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Introduction

The therapy of acute respiratory distress syndrome (ARDS) 
remains substantially supportive, aiming to “buy time” 
for healing while providing adequate gas exchange with 
the lowest possible damage. Therefore, the choice of 
tidal volume and positive end-expiratory pressure (PEEP) 
levels—the most investigated variables within the supportive 
ventilation—primarily depends on the estimate of the risk 
associated with their application. The possible damages are 
collectively referred to as ventilator-induced lung injury 
(VILI) and their increase or decrease should represent the 
outcome variable when comparing different ventilatory 
modes. However, the primary considered outcome is usually 
mortality, even though any real link between VILI and 
death has not been identified yet. While a large evidence 
and consensus support the use of lower tidal volume (6 vs. 
12 mL/kg) to decrease VILI (1), the way of setting PEEP 
is more debated and controversial. Indeed, the extremes 
of selecting PEEP oscillates between low PEEP values  
(8–10 cmH2O) as used in daily practice (2), and very high 
PEEP levels (greater than 20 cmH2O) to “guarantee” a 
fully open lung (3). A recent trial, the Alveolar Recruitment 
for ARDS Trial (ART), to surprise of many, showed a 
significantly higher mortality in patients treated with the 
open lung strategy, where lung recruitment maneuvers were 
associated to high PEEP strategy, compared to control 
patients treated without any recruitment maneuver and with 
lower PEEP (4). The unexpected results raised discussion, 

doubts, controversies and uncertainties. In this report, 
we will refer to what, in our opinion, may be concluded 
analyzing the results from all the trials performed on the 
same issue. Our discussion will be focused on the concept 
of volutrauma, atelectrauma and the mechanical power 
associated with these strategies. 

Lung anatomy

For defining ARDS, bilateral “X-rays infiltrations” must be 
present (5). Under this definition several lesions differing 
for nature, distribution and spatial dimension may be 
present, being X-ray densities the result of mass to volume 
ratio. A pure atelectasis (severe decreased volume due to 
the gas loss) has the same density of a consolidation (normal 
or increased volume where gas has been substituted 
with liquid/solid material) (6). Densities may be also due 
to interstitial edema, a primary reason of compression 
atelectasis in ARDS (7). The characteristics of densities, 
as distribution and dimension, reflect nature and cause 
of the disease. Patchy densities sparse in the parenchyma 
usually reflect pneumonia focuses in which the pulmonary 
units maintain their volume and are not collapsed. At the 
opposite, if the cause of the lung disease resides outside 
the lung (8), the increased lung permeability leads to 
interstitial edema and, under the increased lung weight, 
the pulmonary units collapse (7,9). In this case, the lung 
appears primarily dense in the dependent regions, while 
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the non-dependent are spare. 

Opening and closing pressure

Lung opening occurs only in collapsed pulmonary units. 
In such units, the gas entry requires an opening pressure 
that is sum of three components (10). The first component 
is the pressure required to break the inter-molecular 
water bonds, which cover the inner alveolar surface. This 
pressure is higher if the surfactant is scarce or absent, 
as in ARDS, but its order of magnitude usually ranges 
between 15–20 cmH2O (11). The second component 
is the pressure necessary to overcome the compressing 
forces on the pulmonary unit. This pressure cannot be 
higher than the total lung height in supine position (i.e.,  
10–15 cmH2O) (7). Finally, the third component is the 
pressure required to displace the chest wall during lung 
expansion. This pressure depends on the chest wall 
elastance and, in normal conditions, should be around  
5–10 cmH2O (7). Furthermore, to open a series of 
neighbor-collapsed units may require further pressure 
because of their interdependency. Therefore, the resulting 
opening pressures may range between 45 and 60 cmH2O. 
It must be noted, however, that the amount of units 
recruitable between 45 and 60 cmH2O is no more than 
1–3% (12). One may ask if there is any clinical meaning in 
using such pressures with their unavoidable hemodynamic 
consequences to open an irrelevant fraction of the lung 
parenchyma. After opening, to keep open a pulmonary unit 
requires lower pressure. Indeed, while the compressive 

forces and chest wall elastance equally weight during 
inspiration and expiration, the pressure necessary to get 
over the surface tension, for the reasons described before, 
is no-longer necessary during expiration. Therefore, the 
pressure to keep fully open the ARDS lung ranges around 
25 cmH2O (7).

Recruitment: what it is and how to perform it?

