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Introduction

Lung cancer is the leading cause of cancer-related deaths 
worldwide (1). The U.S. national lung screening trial 
(NLST) demonstrated that a 20% reduction in lung cancer 
mortality for low-dose computed tomography (LDCT) 
compared to chest radiography (2). However in the NLST 
trial, 96.4% of participants with pulmonary nodules were 
benign. The risk of major complications for invasive 
diagnostic procedures was 4.5 per 10,000 persons screened 
while 25% of surgically resected nodules were benign (2). 
An accurate and practical non-invasive tool that can predict 
the malignancy of lung nodules will thus greatly reduce 
costs and surgical complications and avoid unnecessary 

invasive diagnostic procedures or surgery.  
    With the wide application of CT screening, the 

detection of ground-glass nodules (GGNs) has become 
increasingly common, especially in pulmonary nodules 
less than 2 cm (2-5). Nodules can present as a pure GGN 
having only a ground-glass component and mixed GGN 
having both ground-glass and solid components on CT  
scan (6). Manual interpretation of nodule characteristics 
such as contour, shape, and margin is a widely accepted 
method for predicting malignancy of lung nodules. 
However, automated interpretation of the radiological 
characteristics of GGNs by deep learning techniques may 
potentially increase efficiency, improve reproducibility, and 
improve diagnostic accuracy. 
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In 2011, a new lung adenocarcinoma classification 
system was proposed by the International Association for 
the Study of Lung Cancer (IASLC)/American Thoracic 
Society (ATS)/European Respiratory Society (ERS) (7). 
According to this new classification, adenocarcinomas 
were classified as atypical adenomatous hyperplasia 
(AAH), adenocarcinoma in situ (AIS), minimally invasive 
adenocarcinoma (MIA) and invasive adenocarcinoma 
with lepidic, acinar, papillary, micropapillary or solid 
growth patterns (7). The presence of invasive components, 
especially with a solid or micropapillary growth pattern, 
correlated with poor prognosis in lung cancers (8,9). On CT 
scans, less aggressive subtypes such as AIS, MIA and lepidic 
adenocarcinomas frequently present as pure GGN (9).  
While the presence of aggressive subtypes, such as solid 
and micropapillary growth patterns, greatly impacts the 
disease recurrence and overall survival for patients with 
GGN (10,11). At present, sublobar resection is advocated 
for AIS/MIA while lobectomy and lymph node dissection 
is the standard treatment for invasive adenocarcinoma. 
Consequently, pre-operative planning in patients with 
pulmonary GGNs could be greatly improved if deep 
learning technique could differentiate the subtypes of 
adenocarcinoma based on their radiologic characteristics.

Herein, we focus on creating a machine learning model 
to quantify radiological imaging features of GGNs and 
thereby predict their malignancy and invasiveness. We 
first built a model to predict the benignity or malignancy 
of pulmonary GGNs. For those nodules identified as 
malignant, another binary classification model was built to 
predict the invasiveness of the nodule.

Methods

Data

The authors retrospectively collected CT images of 
pulmonary GGN from 1,177 patients who underwent 
either a sublobar resection or lobectomy from 2015 to 2017 
at Shanghai Chest Hospital. CT scans were conducted 
using a 64-detector CT row scanner (Brilliance 64; Philips, 
Eindhoven, The Netherlands). Thin-section helical CT 
scans (1.0 mm collimation, 0.4-second gantry rotation time, 
120 kVp, 349 mA) were obtained from the lung apices to 
the level of the mid portion of both kidneys. The image 
data were reconstructed with a slice thickness of 1.0 mm 
using soft tissue and lung algorithms. All CT data were 
interfaced with our picture archiving and communication 

system (Kingstar Winning, Shanghai, China).
The data description and collection were conducted 

by three radiologists at Shanghai Chest Hospital. The 
images were evaluated in the following settings: lung 
window center—520 HU/lung window width—1,450 HU; 
mediastinal window center—40 HU/mediastinal window 
width—350 HU. For each case, the demographic data was 
documented. The following nodule image features were 
evaluated by consensus of the three radiologists:

(I) Lobulation (yes/no);
(II) Pleural retraction (yes/no);
(III) Peritumoral vascularity (yes/no);
(IV) Air bronchogram (yes/no);
(V) Calcification (yes/no);
(VI) Spiculation (yes/no);
(VII) Bubble lucency (yes/no);
(VIII) Nodule density (mixed/pure);
(IX) Lung window largest diameter;
(X) Lung window vertical diameter;
(XI) Mediastinal window largest diameter;
(XII) Mediastinal window vertical diameter;
(XIII) Average CT value.

Malignancy and invasiveness predictions

We used random forest along with logistic regression, 
decision tree, support vector machine and AdaBoosting 
to predict the malignancy of the pulmonary GGNs and 
the invasiveness of malignant GGNs. Random forest is 
a classification method that consists of multiple nodes of 
decision trees. Random forest can overcome the overfitting 
issues to the training set generated by decision trees. The 
forests were comprised by using randomly selected input 
variables or combinations of variables at each node to grow 
each tree. 

