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Introduction

“Good morning doctor, I hope you had a good night of sleep. The 
organ has been fully reconditioned overnight. It has now been 
assessed and accepted for transplantation. We have called upon 
the recipient for transfer to the operating room” said the scrub 
nurse to the surgeon over the phone. This is a scenario 
every transplant surgeon would dream of to become reality 
during his professional career.

Heart as well as lung transplantation have become a 
standard life-saving therapy in selected patients suffering 
from end-stage heart (1) or lung (2) failure. In addition, 
quality of life is remarkably improved in the majority of 
these recipients. Selection criteria for heart (3) and lung (4)  

transplant candidates have recently been reviewed by 
working groups within the International Society for 
Heart and Lung Transplantation (ISHLT). However, the 
application of this ultimate treatment modality is currently 
limited by the number of “acceptable” organ donors and 
“transplantable” grafts.

During the last decade, machine perfusion (MP) of 
solid organs has become clinical reality and offers the 
possibility to assess, preserve and recondition organs prior 
to transplantation. Previous review papers have reported 
on the different techniques, protocols and devices currently 
available for perfusion of heart (5-9) and lungs (10-21). 
Increasing comfort with this new technology and important 
clinical experience with MP was reported over the last 
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24 months. The purpose of this review is to summarize 
the recent clinical experience in the perspective of future 
clinical applications.

MP of thoracic organs for normothermic 
preservation

To slow down metabolism and reduce warm ischemic injury, 
organs nowadays are cooled by flushing them with organ 
specific preservation solutions followed by static cold storage 
(SCS). Cooling from 37 to 4 ℃ decreases the metabolic rate 
by 12- to 13-fold. This method was designed at a time when 
donors were “ideal” and preservation periods were short. 
Up to date it remains the golden standard for preservation 
of heart (22,23) and lungs (24,25).

In an era of donor shortage, increased use of suboptimal 
grafts, and organ exchange across sometimes distant 
geographical areas, SCS has reached its limits. Although the 
technique of cold storage is simple, safe, and cheap, metabolism 
does not cease completely. Anoxia may still occur and 
sodium-potassium ATPases are still inhibited with disruption 
of transcellular ion gradients. Primary graft dysfunction 
(PGD) or even primary non-function of heart (26)  
and lungs (27) jeopardizing the life of the recipient 
immediately after transplantation remains a substantial risk. 
Time has come to think outside the ice-box (28).

Indeed, MP has the potential to better preserve graft 
quality by sustaining continued metabolism dependent on 
the perfusion temperature, by providing oxygen, energy 
and nutrients, and by removing toxic waste products (in 
case the perfusate is regularly renewed or filtered). Over 
the last decade, old techniques dating from the early days 
of transplantation have re-emerged whereby organs are 
continuously and dynamically perfused instead of being 
statically cold stored during their preservation. This 
technology was substantially refined and new devices for 
MP of heart and lungs are being developed and introduced 
in the clinical arena. Portable systems will largely facilitate 
continuous MP preservation during transport between 
donor and recipient hospitals.

Heart

In the past several decades there has been scientific and 
clinical interest towards ex situ heart perfusion with 
oxygenated and nutrient enriched blood to reduce ischemic 
injury to the donor heart and potentially enable assessment 
of metabolic and mechanical function. Hypothermic MP 

of heart was reported in animal experiments with long 
preservation times (29-33). Recent preclinical studies with 
hypothermic MP confirm that it provides superior donor 
heart preservation compared to cold static storage in terms 
of left ventricular function, cardiac myocyte integrity, and 
energy stores (34-39). Hypothermic MP devices have been 
developed for human heart preservation. After a set of 
experiments in a porcine heart transplant model reported 
by Steen et al. (33), a clinical trial in humans is now ongoing 
at the Skåne University Hospital, Lund, Sweden. The 
first human heart transplant using Stig Steen’s new heart 
solution and machine has been successful [Steen S (Lund, 
Sweden) personal communication].

Several reports have investigated normothermic MP of 
the donor heart to maintain a steady state of metabolism 
(7,40-42). An elevated lactate level at the end of MP 
appears to be a powerful predictor of graft failure (43). 
The feasibility of normothermic ex situ heart perfusion for 
12 hours has previously been demonstrated with recovery 
of cardiac function and preservation of endothelial cell 
function (44,45). These studies have paved the way for 
development of clinical devices for ex situ heart perfusion.

