in AA patients, uptake of FDG is higher in 
the symptomatic group compared with the asymptomatic 
group (67,70). Interestingly, sites with a positive 18F-FDG 
uptake have been shown to accumulate a higher amount of 
adventitial inflammatory cells with a reduction in smooth 
muscle cells in the media compared with negative 18F-FDG 
samples (71). Therefore, 18F-FDG might be a new pathway 
to study the mechanical of AA and to predict the risk of 
rupture. Because of FDG belongs to the glucose, diabetes 
whether influence FDG uptake due to the state of impaired 

Figure 5 18F-FDG uptake to predict short and mid-term prognosis in medically controlled patients with AA dissection by comparing uptake 
of 18F-FDG in controls and in patients with AAD. (A) 18F-FDG SUVmax and SUVmean were on 50-minute images (middle) and 100-minute 
images (right) on patients with favorable outcome; (B) 18F-FDG SUVmax and SUVmean were on 50-minute images (middle) and on 100-minute 

images (right) on patients with unfavorable outcome (68). F-FDG, F-fluorodeoxy glucose; SUV, standardized uptake value; AA, aortic 
aneurysm; AAD,  acute aortic  dissection.
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glucose utilization has appeared. Previous studies have 
suggested that diabetes cannot influence the evaluation of 
uptake of 18F-FDG in animal trial and human trial. At the 
moment, the relation of diabetes with AA has also become 
an attention point. A review suggested that the diabetes 
is an important risk factor in the coronary and peripheral 
artery disease, but has a negatively effect in AA due to the 
hyperinsulinemia can lead to up-regulation fibrinogen, 
collagen synthesis, plasminogen activator inhibitor-1 and down 
regulation fibrinolysis, inflammation and MMP (72-74).

Phagocytosis 
Inflammation is a vital factor in progression of AA. There 
were histological studies found that lymphocytes and 
macrophages infiltrate into the aorta occurred during the 
angiotensin II infusion in apoE−/−mice (75). Macrophages 
are associated with aneurysm growth and rupture in animal 
models and patients (76,77). A previous study showed that 
MRI is a noninvasive method that can be used to assess 
the morphology of AA (78). Additionally, using MRI to 
detect macrophages in AA can be used to reflect the degree 
of inflammation in AA (79). Recently, some studies have 
also shown that ultrasmall super-paramagnetic iron oxide 
(USPIO) contrast agents can be used to label atherosclerotic 
plaques and can indicate the macrophage load when it is 
used as an imaging agent. Due to the small particle size 
(10–30 nm), USPIO escapes recognition by the reticulo-
endothelial system, exists in the blood, and accumulates 
into the vascular inflammation sites. In these inflammatory 
sites, USPIO undergoes phagocytosis by tissue-resident 
macrophages within which it accumulates and is detectable 
on T2- and T2*-weighted MRI sequences (80-82). In recent 
research, USPIO contrast agents were used for detecting 
macrophage infiltration in the pre-clinical formation state of 
AAA (83,84). The previously study found that compared with 
mice without a USPIO agent, signal intensity was decreased 
in mice with a USPIO agent in which many macrophages 
were observed in remodeled adventitia (Figure 6) (83).  
These results indicated that with formation of AA, the 
process of macrophages moving to the aneurysm can be 
detected by using a USPIO MRI contrast agent. Because of 
this important discovery, many study groups have attempted 
to use this particle to study progression of AA (77,79). One 
other study attempted to show whether uptake of USPIO 
in the aortic wall was associated with the rate of aneurysm 
expansion. They divided 27 patients into three groups 
according to whether uptake of USPIO was in the aortic 
wall or in thrombus. Finally, they found that the aneurysm 

expansion rate of focal uptake areas of the aortic wall was 
three-fold higher than in patients without uptake of USPIO 
or without specific uptake of USPIO (77). Therefore, 
USPIO may be able to be applied in the clinic to predict 
development of AA. However, more human trials are 
required before use of USPIO in the clinic.

