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Introduction

Chronic obstructive pulmonary disease (COPD) is a 
prevalent, complex and debilitating disease which imposes a 
formidable burden on patients and the healthcare system (1). 
The recognition that COPD is a multifaceted disease is not 
new, and increasing evidence have outlined the importance 
of its extra-pulmonary manifestations and its relation to 
other comorbid conditions in the clinical course of the 
disease and its societal cost (2). In particular, the association 

between COPD and skeletal  muscle dysfunction/
nutritional status anomalies has long been recognized, and 
the deleterious synergistic effects of their co-occurrence 
on clinical prognosis have been well established (3-10)  
(Figure 1). However, the fact that COPD is frequently 
associated with other conditions that also alter muscle 
function and nutritional status such as older age and 
chronic comorbid diseases intensify the need for a better 
understanding of the individual pathophysiological 
processes at play and their inter-relationships, in order to 
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provide better clinical care (Figure 1). It is now evident that 
aging and comorbidities such as chronic heart failure (CHF) 
and chronic kidney disease (CKD), along with cigarette 
smoke, systemic inflammation, exercise, exacerbations, 
anabolic insufficiency and drugs play a relevant role in 
contributing to nutritional status and muscle dysfunction in 
patients with COPD (Figure 2). All the above factors modify 
the nutritional status and the phenotype of the muscles, 
through the induction of several biological phenomena in 
patients with COPD (Figure 2).

It has been 7 years since a research seminar have been 
totally devoted to this topic (11); since then, numerous 
researches have been undertaken to try to elucidate the 
effects of aging and comorbidities on nutritional status and 
muscle dysfunction in patients with COPD. 

This review proposes to examine the current knowledge 
pertaining to the alterations in skeletal muscle function and 
nutritional status induced by COPD itself, and to compare 
them to those observed in physiological aging and in frequent 
chronic diseases associated with COPD, in order to delineate 
the independent and possibly additive contributions of each 
condition to the overall status of these patients. 

Aging and skeletal muscular function/nutritional 
status in patients with COPD

In this section, we will focus on the effects of the aging 
process on skeletal muscle function and morphology and 
on the nutritional status, with a particular emphasis on the 
recent data supporting the consideration of COPD as a 

disease of accelerated aging.

Physiological consequences of the aging process on skeletal 
muscles

Sarcopenia (loss of muscle mass associated with a decline in 
function) is common in the elderly (12) and is characteristic 
of the physiological aging process (13,14). Changes in 
muscle morphology are therefore frequently observed 
with increasing age and relate to changes in muscle fibre 
composition, size and number (15,16). Numerous studies 
have investigated the changes in muscle fibre distribution 
in the skeletal muscles of elderly subjects, with sometimes 
contradicting results: an increase in the proportion of type 
1 (slow-twitch) muscle fibres has frequently been described 
(17-21), although others report a relative stability (22-29), 
or even a decrease (30) in the proportion of type I fibres. 
These differing descriptions are possibly related to intrinsic 
differences in the studied populations and the influence of 
important factors such as nutritional status, physical activity 
levels, comorbidities and biopsied muscle. Skeletal muscle 
fibre atrophy is also a hallmark of the physiological aging 
process and mainly seems to affect type II (fast-twitch) 
fibres (18-20,22-25,31). Alterations in muscle metabolism 
are also prevalent, with a decrease in the activity of oxidative 
and glycolytic enzymes being frequently observed with 
advancing age (19,29,31). Together, these changes will 
translate into a progressive loss of muscle strength in elderly 
subjects (32). This phenomenon has important clinical 
consequences as muscle weakness is a hallmark feature of 
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Figure 1 The different levels of impairment in chronic obstructive pulmonary disease (COPD). All these factors are keynote features in 
COPD and play an important role in disease progression and prognosis. FEV1, forced expiratory volume in 1 second. From reference (11) 
with permission.
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the presence of frailty in the elderly, which is a state of 
decreased functional reserve strongly associated with the 
risk of disability and overall prognosis (12,33).

Aging and nutritional status

Undernutr i t ion  i s  f requent  in  e lder ly  sub jec t s , 
independently associated with age (34) and frequently 
under-diagnosed (35). Physiological anorexia, smoking, 
the presence of comorbid medical conditions (including 
COPD), alterations in smell and taste and changes in 
physical activity with decreased energy requirements 
are factors that potentially impact nutriment intake in 
elderly subjects (34,36-40). Importantly, the presence 
of malnutrition is associated with changes in body 
composition and the presence of sarcopenia (36), and 
is directly associated with prognosis in elderly patients 

(34,35,41,42). As such, malnutrition can be seen as a 
component of the frailty syndrome (43), with several 
studies demonstrating that the quality of dietary intake is 
related to the risk of frailty (44-46).