The Organ Care System (OCS) is the first and only 
clinical platform up to date that can maintain the donor 
heart in a warm, beating, near-physiological state prior to 
transplantation (OCS™ Heart, Transmedics®, Andover, 
MA, USA). Institutional studies reported the successful use 
of the OCS in human heart transplantation (46-48). Clinical 
trials were started in 2007 in USA (PROCEED) (49) and in 
Europe (PROTECT) (50) with results presented in abstract 
form only. In 2015, Ardehali et al.  reported the results of the 
first clinical trial (PROCEED II) in heart transplantation 
to assess the efficacy and safety of this new technology (51). 
In a prospective, open-label, multicenter, randomized non-
inferiority trial (ClinicalTrials.gov, number NCT00855712) 
at ten heart-transplant centers in the USA and Europe, 
heart-transplant candidates (aged >18 years) were 
randomized to receive donor hearts preserved with either 
the OCS (n=67) or SCS (n=63) (52). Thirty-day patient 
and graft survival rates were 94% and 97%, respectively 
(P=0.45). Eight (13%) patients in the OCS group and nine 
(14%) patients in the SCS group had cardiac-related serious 
adverse events. The authors concluded that OCS yield 
similar short-term clinical outcomes (51). In an editorial 
commentary in Lancet, the clinical value of this new 
technology for standard heart preservation was however 
questioned. Some hearts that looked initially acceptable 
for transplantation were ultimately not implanted. OCS 



Van Raemdonck et al. Machine perfusion of thoracic organsS912

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(Suppl 8):S910-S923jtd.amegroups.com

also requires additional surgical and technical support, 
proprietary equipment, and appropriate transport that are 
inevitably more costly than those needed for cold static 
storage (53). However, proponents believe that the ex situ 
perfusion of the heart is able to enhance viability of donor 
organs by reducing time-dependent ischemic injury (54). 
In a single-center, non-randomized study, better outcomes 
with this new technology compared to SCS were reported 
with regard to recipient survival and incidence of PGD as 
well as acute rejection (46). Further studies are needed to 
evaluate the impact of this new preservation technology on 
the number of heart transplants and its outcome.

Lung

Compared to heart transplantation, the impact of the 
length of the cold ischemic time on the outcome after lung 
transplantation is less clear. Over the years several studies 
with inherent flaws have reported conflicting results on this 
topic (2,55,56). With modern extracellular-type preservation 
solutions, lungs preserved on ice can be safely transplanted 
within a time window of 8–10 hours. Yeung et al. from the 
Toronto group recently reported that the extension of graft 
preservation time beyond 12 hours with EVLP did not 
negatively affect early lung transplantation outcomes (57).

Ex vivo lung perfusion (EVLP) was reported in historical 
papers as a method to assess the quality of the graft (58) 
and as preservation technique during distant thoracic organ 
procurement (40). The first successful transplant after 
EVLP was published by Steen and colleagues in 2001 (59). 
Much experimental work on the technique for prolonged 
EVLP was carried out at the Universities of Lund (60) and 
Toronto (61). The attention of most research groups was 
mainly focused on the value of EVLP as a tool to assess 
the quality of non-standard lungs prior to acceptance for 
transplantation (13-21). Because of the comfort and the 
good outcome with SCS, little clinical interest was shown 
in this technology as a potential tool for normothermic 
lung preservation (62). A prospective, international, 
multicenter, randomized controlled, non-inferiority clinical 
study (Inspire trial) was recently completed comparing 
normothermic portable ex vivo machine preservation 
with the OCS Lung™ (Transmedics®, Andover, MA, 
USA) to SCS of standard donor lungs (Clinical Trials.gov 
number NCT 01630434) (63). A total of 320 patients were 
randomized to both treatment arms. This is the largest 
clinical and randomized trial in lung preservation performed 
to date. The primary effectiveness end-point was a 

composite of patient and graft survival at day 30 and absence 
of PGD grade 3 within the first 72 hours. The final results 
were presented at the 2016 annual ISHLT meeting (64).  
The study showed that the OCS group met the non-
inferiority test as compared to the SCS group in the per 
protocol population. Of notice, the incidence of PGD grade 
3 within 72 hours after transplantation in that population 
was significantly lower (P=0.015) in the OCS group. The 
investigators stated that this finding might have an impact 
on the development of chronic rejection and long-term 
survival, but this will need further study follow-up. The full 
paper reporting study results is still awaited.