Results

Patient characteristics

The demographics and clinicopathologic characteristics 
of the cohort are shown in Table 1. Upon histological 
examination, 115 (9.8%) cases were benign, 474 (40.2%) 
AAH/AIS/MIA, 146 (12.4%) lepidic predominant 
lung adenocarcinoma, 345 (29.3%) acinar/papillary 
adenocarcinoma,  73 (6 .2%) micropapi l lary/sol id 
adenocarc inoma and 24 (2%) invas ive  mucinous 
adenocarcinoma (IMA).
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Table 1 Descriptive characteristics of variable

Feature Benign (n=115)
AAH/AIS/MIA 

(n=474)
Lepidic (n=146)

Acinar/papillary 
(n=345)

Micropapillary/ 
solid (n=73)

IMA (n=24)

Age (y)

<60 82 (71%) 337 (71%) 64 (44%) 181 (53%) 36 (49%) 16 (67%)

≥60 33 (29%) 137 (29%) 82 (56%) 164 (47%) 37 (51%) 8 (33%)

Gender

Male 56 (49%) 119 (25%) 52 (36%) 130 (38%) 34 (47%) 9 (38%)

Female 59 (51%) 355 (75%) 94 (64%) 215 (62%) 39 (53%) 15 (62%)

Size in lung window (mm) 12.6±5.28 10.3±3.75 19.78±8.3 18.8±7.37 24.4±7.28 15.55±5.54

Solid proportion (CTR %) 1.98±3.49 0.48±1.5 4.0±5.7 7.09±7.29 15.83±8.2 6.65±4.99

CT value (HU) −476.9±187.48 −528.55±142.05 −422.6±138.71 −289.96±157.72 −135.04±119.54 −272.46±143.56

Ground-glass component −554.56±168.7 −569.71±107.62 −550±146.64 −466.23±124.7 −421.18±117.76 −491.37±127.5

Solid component −138.85±152.65 −219.15±123.36 −142.98±114.73 −84.71±109.83 −1.14±47.39 −74.08±103.23

Location

RUL 45 (39%) 177 (37%) 56 (38%) 118 (34%) 29 (40%) 6 (25%)

RML 9 (8%) 29 (6%) 11 (7.5%) 31 (9%) 3 (4%) 1 (4%)

RLL 20 (17.5%) 66 (14%) 27 (18.5%) 53 (15%) 13 (18%) 9 (38%)

LUL 22 (19%) 138 (29%) 41 (28%) 100 (29%) 22 (30%) 2 (8%)

LLL 19 (16.5%) 64 (14%) 11 (7.5%) 43 (12%) 6 (8%) 6 (25%)

GGN

pGGN 40 (35%) 318 (67%) 16 (11%) 21 (6%) 0 (0%) 0 (0%)

mGGN 75 (65%) 156 (33%) 130 (89%) 324 (94%) 73 (100%) 24 (100%)

Pathology stage

Benign/AAH / / / / / /

0 / 157 (33%) / / / /

IA1 / 304 (64%) 25 (17%) 85 (25%) 4 (5%) 11 (46%)

IA2 / 1 (0.2%) 96 (66%) 189 (55%) 25 (34%) 11 (46%)

IA3 / / 18 (12%) 57 (16%) 16 (22%) 0 (0%)

IB / / 7 (5%) 14 (4%) 28 (38%) 2 (8%)

AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IMA, invasive mucinous 
adenocarcinoma; CTR, ratio of the diameter of the solid component relative to the maximal tumor diameter; RUL, right upper lobe; RML, 

right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; GGN, ground-glass nodule.

Malignancy predictions

Random forest obtained 95.1% accuracy and 99.1% sensitivity. 
AdaBoosting and knearest neighbors (KNN) both achieved 
99.4% percent sensitivity. Logistic regression had 80.0% 
specificity. Table 2 shows the detailed results of predictions 

using different classification algorithms.

Figure 1 demonstrates the receiver operating characteristic 

(ROC) curves of the malignancy prediction models. As can be 

seen in the figure random forest outperformed [area under the 

curve (AUC) =96%] the other models [AdaBoosting (AUC 
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=95%), logistic regression (AUC =95%), SVM (AUC =93%), 
decision tree (83%) and K-nearest neighbors (76%)]. 

Invasiveness predictions

Random forest achieved the best overall accuracy, 
whereas logistic regression had the highest sensitivity 
and AdaBoosting had the highest specificity. Table 3 
shows a detailed comparison of the performance of 
each algorithm in predicting the invasiveness of the  
malignant GGNs.

Algorithmic performance for invasiveness is shown in 
the ROC curves in Figure 2. Random forest achieved the 
highest AUC at 91%. AdaBoosting, logistic regression and 
decision tree achieved 90%, 89% and 87% respectively 
(Figure 2). 