“Recruitment” means the enrollment of an individual unit 
from a given status to another one. Therefore, to speak 
the same language and avoid confusion, we should agree 
on which are the statuses and which are the individual 
units that we are referring to. In Table 1, we summarize the 
most relevant status changes described in literature and the 
methods used to assess them. 

As shown, under the word “recruitment”, largely 
different realities have been collected. Not surprisingly, as 
an example, in the same patient the computed tomography 
(CT) scan method would give a recruitment of 5% while the 
single pressure-volume (PV) curve may result in recruitment 
of 50% (17). The explanation is simple. In one case, we 
refer to the percentage of lung tissue that actually regains 
gas measuring it through the difference of non-inflated 
tissue (voxel). The other one refers to new gas entered in 
completely degassed pulmonary units plus gas entered in 
already open units that at higher pressure simply improve 
their own compliance. Unfortunately, the improvement of 
compliance is not necessarily due to “recruitment”. This is 
evident just observing a normal PV curve of a normal lung. 

Table 1 Recruitment strategies

Author Status A Status B Recruitment Methods Units

Gattinoni et al. (13) Non-inflated tissue;  
5 cmH2O PEEP

non inflated tissue;  
45 cmH2O Paw

Difference A–B CT scan Voxel

Puybasset et al. (14) Gas content; non-
inflated + poorly 
inflated; lower Paw

Gas content; non-
inflated + poorly 
inflated higher Paw

Difference A–B CT scan Pulmonary lobes 
anatomically 
designed

Dellamonica et al. (15) Gas content; lower Paw Gas content; higher 
Paw

Difference A–B;  
20 cmH2O

Dual PV curve Whole lung

Gattinoni et al. (8) Gas content; lower Paw Gas content; higher 
Paw

Difference A–B One PV curve and 
compliance of RS 
assessment

Undetermined

Rouby et al. (16) ECHO assessment; 
lower Paw

ECHO assessment; 
higher Paw

B lines and 
consolidation 
difference

ECHO 12 arbitrary lung 
units

PEEP, positive end-expiratory pressure; Paw, airway pressure; CT, computed tomography; PV, pressure-volume; RS, respiratory system; 
ECHO, echography.
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At the beginning, more pressure is required to inflate gas 
in a pulmonary unit simply because the attractive forces 
of the water molecules (surface tension) are greater when 
volume is lower. Moving progressively to higher volume, 
lower change in pressure is required to inflate the same unit 
just because the surface forces to overcome are decreased. 
Reaching higher volume, the pressure necessary to inflate 
the same unit increases again because of the tension of the 
extracellular fiber network. This phenomenon represents 
the basis of the sigmoidal shape of the PV curve where the 
lowest compliance of respiratory system (RS) is located 
below the lower inflection point (high attractive forces) 
and above the upper inflection point (high extracellular 
fiber tension). The concepts of opening pressure and 
recruitment are often confused while they are distinctly 
different. “Opening pressure” reflects an intensity property 
of the system. Indeed, open up a single pulmonary unit 
compressed by 10 cmH2O requires a pressure greater than 
10 cmH2O. The same pressure is required even though the 
compressed units to open up are not one single unit but are 
1,000. In contrast, the efficacy of a recruitment maneuver 
strictly depends on the number of units transformed from 
collapsed to aerated. For this reason, “recruitment” reflects 
a capacitive property of the system. As consequence, for 
the same “opening pressure” (30 cmH2O), the percentage 

of effectively recruited tissue may range between 50% and  
100% (10). In decades, several recruitment maneuvers 
have been described, but we think that here is not useful to 
describe all of them as excellent review of the topic may be 
found elsewhere (18). 

High vs. low PEEP

The use of words as “low” and “high” reflects our 
lack of knowledge and agreement about the PEEP 
selection. Originally, PEEP was used at levels between  
5–10 cmH2O to maintain higher lung volumes and improve 
gas exchange (19). However, in the 90s PEEP was not 
considered only as a tool to improve gas exchange but it 
became a key player in the open lung strategy which aimed 
to abolish any possible lung damage regardless the gas 
exchange. We report in Figure 1 the PEEP levels used in 
the three classical PEEP-trial (21-23) and in the ART trial 
in relation with expiratory static lung strain. As shown, in 
the previous trials, the low-PEEP arm corresponds to a 
strain between 0.3 and 0.7 while, in the ART trial, the low-
PEEP arm corresponds to a strain of 0.7. On the other side, 
in the three-previous trial, the high-PEEP arm is related 
to a strain between 0.7 and 1.1. While, in the ART trial, 
the high-PEEP arm corresponds to a strain of 0.95 (we 
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remind that this level corresponds to doubling the end-
expiratory lung volume to which a tidal inspiration is over-
imposed). Of note, the low-PEEP arm of the ART trial falls 
in the range of the high-PEEP arm of the previous ones. 
It clearly appears that terms “low” and “high” are at least 
inappropriate when discussing PEEP, and may generate 
confusion.

