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Human infections due to a novel avian influenza A (H7N9) 
virus were first confirmed in Mar 2013 in China in three 
urban residents hospitalized with severe pneumonia in 
Shanghai and Anhui (1). The incubation period of human 
infection with the A (H7N9) virus ranges from 1 to  
10 days, with an average of 5 days. The median duration 
from exposure to poultry to onset of illness was 6 days, while 
the median duration from illness onset to hospitalization, 
progression to acute respiratory distress syndrome (ARDS), 
commencement of antiviral therapy, and death were 4, 
7, 6, and 21 days respectively (2). Preexisting comorbid 
conditions occurred in >60% of these cases. The major 
presenting symptoms included fever, cough, fatigue, and 
dyspnea, while lymphopenia and thrombocytopenia were 
common laboratory findings. Cytokine dysregulations have 
been noted in patients hospitalized with A (H7N9) infection 
and the excessive cytokine responses were associated with 
the clinical severity of A (H7N9) infection (3,4). 

Since 2013, there have been five seasonal epidemics, 
with an upsurge in the number of humans infected with A 
(H7N9) virus since Oct 2016 in mainland China, raising 
the concern that the virus might have become more virulent 
and augmenting the risk of a pandemic (5). Human cases 
of A (H7N9) infection have been confirmed in Hong 
Kong (n=21), Taiwan (n=5), Macau (n=2), Canada (n=2) 
and Malaysia (n=1) in travellers who developed symptoms 

after returning from the mainland of China to their home 
cities (6). The estimated hospitalization fatality risk (HFR) 
among patients hospitalized with A (H7N9) infection in the 
second epidemic was 48% (95% credibility interval: 42–
54%) versus 36% in the first epidemic wave. In the second 
epidemic, the estimated HFR was 36% (95% CI, 28–45%) 
among patients below 60 years of age but increased to 59% 
(95% CI, 51–67%) among those aged at least 60 years (7). 

Based on analysis of a large electronic database managed 
jointly by the China Center for Disease Control and 
Prevention (CDC) and the provincial CDCs, Wang et al. (8)  
have described in more details the epidemiological data, 
clinical severity of illness, and time-to-event distributions 
of patients infected with A (H7N9) in the fifth [2016–2017] 
epidemic in comparison to previous epidemics. Between 19 
Feb 2013 and 23 Feb 2017, 1,220 cases of human infections 
with A (H7N9) virus were confirmed in mainland China. 
There were 134 cases in the first epidemic (spring of 2013), 
306 in the second epidemic [2013–2014], 219 in the third 
wave [2014–2015], 114 in the fourth epidemic [2015–2016], 
and 447 in the fifth epidemic [2016–2017] respectively. The 
fifth epidemic had started much earlier in time, spread to 
more counties/districts in the affected provinces, with many 
more confirmed human cases than the first four epidemics. 
There was also an increase in the percentage of middle-
aged adults infected with A (H7N9) virus from 41% (55 of 
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134) to 57% (254 of 447) from the first to the fifth epidemic 
respectively. Residence of patients infected with A (H7N9) 
virus seemed to have shifted gradually from urban to semi-
urban and rural areas from the first to the fifth epidemic, as 
reflected by the higher percentages of human infections in 
semi-urban and rural areas in the fourth and fifth epidemics 
[63% (72 of 114) and 61% (274 of 447), respectively] in 
comparison to those in the first three epidemics [39% (52 of 
134), 55% (169 of 306), and 56% (122 of 219), respectively]. 
Despite the sharp rise in the number of human cases, the 
clinical severity of patients hospitalized in the fifth epidemic 
was similar to that in the first four epidemics while the 
poultry exposure history has not changed substantially (8).

A more recent review has shown that between 31 Mar 
2013 and 07 Aug 2017, there were 1,557 human cases of A 
(H7N9) infection with 605 deaths (9). Similar to the first 
four epidemics, 70% of human infections during the fifth 
epidemic occurred in men, with median age of 57 years 
(range, 4–93 years), and the majority (90%) had a history of 
recent poultry exposure and resulted in severe respiratory 
failure. Among the 759 human cases reported as of 07 Aug 
2017 in the fifth epidemic, 14 clusters of 2–3 persons with 
A (H7N9) infection were reported to the WHO versus an 
average of 9 clusters in each of the previous epidemics (9). 
While most human cases confirmed since 2013 were caused 
by low pathogenic avian influenza (LPAI) A (H7N9) virus 
infection, 27 cases of highly pathogenic avian influenza 
(HPAI) A (H7N9) virus infection have been confirmed in 
three provinces in southern China during the fifth epidemic. 
Preliminary analysis indicated that HPAI A (H7N9) human 
cases were more likely to occur in rural areas, have exposure 
to sick or dead poultry, and hospitalized earlier than LPAI A 
(H7N9) cases (10).

The major and original source of A (H7N9) outbreaks is 
the Yangtze River Delta region, located in eastern China. 
Based on evolutionary analysis of the HA gene sequences 
of A (H7N9) viruses from the first three epidemic waves, 
the Pearl River Delta region has been identified as another 
source of A (H7N9) outbreak. There have been repeated 
introductions of A (H7N9) viruses from these two sources 
to the other areas and the persistent circulation of A (H7N9) 
viruses in poultry has led to continuous epidemic waves. 
The AnH1 genotype was predominant during the first 
epidemic wave, but was replaced by JS537, JS18828, and 
AnH1887 genotypes during the second and third epidemic 
waves (11). Among 166 A (H7N9) virus HA gene sequences 
from the fifth epidemic, 159 were from the Yangtze River 
Delta lineage versus 7 from the Pearl River Delta lineage. 