Alterations in skeletal muscle function and nutritional 
status in COPD and comparison to physiological aging

Sarcopenia is one of the most recognized extra-pulmonary 
manifestations of COPD and has been extensively 
studied (47-53). Although a thorough description of the 
mechanisms underlying its presence in COPD patients is 
outside the scope of this text, we need to highlight the main 
characteristics of skeletal muscle changes associated with 
COPD in order to contrast them to the aforementioned 
changes induced by the aging process. Skeletal muscle fiber 
redistribution in COPD has been well demonstrated, with 
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a consistent and prominent increase in the proportion of 
type II fibers relative to type I fibers (54-59), associated 
with an atrophy of the muscle fibers (54) and alterations in 
enzymatic metabolism activity characterized by increased 
glycolytic activity, decreased aerobic metabolism (55,60-62)  
and an impairment in oxidative metabolism that is 
predominantly observable during and after exercise (63-65).  
These anomalies will clinically translate into a loss of 
muscle mass, strength and endurance in patients with 
COPD, especially in the lower limbs (66), with a significant 
negative impact on functional capacity, exercise tolerance 
and overall prognosis (3,4,67-75).

Nutritional depletion and cachexia are also frequently 
associated with COPD (9,76-79) and are thought to be 
related to a complex combination of factors that include, 
among others, the presence of persistent systemic 
inflammation (80-82), hypoxemia (83) and an increase 
in resting energy expenditure that is possibly related to 
increased respiratory work of breathing (82,84). In addition, 
hormonal derangements such as the decrease in leptin 
levels observed in patients with COPD may contribute to 
body wasting (85). Nutritional status and body composition 
(especially when evaluated using fat-free mass) in patients 
with COPD are related to the presence of skeletal 
dysfunction and sarcopenia (79), and, more importantly, to 
overall prognosis (7-10,86).

The prevalence of COPD increases with age (87), and 
as such the relative effects of both conditions on skeletal 
muscles and nutritional status are complex and difficult to 
untangle. However, the available evidence described above 
suggests that the relative contribution of aging and COPD 
to skeletal muscle dysfunction and nutritional depletion are 
somewhat different in nature, with aging mainly associated 
with a reduction of fast-twitch muscle fiber proportion 
and a decrease in nutriment intake related to physiological 
alterations in energy requirements and anorexia, while 
COPD is associated with a decrease in slow-twitch muscle 
fibers and nutritional depletion more closely related to 
persistent systemic inflammation and increased metabolic 
requirements. From a clinical point of view, this notion 
is supported by a large study of elderly COPD patients, 
in which age and COPD were respectively independently 
correlated with different aspects of the nutritional status, 
with age being related to body functionality score, while 
COPD was associated with body composition status (88). 
These findings highlight the potential negative synergistic 
effects of advanced age and COPD on functional capacity 
and prognosis and the need for an increase in clinical 

awareness regarding the co-occurrence of these factors.

COPD as a syndrome of accelerated lung aging

The cellular equivalent of aging is senescence, in which 
cells permanently cease to divide in response to various 
stimuli (89). The onset of physiological cellular senescence 
is triggered by the shortening of telomeres, which are 
repeated sequences of nucleotides (TTAGGG) located 
at the end of each chromosomes that act as buffers that 
protect DNA from deterioration during the replicative 
cycle. Premature senescence can be triggered by other 
stimuli such as DNA damage, oxidative stress and 
expression of oncogenes (90,91). The active replenishment 
of telomeres can be accomplished by telomerase, but 
this polymerase is absent from somatic cells, leading 
to a progressive shortening of telomeres with each cell  
division (92). When a critical length of telomeres is reached, 
a senescence signal is sent to the cell. The observation that 
the number of senescent cells increases with age suggests a 
link between cellular senescence and the physiological aging 
process (89,93). Increasing evidence support a relationship 
between the impaired tissue repairing ability induced by 
cellular senescence and the development of emphysema: 
an accumulation of senescent cells in the lung of COPD 
patients compared with smokers without COPD has been 
demonstrated in humans (94,95), subjects with COPD 
show shorter telomeres than age-matched controls (96),  
telomerase deficiency predisposes to COPD (94) and 
surexpression of anti-aging proteins such as sirtuin  
1 protects against cellular senescence and emphysema (97). 

Importantly, senescent cells are not metabolically inactive 
and, on the contrary, generate an inflammatory reaction 
characterised by the production of pro-inflammatory 
mediators (interleukine 1, 6, 8, CCL2, TGF-beta and 
MMPs) (94,98,99) that propagate a persistent inflammatory 
state. This senescence-associated secretory phenotype 
(SASP) can induce senescence in adjacent cells (99,100) and 
could even, if “spilled-over” to the systemic circulation, play 
a role in the development of the systemic manifestations 
of COPD. As discussed in the previous section, some 
evidence suggests a relationship between the presence of 
skeletal muscle dysfunction and/or nutritional deficiency in 
COPD and the presence of a systemic, persistent low-grade 
inflammatory state (80-82,84,85,101-105). Whether the 
SASP plays a direct role in the mediation of the relationship 
between the lung disease and the extra-pulmonary 
manifestations of COPD remains speculative in nature, but 
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provides a novel target for future research. 