Atelectrauma and volutrauma

The physiological foundation of “atelectrauma” was 
theorized by Mead et al. (24). These authors underlined 
the impact of stress and strain maldistribution in a lung 
with inhomogeneous pulmonary units. Theoretical analysis 
suggests that extracellular lung fibers interfacing structures 
with different elasticity may act as stress risers. Indeed, the 
stress measured at the airway should be almost duplicated 
at the interface, as estimated in a CT-scan study (25). 
Lachman, in his work on inverted ratio ventilation, largely 
promoted the open lung concept (prevention of atelectasis) 
to decrease atelectrauma (3), which was documented by 
Tremblay and coworkers (26) in an experimental setup and 
by Ranieri and cooperators in a clinical setting (27). Based 
more on belief than on convincing evidence, atelectrauma 
was considered as the primary cause of VILI and the open 
lung strategy the receipt to cure it. Unfortunately, the open 
lung approach underestimates the hazard of the fully open 
lung, as PEEP of the order of 20–25 cmH2O is necessary. 
At such pressures, during inspiration, the lung volumes are 
close to total lung capacity. Experimentally, such strategy 
is associated with remarkable lung damages (28). Three 
previous large randomized studies comparing the possible 
danger of atelectrauma in patients treated with lower PEEP 
(range of 7 cmH2O) vs. possible dangers of volutrauma in 
patients treated with higher PEEP (range of 15 cmH2O) 
did not show any conclusive evidence (21-23). Therefore, 
in unselected general ARDS population, the harm/benefit 
of atelectrauma/volutrauma are equivalent. The ART 
trial, providing additional data of open lung strategy may 
contribute to solve the atelectrauma/volutrauma dilemma. 

The ART trial

In this multicenter-randomized trial, between November 
2011 and April 2017, from 9 countries and 120 intensive 
care units (ICUs), 1,010 patients were enrolled. The 
objective of the study was to assess if lung recruitment 
followed by selection of “best PEEP” decreases 28-day 

mortality compare to a low PEEP strategy. After the 
randomization, each patient located in the high PEEP 
group underwent a first recruitment maneuver using 
pressure-controlled-ventilation with driving pressure of  
15 cmH2O, respiratory rate (RR) of 15 bpm, and incremental 
PEEP to obtain the airway pressure (Paw) of 40 cmH2O for  
1 minute, of 50 cmH2O for 1 minute and of 60 cmH2O for  
2 minutes. At the end of the recruitment, to select the PEEP 
associated with the best compliance each patient underwent 
a decremented PEEP phase of 15 minutes (3 minutes and 
3 cmH2O each step) using volume-control ventilation. 
However, after three episodes of resuscitated cardiac arrest 
in the experimental group, the protocol was modified with a 
reduced recruitment maneuver [pressure control ventilation 
(PCV), PEEP levels of 25, 30, 35 cmH2O, step of 1 minute, 
ΔPaw =15, RR =15]. Both groups received volume assist-
control ventilation until weaning. In 120 cases (25%), 
the recruitment maneuver was interrupted because of 
hypotension, oxygen desaturation or pneumothorax. In 393 
patients (78.4%), the recruitment was repeated immediately 
after the PEEP selection and in 179 patients (37.3%) it was 
repeated during the first 7 days. Length of ICU/hospital 
stay, rates of death with refractory hypoxemia and acidosis 
were not statistically significant between groups. The  
28-day mortality was statistically higher in the PEEP group 
(55.3% vs. 49.3%, P=0.041) as well as all-cause mortality 
within 6 months (65.3% vs. 59.9% P=0.04). Despite not 
statistically significant difference in ICU mortality, the 
highest number of ICU deaths within 7 days was in the 
experimental arm (31.9% vs. 25.5%, P=0.03). 

The ART trial: why did it fail? 

The ART trial failed to show benefit in the open lung 
strategy. Within the possible explanations are: (I) a 
reduction in driving pressure, in the treatment arm, far 
lower than expected leading to an under-powered study 
and to unbalance between reduction in driving pressure 
and over-distention, during the recruitment maneuver; (II) 
too high level of PEEP in the control group (12 cmH2O  
day 1, see Figure 1) which may have prevented atelectrauma; 
(III) the breath-stacking phenomenon in volume assist-
control ventilation. These reasons are all plausible and 
would be acceptable if the outcome of the experimental and 
control groups would have been the same. Actually, no one 
accounts for the survival advantage in the control group 
treated with lower PEEP. The hazardous way to perform 
the recruitment maneuver may have had an impact on the 
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dismal outcome of the treatment group. The role of higher 
PEEP in the worse outcome group cannot be ignored. 