While normothermic dynamic preservation of donor 
lungs on the portable OCS Lung™ device in the Inspire 
trial already commenced in the donor hospital and 
continued during transport to the recipient hospital, other 
groups have looked at the value of normothermic static 
preservation after a first cold ischemic period prior to 
transplantation. In a pig lung transplant model, the Toronto 
group previously investigated the impact of prolonged 
(12 hours) normothermic EVLP following a first period 
of 12 hours cold ischemia. Recipient animals did better 
in terms of superior oxygenation and less edema when 
compared to recipients of lungs that were stored cold for 
24 hours (62). In a recent study using the same transplant 
model, this group investigated the impact of a second cold 
ischemic period (2 and 10 hours) following a first 10-hour 
period of cold storage and then 6 hours of normothermic 
EVLP. After 4 hours of reperfusion in the recipient animal, 
oxygenation function, acute lung injury score, inflammatory 
markers, and cell death pathway markers were similar 
between the 2- and 10-hour groups. Of notice, both EVLP 
groups demonstrated better oxygenation compared to 
the control group with 24 hours cold static preservation 
without EVLP (65). A prospective, single-center clinical 
trial was conducted by the Vienna lung transplant team 
randomizing 80 patients transplanted with cold stored lungs 
immediately upon arrival versus similar lungs that were 
first evaluated for 4 hours with normothermic static EVLP 
using the Toronto technique (66). Short-term clinical 
outcomes in recipients did not differ between both groups. 
Patients remained intubated (1.6 vs. 1.6 days, P=0.67), in 
the intensive care unit (6 vs. 6 days, P=0.76), and in the 
hospital (23 vs. 19 days, P=0.42) for a comparable period of 
time. The 30-day survival was 97.1% vs. 100% (P=0.46). Of 
note, the incidence of PGD more than grade 1 was lower 
in the EVLP group at all-time points compared to the 
control group, but this difference failed to reach statistical 
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significance (24 hours, 5.7% vs. 19.5%, P=0.10). Likewise, 
the need for post-operative prolonged extracorporeal 
membrane oxygenation was lower in the EVLP group (5.7% 
vs. 12.2%, P=0.44).

Further studies are needed to evaluate the impact of 
this new preservation technology and its best timing in 
the total preservation process on the outcome after lung 
transplantation.

MP of thoracic organs for transplantability 
assessment

In addition to the potential of safely replacing and 
prolonging the preservation period, MP creates a “window” 
between procurement and transplantation during which 
real-time functional performance, metabolic need, and 
viability of the graft can be evaluated under optimal 
conditions. Data collected during this preservation period 
may provide information that can help clinicians to predict 
the risk of PGD and that can assist them in deciding 
to accept or discard a given organ for transplantation. 
This new platform, therefore, may provide a tool to 
select “transplantable” grafts of the best quality in an 
effort to increase the thoracic donor organ pool. In a 
retrospective database analysis of declined lung donors, 
our group identified a large potential (>20%) for EVLP 
to further increase the donor pool in a transplant center 
where the majority of donor lungs are already fulfilling 
extended criteria (67). Similarly, MP of heart is expected to 
significantly increase the total number of hearts accepted 
for transplantation (5,54).

Heart

The Harefield group reported on the successful use of OCS 
to assess heart quality in transplantation from donors with 
an adverse profile (e.g., left ventricular ejection fraction 
<50%, left ventricular hypertrophy, donor cardiac arrest, 
alcohol/drug abuse, coronary artery disease) (68). The 
International Expand Heart Pivotal Trial (Clinical Trials.
gov number NCT 02323321) is currently investigating 
this potential with donor hearts that do not meet current 
standard acceptance criteria (69). Results of the trial are 
awaited.