Comorbidities and skeletal muscular function/
nutritional status in patients with COPD

Patients with COPD often present with comorbid 
condi t ions ,  the  most  f requent  o f  which  inc lude 
cardiovascular diseases, cerebrovascular diseases, anxio-
depressive disorders, osteoporosis, cachexia/muscle 
weakness, lung cancer, CKD (106-110) and several others 
less frequently considered (111). In a cross-sectional 
analysis of a large sample of subjects, patients with COPD 
had a mean of 3.7 comorbidities (including lung disease), 
compared with 1.8 in age- and sex-matched controls (112). 
This difference was associated with a two-fold increase in 
healthcare utilization in patients with COPD in the same 
study (112). Furthermore, the presence of comorbidities 
potentiates the negative effects of COPD on functional 
capacity, quality of life and overall prognosis (3,4,71,74,113).

Among the frequent comorbidities encountered in 
patients with COPD, some have also been associated with 
disorders of skeletal muscle function and nutritional status. 
In particular, CHF and CKD have both been independently 
associated with anomalies in body composition, nutritional 
status and skeletal muscle function and composition. The 
following section will review the main impacts of CHF and 
CKD on muscle function and nutritional state in order to 
contrast and compare them with those of COPD.

CHF and skeletal muscle dysfunction

Loss of peripheral muscle strength and endurance is more 
frequent in patients with CHF than in age-matched controls 
(74,114,115), and, as in COPD, seems to preferentially 
affect the lower limb musculature (116). Biopsy studies of 
the lower limbs muscles in this population have shown that 
muscle fibre atrophy is frequent and is directed mostly at 
type II (fast-twitch) fibres (117,118), although a decrease 
in type 1 cross-sectional area has also been reported (114). 
Most available data also support the presence of a type I to 
type II muscle fibre shift redistribution (118-123), as seen 
in COPD. From a metabolic perspective, subjects with 
CHF display reduced levels of fatty acid and carbohydrate 
enzymatic metabolism, while showing increased levels of 
anaerobic activity (115,117,118,120,124). 

Vescovo et al. investigated the relative contribution of 
deconditioning to the skeletal muscles anomalies observed 
in CHF by comparing muscle biopsies from patients with 

CHF to bedridden patients and healthy controls. Muscle 
atrophy levels were greater in bedridden patients than 
CHF subjects, but the proportion of types 1 and 2 myosine 
heavy chains were respectively decreased and increased 
in CHF, while the opposite was observed in subjects with 
disuse atrophy. Other have similarly described differences 
in the skeletal metabolic enzymatic activity patterns of 
patients with CHF compared with age- and VO2-matched 
controls, but these effects were only apparent in men (125). 
These results suggest that disuse alone cannot account for 
the myopathy observed in CHF, although further studies 
directly comparing detrained subjects and patients with 
CHF are required to further understand this relationship, 
especially given the fact that the control group in the 
study by Vescovo et al. (patients that had been bedridden 
for 1 year) may not be representative of the patients with 
deconditioning encountered in routine clinical practice.

CHF and nutritional status

Weight loss and cachexia are frequent in patients with 
CHF (126,127) and are likely the result of a combination of 
neuroendocrine and metabolic factors that induce inadequate 
dietary intake, excessive nutriment losses or alterations 
in metabolism (128-130). Pharmacological therapy such 
as diuretics, digoxin and angiotensin-converting enzyme 
inhibitors may cause anorexia (128) in these patients, and 
while intestinal edema inducing satiety and/or a protein-
losing gastroenteropathy has often been suggested as a 
possible cause of anorexia in CHF, clear data supporting this 
hypothesis are lacking (131,132). In addition, although a 
certain contribution of anorexia and/or starvation to cardiac 
cachexia remain possible, the anomalies in body composition 
in CHF are not compatible with simple starvation, in which 
weight loss occurs at the expense of fat tissue, in contrast to 
what is observed in CHF patients (133), where tissue loss is 
apparent in muscles, fatty tissue and bones.