Three patients in the fifth epidemic were confirmed to be 
infected with HPAI A (H7N9) viruses with severe clinical 
symptoms and the viruses belonged to the Yangtze River 
Delta lineage. Four amino acids insertion (Lys, Arg, Thr, 
Ala) at the HA cleavage site facilitated the A (H7N9) HPAI 
virus in displaying a trypsin-independent infectivity (12). 
Although maintaining dual receptor-binding preference, 
their HA antigenicity was distinct from LPAI A (H7N9). 
Furthermore, NA R292K conferred a multidrug resistance 
phenotype (13). 

A (H7N9) virus has been detected and isolated in 
birds, their secretions and in live poultry market (LPM) 
environments while closure of LPMs was effective in 
reducing the human risks of A (H7N9) infection. It has been 
estimated that closure of LPM could decrease the mean 
number of A (H7N9) virus infections in humans daily in 
the four most affected cities by 97% to 99% (14). Closure 
of LPMs in the mainland of China is however difficult to 
maintain due to the local cultural preference for live poultry.

Most of the human cases of A (H7N9) infection are 
sporadic but there have been a number of family clusters 
in which human-to-human H7N9 virus transmission is 
likely to have occurred on a limited and non-sustained scale 
(2,15). Visiting LPMs even without direct poultry contact, 
chronic obstructive pulmonary disease, immune-suppressive 
medications (16), and raising backyard poultry at home are 
risk factors for primary infection (17). Limited human to 
human transmission in the hospital settings, together with 
risk factors such as an overcrowded ward environment and 
performance of aerosol-generating procedures, has been 
reported (18,19). Administration of systemic corticosteroids 
and double-dose neuraminidase inhibitors (NAIs) became 
the norm for patients hospitalized for A (H7N9) infection 
(8,20). Predictors of death included complications such 
as ARDS, heart failure and septic shock, administration 
of systemic corticosteroids, and disease duration (20). 
When managing patients with acute respiratory infection 
(ARI), the WHO infection prevention and control (IPC) 
guidelines for ARI patient care that are applicable to 
H7N9 patients include early recognition and isolation of 
patients, application of routine IPC standard precautions 
for all patients, airborne precautions for high risk aerosol-
generating procedures, and other strategies in healthcare 
facilities such as early recognition and source control, 
environmental/engineering controls, administrative controls, 
and appropriate personal protective equipment (21).

NAIs are the main class of licensed therapeutic agents 
for treatment of A (H7N9) influenza virus infections in 
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humans. However, the emergence of NAI-resistant variants 
of A (H7N9) viruses with an NA R292K mutation has 
posed some difficulty on clinical treatment. In two patients 
who had received systemic corticosteroid treatment for 
ARDS despite treatment with NAI, an Arg292Lys mutation 
in the virus NA gene, known to confer resistance to both 
zanamivir and oseltamivir, was identified. In one of the two 
patients, wild-type sequence Arg292 was observed 2 days 
after commencement of NAI treatment, and the resistant 
mutant Lys292 dominated 9 days after commencement of 
NAI treatment (22). In another patient with a persistently 
high viral load despite oseltamivir treatment, an R292K 
variant of the Anhui (22) lineage was isolated, with a high 
level of resistance conferred by the R292K mutation 
to oseltamivir carboxylate and moderate resistance to 
peramivir and zanamivir. Other classes of antivirals, such 
as favipiravir, ribavirin and NT-300, efficiently inhibited 
both the variant and the wild-type in cell-based assays. A 
combination of NAIs and other classes of antiviral agents 
did not show any synergistic effect against the R292K 
variant. However, a combination of two different classes 
of antiviral agents (favipiravir and ribavirin) demonstrated 
significant synergism against the mutant virus. In 
experimentally infected mice, the variant showed delayed 
onset of symptoms, a decreased viral load, and reduced 
fatality in comparisons with the wild-type (23). The study 
findings have suggested that other classes of antiviral agents 
should be evaluated individually or in combination in 
animal models and as clinical trials for A (H7N9) patients 
who have persistently high viral loads despite treatment 
with NAI (23). 

Among all the influenza viruses assessed by the CDC’s 
Influenza Risk Assessment Tool, avian influenza A (H7N9) 
virus has the highest potential for pandemic risk (24). 
The emerging A (H7N9) viruses clearly highlight the 
importance of early analysis and public sharing of sequence 
data in order to facilitate pandemic preparedness efforts (9).  
Enormous efforts are needed to prevent and control the 
spread of A (H7N9) viruses (both LPAI and HPAI) in the 
poultry population, through continuous surveillance of 
poultry, the environment, and humans for the presence 
of A (H7N9) viruses in both urban and rural China, in 
addition to antiviral surveillance. It is important to avoid 
the use of high dose systemic corticosteroids which was 
associated with prolonged viral shedding and increased risk 
of death (25). Development of H7N9 vaccines is critical in 
controlling the virus in the poultry population while long-
term closure of LPMs is another important public health 

measure that should be considered if the HPAI viruses 
continue to emerge in the poultry population (26).
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