After intensive research in large animal models (70-75),  
recent success with clinical heart transplantation from 
donors dying after circulatory arrest (DCD) has boosted the 
interest in normothermic ex situ heart perfusion as a tool to 

assess cardiac recovery after hypoxic arrest and subsequent 
functional performance prior to transplantation (7,76).  
The groups in Sydney (77-79), Cambridge (80,81), and 
Harefield (68) have now reported case series of DCD 
heart transplantation with excellent early survival. A new 
method to assess performance of the heart recovered from 
a DCD was recently reported by the group at Papworth 
Hospital, Cambridge, UK. Extended thoracoabdominal 
normothermic regional perfusion (NRP) in the deceased 
donor with the aid of venoarterial extracorporeal membrane 
oxygenation allows metabolic and functional recovery and 
subsequent assessment of the arrested heart in situ. In their 
opinion, donor hearts that fail post-NRP assessment can 
be discarded avoiding the use of expensive material for 
ex situ functional evaluation (82). The authors speculate 
that thoraco-abdominal NRP may become the new gold 
standard for DCD organ retrieval in the future.

Lung

Equally, MP allows quality assessment of the pulmonary 
graft prior to transplantation. The first successful transplant 
after EVLP in 2000 was with a lung recovered from an 
uncontrolled DCD (59). More interest in EVLP was 
noticed for pulmonary grafts that initially did not meet 
standard lung criteria. Successful transplantation of 
questionable lungs after EVLP has now been reported by 
several groups in Europe and North America with good 
clinical outcome (83-99). The overall lung yield after EVLP 
across all reported series is around 80% (17).

The role of EVLP for secondary assessment of 
questionable donor lungs is being investigated in several 
clinical trials (100). The first clinical trial was conducted 
in Canada by the Toronto Lung Transplant Group. 
In the HELP trial (Human Ex Vivo Lung Perfusion), 
high-risk lungs that otherwise would not be used, were 
assessed with EVLP. Eighty six percent of the lungs 
that originally did not meet acceptance criteria from 
both DBDs and DCDs, were ultimately transplanted 
after  EVLP and resulted in equivalent  recipient 
outcome compared to those of contemporary standard 
control donor lungs. Rates of PGD grade 3 at 72 hours 
after transplantation were reported to be low (2% in 
EVLP lungs versus 8.5% in control lungs) (84,88).  
More than 100 clinical lung transplants have now been 
performed in Toronto with a 5-year survival of 70% in 
the EVLP cohort compared to 63% in controls (100). 
Functional outcome and quality of life are equivalent to 
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conventional lung transplants (101). The DEVELOP-UK 
trial including all five lung transplant centers in the UK 
(Controlled Trials.com number ISRCTN44922411) was 
designed to compare one-year recipient survival between 
standard-criteria (SCD) versus extended-criteria (ECD) 
donor lungs after EVLP reconditioning according to the 
Lund protocol using the Vivoline® LS1 device (XVivo 
Perfusion AB, Göteborg, Sweden) (102). The trial started 
in April 2012, but was prematurely stopped after some 
fatalities. Results have been reported recently (103). Overall, 
one-third of donor lungs subjected to EVLP were deemed 
suitable for transplant. Estimated survival over 12 months 
was lower than in the standard group, but the data were also 
consistent with no difference in survival between groups. 
Patients receiving these additional transplants experienced 
a higher rate of early graft injury and need for unplanned 
ECMO support, at increased cost. Three multicenter 
trials are still ongoing. The NOVEL trial (Clinical Trials.
gov number NCT 01365429) is a prospective, non-
randomized, controlled, clinical study in 104 recipients 
in eight U.S. centers comparing 30-day post-transplant 
mortality as primary end-point between SCD versus ECD 
lungs after EVLP reconditioning according to the Toronto 
protocol using the XPS™ device (XVivo Perfusion AB, 
Göteborg, Sweden) (104). The trial was started in May 
2011 and is still recruiting patients. Preliminary results 
were updated at the 2014 annual ISHLT Meeting (105). 
The Expand Lung Trial (Clinical Trials.gov number NCT 
01963780) is a prospective, international, multicenter, 
non-randomized, single-arm clinical study that examines 
the safety and effectiveness of the OCS™ Lung perfusion 
device for recruiting, preserving, and assessing ECD lungs 
for transplantation (106). Preliminary results on the first 
cases were presented at the 2014 (107) and 2016 (108) 
annual ISHLT meetings. The trial is now completed and 
final results are awaited. Finally, the Perfusix trial (Clinical 
Trials.gov number NCT 02234128) in the US is looking at 
extending preservation and assessment time of donor lungs 
using the Toronto EVLP System™. Retrieved lungs will be 
shipped to a dedicated EVLP facility (109).