Matrix remodeling targets

Extracellular matrix degradation is a major factor in 
formation, dilation and rupture of AA. Additionally, elastin 
fibers and collagen especially types I and III are vital for 
retaining the integrity of structure and stability of arteries. 
Development of AA is associated with degradation of 
collagen and elastin fibers (85). Cysteine proteases, serine 
proteases and MMPs produced by inflammatory cells show 
higher expression in AA than in the normal aorta.

MMP
MMPs are endopeptidases that can degrade many 
extracellular proteins (86). Comprehension of regulation 
of MMP activity is vital for understanding various 
pathogeneses of AA, and for production of new MMP-
related medicines. All the MMPs have a catalytic center that 
includes three complexes of the zinc ion in the active place. 
However, when only MMPs are activated, the zinc ion can 
be exposed, which is not emergence in inactivated MMPs 
and MMP proenzymes. Therefore, the zinc ion site may be 
used to target activation of MMPs (87). Recent data have 
demonstrated that MMP-1, -2, -3, -9, -12, and -13 play 
roles in progression of AA (85). Their activation can lead 
to progression of AA and subsequent rupture or dissection. 
However, in different types of AA, MMPs significantly 
increase at various rates. Compared with tricuspid aortic 
valves (TAVs), MMP-2 levels are increased by 34% in 
patients with bicuspid aortic valves (BAVs). However, in 
TAVs samples, MMP-13 levels are increased by 140% 
compared with BAVs (88). Before using MMPs as the target 
for imaging, the different designs of probes for assessing 
MMP need to be understood.

Antibodies were used in the earliest attempt to design 
probes for assessing MMP, and various antibodies have 
been developed. These antibodies only bind to other 
epitopes rather than the zinc ion. Therefore, antibodies are 
not an ideal approach for imaging MMPs (87). Substrates 
bind to active locations of MMPs and can be cleaned by 
using enzymes. Moreover, different MMPs have special 
substrates, which can help to select target MMPs. When 
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Figure 6 Ex vivo images of AAAs of mice with (A) USPIO administration and (B) without USPIO administration. A macrophage-rich area 
has decreased signal intensity in USPIO administered mice (83). AAA, abdominal aortic aneurysm; USPIO, ultrasmall super-paramagnetic 
iron oxide.
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a probe is cleaved, the fluorescent signal is amplified (87). 
CGS 27023A, a non-specific inhibitor that binds to the 
active catalytic domain of MMPs, has dominant uptake 
in the apolipoprotein E-deficient mouse by using micro-
PECT/CT. Although this technique can be used to detect 
activation of MMPs in aortic disease, it cannot differentiate 
the type of effect of MMPs in inflammation of the aorta (89). 
Compared with substrates, inhibitors interact with MMPs 
in a 1:1 manner and have no signal magnification. Research 
groups established two nonpeptidic MMP inhibitor-based 
probes (hydroxamates and barbiturates) to evaluate MMP 
activity and obtain an ideal outcome (90-92). By using this 
approach, MMP inhibitors can be used for imaging targets.

Therefore, fluorescence substrates and MMP inhibitors 
can be used to image inflammatory activity (93-98). 
RP782 and RP805, special tracers for activated MMPs, 
are usually used to detect activation of MMPs. Previous 
studies on cardiovascular disease showed that 99mTc-RP805 
had significant uptake in the inflammatory area compared 
with controls by using micro-SPECT. Additionally, 99mTc-
RP805 has a potential value to diagnose changes in MMPs 
in progression of cardiovascular disease (96-98). Recently, 
a study reported that a novel MMP inhibitor, RYM, has a 
faster blood clearance and higher water solubility compared 
with 99mTc-RP805 (93). This finding indicates that 99mTc-
RYM1 can image in the early time, and can improve vessel 
wall-to-blood contrast. In mice models, micro-PECT/CT 
imaging showed higher RYM in AAA compared with no 
dilated aortas (93). Therefore, using MMPs as a target in 
imaging to predict inflammatory activity in AA has obvious 
superiority, and this provides a basis for clinical trials.