As in COPD, CHF can be conceptualized as a syndrome 
of persistent immune activation inducing a state of low-
grade systemic inflammation and a preferential shift 
towards catabolic metabolism induced by increased levels of 
inflammatory cytokines (128,133,134). In addition, chronic 
impaired cardiac function is associated with neurohormonal 
changes that include, among others, an activation of 
the sympathetic nervous system. In a study comparing 
the systemic levels of inflammatory and neurohormonal 
mediators in CHF patients with or without cachexia, 
plasma levels of norepinephrine, epinephrine, TNF-alpha 



S1360

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(Suppl 12):S1355-S1366jtd.amegroups.com

Dubé and Laveneziana. Nutritional status and muscle dysfunction in COPD

and cortisol were higher in in the cachectic group, despite 
similar baseline values of left ventricular ejection fraction 
and functional class (133). These results highlight the 
potential role of systemic inflammation and neurohormonal 
activation in the development in cachexia in patients with 
CHF, although further studies are required to elucidate the 
precise mechanisms and directionality of this relationship.

CKD and skeletal muscle dysfunction

CKD is relatively frequent in patients with COPD and 
may be underrecognized (109,135). Although less studied 
than in COPD and CHF, anomalies in the skeletal 
muscles of patients with CKD have also been described, 
with skeletal muscle weakness being relatively frequently 
reported, especially in the lower limbs (136-141). Muscle 
fibre atrophy of the lower limb muscles has also frequently 
been reported, and preferentially affects type II (rapid-
twitch) fibres (137,139,142,143). Studies evaluating muscle 
metabolic enzymatic activity levels in patients with CKD 
have been more scarce, but alterations in oxidative and 
anaerobic metabolism have been reported in these patients 
in some (140,144,145), but not all, studies (146). 

CKD and nutritional status

The catabolic/anabolic balance is disturbed in CKD, 
especially when end-stage renal failure is present, and its 
mechanisms are complex and incompletely understood. 
Among other factors, the metabolic acidosis that is 
often present in CKD may play an important role in 
the development of body wasting by promoting protein 
degradation, especially at the muscle level (147-152). In 
fact, even small corrections of metabolic acidosis in patients 
with CKD improve nutritional status and muscle mass, even 
without nutritional supplementation (153,154). 

Acidosis  i s  thought  be at  the root ,  and to  act 
synergistically, with others factors promoting protein 
catabolism (155) or anti-anabolism such as an increase 
in circulating glucocorticoid levels, insulin resistance, 
anomalies in growth hormone and leptin serum levels 
and increased circulating levels of inflammatory cytokines 
creating a chronic pro-inflammatory state (148,156-159). 

Comparison of muscle dysfunction and nutritional status 
in patients with COPD, CHF and CKD

As reviewed, the alterations observed in the skeletal muscle 

of patients with CHF and CKD are very similar to those 
observed in COPD with, broadly speaking, a switch to 
a fast-twitch fibre phenotype, loss of oxidative capacity, 
muscle fibre atrophy and loss of strength/endurance. 
Although some factors contributing to the eventual 
reaching of this state seem to be overlapping between these 
conditions (especially the presence of a persistent systemic 
inflammatory state and anomalies in nutritional status), the 
initial causative mechanisms for them vary across diagnoses, 
suggesting that, in practice, they may act synergistically and 
additively. To our knowledge, however, very few studies 
have focussed on the relative contribution of COPD and its 
comorbidities on skeletal muscle function and nutritional 
status. Hamilton et al. compared skeletal muscle function 
in a large group of patients according to the presence of 
cardiac and/or respiratory disease, and showed that patients 
with concomitant cardiac and respiratory diseases had lower 
respiratory and lower limb muscle strength than patients 
with cardiac disease alone, suggesting an additive deleterious 
effect of respiratory disease in muscle performance in 
patients with cardiac diseases (74). These results should 
be interpreted in light of the fact that a certain proportion 
of patients were classified in the “respiratory impairment” 
subgroup based on the presence of low forced expiratory 
volume in 1 second (FEV1) despite normal FEV1/vital 
capacity ratio, making the true prevalence of COPD in this 
subgroup unknown.

In a study that investigated the predictive factors of 
CKD in patients with COPD, the presence of muscle-
skeletal disease and hypoalbuminemia was an independent 
risk factor for the presence of “concealed” CKD (odds ratio 
2.73 and 2.98, respectively), suggesting an additive effect of 
the presence of both COPD and CKD on the prevalence of 
these anomalies.

Conclusions

The re la t ionship  between ag ing,  COPD and i t s 
comorbidities on skeletal muscle function and nutritional 
status is complex, multidirectional and incompletely 
understood. Despite this, the current body of knowledge 
allows the identification of various, seemingly partially 
independent factors related both to the normal aging 
process and to the independent deleterious effects of 
chronic diseases on muscle function and body composition. 
There is a dire need of studies evaluating the relative 
contribution of each of these factors, and their potential 
synergistic effects in patients with COPD and advanced 
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age/comorbid conditions, in order to delineate the best 
course of therapeutic action in this increasingly prevalent 
population.
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