The routine or selective use of EVLP for controlled 
DCD lung evaluation is still controversial as good 
outcome has been reported without EVLP (110,111). 
The Toronto group compared the outcome after DCD 
lung transplantation with and without EVLP. Survival was 
comparable although EVLP cases had a shorter length of 
ventilation and hospitals stay (112). The authors concluded 
that EVLP helped to safely increase their DCD lung 

utilization. In our own experience, controlled DCD lung 
transplantation with a short (<30 min) total warm ischemic 
time results in excellent short- and long-term outcome 
without using EVLP (113). EVLP can be performed in case 
of any doubt of graft quality (112,114). For uncontrolled 
DCD, however, EVLP is indispensable to evaluate graft 
quality since there is no clinical information available before 
the arrival of the retrieval team. Also, the incidence of PGD 
grade 3 is expected to be higher after transplantation as 
previously reported by the Madrid group (115,116). Other 
groups have followed a similar policy of pre-transplant lung 
assessment from such donors (117,118).

MP of thoracic organs for repair and 
reconditioning

As discussed above, MP creates a “window” between 
procurement and transplantation during which functional 
performance and viability of the graft can be evaluated. If 
prolonged dynamic preservation (>12–24 hours) of thoracic 
organs proves to be feasible and safe, MP may offer a 
tool for ex vivo repair and quality improvement prior to 
transplantation, thereby not forgetting the importance of  
in vivo optimization prior to organ procurement (119). 
Many organs, excluding those with fixed structural damage 
related to previous injuries or life-style habits such as 
smoking or alcohol abuse, are currently declined because of 
acute—albeit recoverable—damage. Thoracic organs may 
get injured by several hits during the whole transplantation 
process in the transition phase from donor to recipient. 
Altogether, organ damage may result from direct trauma, 
inflammation, infection, brain death and the agonal phase 
and warm ischemia in a DCD setting.

Once the organs are recovered from the deceased 
body, ex situ treatment during MP theoretically becomes  
possible (120,121). Intravascular perfusion providing 
oxygen and other metabolic substrates under physiological 
conditions appears to be the way forward to improve the 
viability of suboptimal grafts and may already be sufficient 
to recover intrinsic repair mechanisms. Additional specific 
treatments targeting different pathways to interfere with the 
organ have been suggested (100). The easiest strategy would 
be to deliver drugs directly to the organs by including them 
into the perfusion solution or by injecting active agents 
into the afferent tubing running to the vasculature of the 
graft. Theoretically, pharmacological interventions could 
be targeted according to the type of injury or even given 
in combination as a “cocktail” at intervals during MP: 
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anti-bacterial, anti-viral, and anti-fungal agents to treat  
infection (122,123), anti-inflammatory molecules to block 
pro-inflammatory responses (124-126), cytoprotective and 
anti-ischemic metabolic agents (127-129), agents initiating 
or enhancing ischemic postconditioning, vasodilating agents 
to improve perfusion of the microvasculature, fibrinolytic 
agents to dissolve microthrombi (130), dehydration of 
tissue with perfusate with high oncotic pressure, etc. An 
advantage of this isolated MP setting is that these drugs 
could be given at higher doses than in vivo since there is 
no risk to harm other organs. A restriction, however, may 
be that certain drugs cannot be metabolized in the circuit 
and therefore active components would have to be given. 
On the other hand, toxic metabolites may accumulate 
over time. Therefore, repeated renewal of the perfusate, 
hemofiltration, or insertion of filters and membranes in the 
circuit may become necessary for removal of harmful and 
toxic waste products (blood clots, neutrophils, inflammatory 
cytokines). Finally, MP also offers the possibility to 
interfere at the genetic level by using viral vectors (131) 
or silencing RNA technology. The aforementioned organ 
repair strategies during MP are currently experimental and 
only very few clinical papers have been published so far. In 
the future, organ reconditioning hubs may appear to be an 
efficient method of delivering this service to all transplant 
centers (132).

Heart

Beside the series reporting on MP to evaluate the quality of 
DBD hearts (68) or to resuscitate DCD hearts (77,81), the 
authors are not aware of any clinical study or case report 
whereby an initially unacceptable cardiac allograft was first 
rehabilitated ex situ during MP prior to transplantation.