Matrix proteins
The aorta has three layers, including the endothelial cells 
layer, the elastic media layer, and the adventitia. Collagen 
and elastin form the strength of the aorta and elastic 
properties of the aorta, respectively (99). Therefore, 
disruption of these components may change the mechanics 
of the vessel wall and have a large effect on the pathology 
of AA. Elastic fibers are highly extensible networks of 
cross-linked elastin that provide elastic energy storage in 
tissues and redistribute it during diastole and maintain 
normal pressure (100). Therefore, elastic degradation can 
decrease extensibility and increase stiffness. An increased 
pressure in systole can result in damage of the intima of 
the aortic wall. Collagen has a large stiffness modulus of 
approximately 1,200 MPa (approximately 1,000 times 
greater than elastin) and a low extensibility of approximately 

13% (100). Therefore, the role of collagen is to reinforce 
the strength of the wall to avoid rupture of a weak elastic 
wall. Consequently, destruction of elastin and collagen can 
lead to apoptosis of vascular smooth muscle cells, which 
can impair the aortic wall. CAN-35 is a collagen-binding 
bacterial protein, which can bind to the disorder collagen. 
It was used as a marker to detect the quantity of collagen in 
AAA in an animal model (101). A study reported that, using 
MRI in mice, injection of CAN-35 resulted in higher MR 
signal compared with mice with no injection mice (102).  
Therefore, matrix proteins are important targets for 
evaluating aortic inflammation.

Potential molecular therapeutic targets

When the diameter of AA exceeds 5.5 cm in man and 
5.0 cm in women, clinicians always choice artificial 
vessel replacement or endovascular AA repair (103). 
However, when the small aneurysm (diameter >3 cm) was 
detected, current clinicians always choice follow-up CT 
or ultrasonography in annual 6 to 12 months due to the 
risk of rupture for aneurysms is low when the diameter of 
AA smaller than 4 cm (104,105) and the operative to early 
stage of AA has no survival advantage (106,107). Thus, 
the early medicine intervention may become a useful way. 
The traditional medicine treatment for preventing AA 
growth is beta-adrenergic receptor blockers (108), and 
these are useful in treating Marfan syndrome (109). In 
addition, calcium channel blockers, antiplatelet agents, 
lipid-lowering drugs, and other antihypertensive drugs 
are also used to prevent the growth of AA, but there is no 
obvious impact on aneurysm expansion (110,111). Despite 
advances in understanding the mechanisms of development 
of AA, current pharmacological treatment of AA is limited. 
Research of molecular targets and the area of molecular 
therapy of AA has become prevalent and there are articles 
have reported molecular therapy used in the Marfan 
syndrome and atherosclerotic disease. 

Marfan syndrome
In Marfan syndrome, FBN1 mutations and TGF-β results 
in an imbalance between MMPs and TIMPs, and these 
can increase proteolysis in the aortic wall and finally cause 
AA formation (35,112). Much effort has been made to test 
therapeutic agents aiming the molecular changes, and an 
angiotensin receptor blocker has been found to inhibit the 
effect of TGF-β in the vascular wall (113-116). Additionally, 
there is study suggested that the long-term doxycycline, the 
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inhibitor of MMP-2 and -9, was more effective than the 
β-adrenergic receptor blockers (117).

Atherosclerotic disease
Atherosclerosis is a chronic progressive disease caused by 
the inflammatory cellular and molecular changes, such 
as the macrophage and immune cells accumulation, the 
inflammation cytokines release. The current treatment 
point has transferred from tradition medicine (statins) to 
target inflammation medicine. An article has introduced that 
Toll-like receptors antagonists, T cells activation inhibitors, 
TNF and IL-1 receptor inhibitors, kinase inhibitors can be 
a prospect treatment in atherosclerotic disease (118).