The ART trial and the mechanical power

The trial may be also analyzed in the framework of the 
mechanical power hypothesis (29). As shown in Figure 2,  

1 hour after the randomization, mean mechanical power 
for the PEEP group was 24.4 J/min and mean mechanical 
power for the control group was 20.7 J/min with a 
difference of 3.7 J/min between the two groups. At day 1, 
the mean mechanical power of the PEEP group reached 
25.7 J/min while the control group reached 21.3 J/min 
with a difference of 4.4 J/min. At day 7, both groups had 
a decreased mean mechanical power (18.4–19.2 J/min) 
without a difference of 0.8 J/min. Actually, we do not 
know if a difference of 4–5 J/min for a week of ventilation 
is enough to justify the major mortality in the PEEP 
group. However, it is clear that a “protective strategy” 
targeted to minimize the driving pressure using the best 
PEEP approach and leaving aside the effective energy 
delivered to the lung can dramatically result in a conscious 
or unconscious “harmful strategy” like in the ART trial. 
Another aspect is represented by the recruitment maneuver 
placed at least once in PEEP group patients. In Figure 3, 
we report for mild, moderate and severe ARDS patients, 
the energy delivered to the lung during the recruitment, 
before and after the modification of the study protocol. 
The amount of power is computed assuming a functional 
residual capacity (FRC) of 1.5 L for mild ARDS, 1.0 L for 
moderate ARDS and 0.5 L for severe ARDS and assuming 
that when the Paw is above 40 cmH2O the change in 
volume reaches the total lung capacity (FRC ×3). Obviously, 
this computation reflects the order of magnitude of energy 
delivered to the lung during overall recruitment maneuver. 
As shown, this energy is around 10 times greater than the 
energy delivered by the ventilator in a comparable unit of 
time. We may wonder if 100 J (4 minutes of ventilation 
in the treatment group) can be potentially harmful, 
how harmful could be 1,000 J delivered in 4 minutes of 
recruitment maneuver?

Conclusions

When we compere two different ventilatory modes in 
ARDS we compare their weight in producing “VILI” 
although a precise definition of VILI and its link with the 
mortality are far to be understood. For what we know 
now, we compare the possible prevention of the two most 
important triggers of VILI: atelectrauma and volutrauma. 
The results of available studies, in our opinion, lead to 
straightforward conclusion. Atelectrauma, which should be 
greater at PEEP around 7 cmH2O, leads the same outcome 
of volutrauma, which should be greater at PEEP around  
15 cmH2O, as shown by the three randomized large 

1 Hour 

Control PEEP Control PEEP Control PEEP

M
ec

ha
ni

ca
l P

ow
er

 J
/m

in

Day 1 Day 7
30

25

20

15

10

5

0

20.7

24.4

21.3

25.7

18.4
19.2

Figure 2 Estimate of mean mechanical power of the RS (first  
7 days of ICU stay) applied to the control group (left, grey column) 
and to the PEEP group (right, red) of the ART trial. PEEP, 
positive end-expiratory pressure; ART, Alveolar Recruitment for 
ARDS Trial; ICU, intensive care unit; RS, respiratory system.

Figure 3 Estimate of mechanical power delivered during the 
overall recruitment maneuver of the ART trial before (A) and after 
(B) the amendment of the protocol. ART, Alveolar Recruitment for 
ARDS Trial.

Mild ModerateSevere Mild Moderate Severe

1400

1200

1000

800

600

400

200

0

M
ec

ha
ni

ca
l P

ow
er

 J
ou

le

1169

779

390

723

482

241

A B



1263Journal of Thoracic Disease, Vol 10, No 3 March 2018

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(3):1258-1264jtd.amegroups.com

trials on PEEP (21-23). The ART trial just showed that 
increasing PEEP above 15 cmH2O, particularly if associated 
with an eccentric recruitment maneuver, is dangerous and 
increases mortality. In normal practice, the PEEP applied 
in severe ARDS all around the world, is 8 to 10 cmH2O (2). 
This should tell us something. Thanks to the ART trial, we 
may corroborate the suspect that we had before: open lung 
strategy is an appealing dream, but a dangerous practice.
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