Research is ongoing to investigate the best conditions in 
terms of perfusate and active agents during MP of the heart 
(133,134).

Lung

Compared to other solid organs, the lung can be considered 
as a privileged organ as it not only carries a vascular, but 
also a bronchial tree providing direct access to the entire 
parenchyma. In that way, drugs or gases can be delivered 
to the pulmonary graft by instillation or inhalation (100).  
Ex situ administration of surfactant via lavage was 
demonstrated to improve graft function of acid-injured 
lungs in a porcine EVLP model (135). In a recent study by 

our group, no beneficial effect of ventilation with the inert 
gas argon during EVLP could be demonstrated in a porcine 
model (136). Ventilation of the pulmonary allograft with an 
inhaled bronchodilator during EVLP improved lung graft 
function after transplantation in a canine model (137).

Debate continues about the best conditions for EVLP 
with regards to cellular versus acellular composition of 
the perfusate (138-141), the importance of left atrial  
pressure (138,142), positive versus negative pressure 
ventilation (143), the use of leucocyte (144) or cytokine 
filters (145,146) in the circuit, the oxygenation level of 
the perfusate (147), and the role of hemofiltration (148). 
Research is ongoing to identify clinical biomarkers in the 
perfusate such as cytokines (149), endothelial markers (150),  
adhesion molecules (151), metabolomics (152) and to 
investigate imaging techniques (153,154) before and 
after EVLP that may be predictive of graft function after 
transplantation.

Few clinical case reports on successful transplantation 
of rehabilitated pulmonary grafts have been published 
so far. Sanchez et al.  reported successful outcome 
after transplantation of a salvaged lung that was first 
reconditioned during MP for neurogenic pulmonary  
edema (155). Both the Zurich group (156) and the  
Toronto (157) reported on a case of pulmonary thrombolysis 
during MP followed by successful lung transplantation.

MP of thoracic organs to downregulate allograft 
immunity

Beside ex vivo repair and quality improvement, MP may 
offer a tool for “immunoregulation” of thoracic organs in 
order to protect them from responses related to the innate 
(ischemia-reperfusion injury) and adaptive (acute and 
chronic rejection) immunity developing in the recipient.

Heart

To the authors’ knowledge, no studies have been reported 
so far that investigated the role of MP to improve immune 
tolerance of the heart in the recipient after transplantation.

Lung

Two interesting studies exploring the impact of donor 
passenger antigen-presenting leucocytes on immunogenicity 
were reported recently. In a first study by Stone et al, 
passenger leukocyte migration from donor lungs into the 
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recipient and the effects of donor leukocyte depletion 
during EVLP were investigated in a gender-mismatched 
porcine lung transplant model. Donor leukocyte transfer 
into the recipient and migration to recipient lymph nodes 
were markedly reduced  in the group receiving EVLP lungs 
compared to a control group transplanted with standard 
lungs. In addition, recipient T cell infiltration of the donor 
lung was significantly diminished in the study group (158). 
In another study by Noda et al., the role of circulating 
leukocytes in lungs and their relationship with circulating 
pro-inflammatory cytokines on ischemia-reperfusion injury 
was investigated in a rat lung transplant model (159). Lung 
function was significantly better in lung grafts on EVLP 
with a leucocyte filter in the circuit compared to a control 
group without. Interleukin-6 levels in pulmonary grafts 
and in perfusate were also significantly lower after EVLP 
in the study group. After transplantation, graft function 
was better and inflammatory response was less. From both 
studies, it appears (I) that passenger donor leucocytes play 
an important role in the innate and adaptive alloreactivity; 
and (II) that EVLP including a leucocyte filter in the circuit 
may be a therapeutic approach to reduce the immune 
response. Interestingly, in a retrospective analysis of the 
clinical experience with EVLP in Toronto, the authors 
reported that EVLP assessed lungs from brain-dead donors 
(DBD) developed less chronic rejection (101).