AA
MMPs are major factors in progression of AA by causing 
degradation of the extracellular matrix. MMP activity can 
be suppressed by the tissue inhibitors TIMPs. MMP-2 
and MMP-9 are protease that degrade matrix in TAA and 
AAA (119). Therefore, their role in the extracellular matrix 
suggests that blocking of MMPs slow progression of aortic 
disease. Many synthetic MMP inhibitors are known to 
decrease MMP activity (120), such as doxycycline-based 
and hydroxamate-based activity. The first synthetic MMP 
inhibitor that was used in the clinic was BB-94 to reduce 
MMP activity in cancer (121). However, the feature of poor 
water solubility has limited the effectiveness of BB-94 when 
provided orally. Doxycycline is associated with positive 
results in clinical trials involving small AAA. Doxycycline 
reduces plasma MMP-9 levels and significantly lowers 
aneurysmal growth rates in patients (122-124). Many 
studies have reported that in animal models, systemic MMP 
inhibitors can reduce the onset of aneurysms (125,126). 
However, systemic delivery may limit normal MMP activity, 
which is not the original aim of using MMP inhibitors. 

Recently, many studies have investigated how to 
reduce the side effects of MMP inhibitors and increase 
accumulated concentrations. These studies showed that 
MMP inhibitors that were loaded with nanoparticles were 
localized in inflammation or pathological regions (127-131). 
However, drug-loaded nanoparticles are usually toxic and 
can cause adverse effects because of exposed in the circular 
to deliver. Additionally, rapid clearance of nanoparticles 
from the plasma limits use of nanoparticles in humans 
(132,133). Therefore, many alternative drugs for delivery 
to cells are being studied worldwide, especially for tumors 
using intrinsic functional cells. Intrinsic functional cells 

include macrophages, mesenchymal stem cells, natural killer 
cells, and mature erythrocytes (134-137). The pathological 
features of AA are degradation of the extracellular matrix and 
a decrease in vascular smooth muscle cells, associated with 
inflammatory cell infiltration. Additionally, macrophages 
have a major function in inflammatory progression. 
Therefore, macrophages may have the chance to become 
drug carriers (138). A previous study attempted to use the 
macrophage membrane to deliver nanoparticles (emtansine 
liposome). This study showed that emtansine liposomes 
coated with macrophage membranes had long-term 
stability in plasma and resulted in a higher accumulation 
of concentrations compared with emtansine liposomes 
alone. Many research groups have also attempted to use 
membranes to treat AA (131). We hypothesize that using 
macrophages to coat nanoparticles with MMP inhibitors 
is useful for treating AA. However, long-term in vivo  
trials are required before using this technique in the clinic.

Conclusions

The incidence of AA has increased in the last 50 years. 
Techniques of diagnosis of AA need to progress to reduce 
the rate of morbidity and mortality. Understanding the 
mechanisms of development of AA could lead to discovering 
newer potential methods of substituting the traditional 
diagnosis and therapeutic approaches. In the future, 
molecular targets for AA may become an attractive aspect 
and be used in the clinic. However, target imaging for 
diagnosing AA requires more pre-clinical trials. Additionally, 
using target drugs to the diseased site is difficult because of 
complex blood flow and limited biofabrication technology. 
Nanoparticles may be an effective vehicle for delivering 
therapeutic agents to the target site. These particles can 
lead to target drug concentrations reaching a high level in 
specified sites and a decrease in distribution in other sites. 
Therefore, molecular targets may be good candidates for 
a future study direction in the management of AA. The 
new prospect treatment may available prevent the small 
AA dilation and reduce the rate of AA growth for more and 
elderly patients. Besides that, the intervention could be 
suggested in the early stage based on the molecular target.
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