Discussions

With the wide application of computed tomography screening 
for lung cancer worldwide, more GGNs are being found. The 
positive relationship of lesion size and CT features such as 
contour, shape, and margin to the likelihood of malignancy in 
solid pulmonary nodules has been clearly demonstrated (12). 
Historically, these features were thought to be less helpful 
in differentiating GGNs. However our study demonstrates 
that application of machine learning to evaluation of the CT 
characteristics of GGNs can help predict malignancy and 
invasiveness with high sensitivity and specificity.

Our model for the classification of pulmonary GGNs 
achieved 99.1% and 95.1% sensitivity and accuracy 
respectively, which would facilitate identification of malignant 
nodules in a screening setting. Automated interpretation 

Table 2 Results of malignancy predictions (benign vs. malignant) 

Algorithms Accuracy (%) Sensitivity (%) Specificity (%)

Random forest 95.1 99.1 58.6

Logistic regression 86.9 87.7 80.0

Decision tree 91.7 95.6 55.9

AdaBoosting 93.4 99.4 37.9

SVM 91.3 94.8 58.6

KNN 93.4 99.4 37.9

SVM, support vector machine; KNN, knearest neighbors.

Table 3 Results of invasiveness predictions [pre-invasion lesions 
(AAH, AIS, and MIA) vs. invasive adenocarcinoma]

Algorithms Accuracy (%) Sensitivity (%) Specificity (%)

Logistic regression 81.5 81.1 81.8

Random forest 83.0 80.7 84.6

Decision tree 76.7 72.8 79.5

AdaBoosting 82.1 74.4 87.6

AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma 
in situ; MIA, minimally invasive adenocarcinoma.

Figure 1 ROC curve of malignancy predictive models. ROC, 
receiver operating characteristic; AUC, area under the curve. 

Figure 2 ROC curve of invasiveness predictive models. ROC, 
receiver operating characteristic; AUC, area under the curve. 

ROC curve

S
en

si
tiv

ity

Specificity

RandomForest ROC curve (AUC =0.96)

Adaboosting ROC curve (AUC =0.95)

LogisticRegression ROC curve (AUC =0.95)

SVM ROC curve (AUC =0.93)

DecisionTree ROC curve (AUC =0.83)

K-Neaest Neighbors ROC curve (AUC =0.76)

0.0               0.2                0.4               0.6               0.8               1.0

1.0

0.8

0.6

0.4

0.2

0.0

ROC curve

1.0

0.8

0.6

0.4

0.2

0.0

S
en

si
tiv

ity

0.0               0.2               0.4               0.6               0.8               1.0
Specificity

RandomForest ROC curve (AUC =0.91)

Adaboosting ROC curve (AUC =0.90)

LogisticRegression ROC curve (AUC =0.89)

DecisionTree ROC curve (AUC =0.87)



462 Mei et al. Pulmonary nodule and machine learning

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(1):458-463jtd.amegroups.com

of radiological image traits for lung nodules has potential 
benefits such as increasing efficiency, reproducibility and 
improving prognosis by providing early detection and 
treatment. For malignancy predictions, the ensemble model 
random forest achieved the best performance among other 
classifiers. This is because the bagging strategy of random 
forest is more generalized and is able to incorporate different 
types of features. The majority voting method of random 
forest can effectively reduce misclassifications. In comparison 
with random forest bagging approach, the boosting strategy 
of AdaBoost tends to more likely overfit resulting in its lower 
accuracy and specificity score.  

AAH, AIS and MIA refer to pre-invasive lesions in the 
lung. The disease-free survival rate is 100% in patients with 
AAH, AIS or MIA lesions following sublobar resection (10). 
However, lobectomy with systemic lymph node dissection 
or sampling is a standard surgical procedure for invasive 
adenocarcinoma (10). Considering that invasiveness of 
adenocarcinomas is hard to decide accurately by intraoperative 
frozen section, pre-treatment differentiation of the invasiveness 
of the nodule is helpful for pre-operative planning. As with 
malignancy prediction, the robustness of the bagging strategy 
of random forest worked well with invasiveness prediction 
resulting in higher accuracy, sensitivity and AUC. 

To take most advantage of machine learning algorithms, 
it is useful to combine the strengths of multiple classifiers 
and minimize the misclassification errors. Although random 
forest already benefits from bagging among a lot of decision 
trees, it is not enough to only consider one silo classifier. 
In the future, we will try some more advanced ensemble 
approaches, such as ensemble on various basic models or 
stacking, to optimize the accuracy in prognosis.

One limitation of this study is the use of radiologic 
features, instead utilizing the imaging information directly 
from the CT images. Future research will use the imaging 
dataset directly to develop deep learning algorithms for the 
same purpose. This has been shown to be quite successful in 
thyroid nodules but not yet tried in lung cancers (13,14).

In conclusion, our study is the first attempt to 
differentiate benign and malignant pulmonary GGNs and 
to predict invasiveness of malignant nodules using machine-
learning models. Further study is warranted so that artificial 
intelligence could be incorporated into clinical practice to 
improve management outcomes.
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