Another interesting approach to condition the graft 
may be the use of mesenchymal stem or stromal cells 
(MSCs) during MP (160). These cells are multipotent 
self-renewing cells isolated from whole bone marrow. A 
paradigm shift has occurred in our concept of how cell 
therapies utilizing MSCs mediate their beneficial effects. It 
is now appreciated that, although MSCs can be described 
as having differentiation potential, their effector function 
is based less on in situ differentiation, trans-differentiation, 
or fusion and more on paracrine effects and cross-talk with 
other cells within diseased tissues. Mechanistic hypotheses 
of MSCs as cell-based therapy are postulated on their 
immunoregulatory properties (interaction with the innate 
immunity and suppression of T-cell responses) and their 
ability to secrete soluble factors or microspheres (161).  
These properties of MSCs make them particularly 
interesting for use as a cellular therapy in solid-organ 
transplantation (162,163). MP offers a unique platform to 
selectively administer these MSCs directly into the donor 
organ overcoming issues of homing, trafficking and safety. 
Especially allogeneic MSCs are attractive due to their wide 
availability at the time of organ harvest. Autologous stem 

cells might be of less interest to modulate acute donor 
organ injury during MP since the isolation steps take longer 
time intervals and can never be planned in advance when a 
potential donor becomes available.

In lung, much research was done by the group at the 
University of California at San Francisco (164,165). Several 
basic anti-inflammatory and anti-bacterial properties have been 
attributed to MSCs and their extracellular vesicles that may be 
beneficial to restore epithelial and endothelial permeability in 
patients with acute lung injury from trauma or sepsis comparable 
to donor lung injury after reperfusion (166).

The spectrum of possible MSCs-based therapies for 
donor lung injury includes both targeted intrapulmonary 
and intravascular administration during EVLP. This 
was investigated in two recent studies using a porcine 
EVLP model. In a first study on the optimal route and 
dose for administering MSCs reported by the Toronto 
group, intravascular administration of 50×106 MSCs 
was associated with significant and sustained retention 
of MSCs in lung parenchyma, whereas intra-bronchial 
administration was not. Intravascular administration of 
150×106 MSCs was the optimal tolerated dose and was 
associated with increased concentrations of human vascular 
endothelial growth factor in lung biopsies and decreased 
concentrations of pig interleukin-8 in the perfusate during 
12 hours of EVLP (167). In another study by the Leuven 
group, the immunoregulatory capacities of multipotent 
adult progenitor cells (MAPC) on PGD were investigated 
in a lung injury model when administered via the airways. 
Although physiologic parameters during 6 hours EVLP 
were not different between both study groups, neutrophilia 
in bronchoalveolar lavage (BAL) fluid was significantly 
reduced in the MAPC group compared to controls, 
accompanied with a significant decrease in TNF-α, IL-1β 
and IFN-γ in the BAL (168).

Many issues related to MSCs therapy in transplantation 
(cell type, timing and route of administration, trafficking and 
homing) remain unresolved and warrant further research. MP 
provides a unique tool to deliver these therapies directly to 
thoracic organs while they remain physiologically perfused and 
metabolically active in an isolated circuit.

If the above would prove to be possible, this may 
revolutionize the practice of solid organ transplantation 
by increasing the number of transplantable grafts 
and by improving their function and facilitating their 
acceptance post-transplant thereby reducing the need 
for immunosuppression and its attending complications 
(toxicity, infection and malignancies) (169-171).
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Conclusions

MP of thoracic organs has gained much attention during the 
last decade. So far, clinical research has been focused on MP 
for prolonged preservation of standard hearts and lungs as 
a tool to increase the cross-clamp time and to reduce early 
graft dysfunction in the recipient. In addition, MP of heart 
has become an essential tool to resuscitate and to evaluate 
the quality of the cardiac allograft from a DCD. The largest 
clinical experience with MP of lung was reported as a tool 
to evaluate functional performance of questionable lungs 
prior to transplantation. MP prior to transplanting lungs 
from a controlled DCD with a short total warm ischemic 
time is probably not essential, but MP is indispensable to 
evaluate lung graft quality from an uncontrolled DCD. 
Clinical experience with MP to repair and treat previously 
unacceptable lungs is limited to case reports. The use of MP 
as an immunoregulating tool for inducing better tolerance 
of the thoracic organ in the recipient after transplantation is 
exciting and hopeful.

Further research is needed to establish the best method 
and preservation solutions for long-term MP. The jury is 
still out if MP will have an impact on long-term survival in 
addition to the current promising short-term results. The 
outcome of ongoing clinical studies is awaited to delimit the 
proper indications before MP will become a routine method 
in our daily transplant practice.
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