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Introduction

Since the discovery of first human coronavirus (HCoV), 
HCoVs have been studied for over 50 years (1). Overall 
six HCoVs have been identified including HCoV-229E 
and HCoV-OC43 (first identified in the 1960s), SARS-
CoV (in 2003), HCoV-NL63 (in 2004), HCoV-HKU1 (in 
2005) and Middle East respiratory syndrome coronavirus 
(MERS-CoV) (in 2012) (1-5). Zoonotic coronaviruses such 
as SARS-CoV (6) and MERS-CoV (7), crossed barrier and 
lead to epidemic in humans. MERS-CoV as the most recent 
novel coronavirus emerged in human can cause severe, life-
threatening disease and is a potential threat to global public 
health and economy. Since 2012, MERS cases, including 
those transmitted from dromedary camels were reported to 

World Health Organization (WHO) almost every month. 
In May 2015, a returned traveler with MERS-CoV infection 
caused a significant outbreak in South Korea, which spread 
to 186 patients and over 16,000 people were quarantined (8).  
This outbreak raised the fear that a pandemic like SARS 
would reoccur. Here, we reviewed the epidemiology, animal 
model generations and most recent progress on vaccine and 
treatment developments against MERS-CoV.

Origin and evolution

MERS-CoV was first emerged in Saudi Arabia in 2012. As 
of January2018, WHO has been notified of 2143 laboratory-
confirmed cases including 750 deaths (mortality rate, 35%) from 
27 countries (http://www.who.int/emergencies/mers-cov/en/) 
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(Figure 1). The evolutionary origins of MERS-CoV are still 
uncertain. Epidemiologic surveys showed that most of the 
dromedary camels in Middle East region are serological or 
MERS-CoV viral nucleic acid positive (9). Several MERS-
CoV viruses have also been isolated from these camels 
indicating that they could be an intermediate host for 
MERS-CoV (10). In addition, MERS-CoV shares strong 
sequence similarities with bat CoVs, such as HKU4 and 
HKU5. HKU4 virus even uses the same DPP4 receptor 
for entry, and two critical mutations could license bat-to-
human transmission of MERS-CoV (11). Whether MERS-
CoV is originated from bats as SARS-CoV did remains 
unclear so far. Current evidence indicates that bats are likely 
to be the original source (12,13), and dromedary camels are 
considered to be a possible intermediate host for MERS-
CoV (10) (Figure 2). MERS-CoV continuously crosses 
species and transmits from dromedary camels and/or bats 
to human population, which poses a significant threat 
to public health. Previous studies indicated that MERS-
CoV infection are primarily due to repeated introductions 
of MERS-CoV from dromedary camels to human, while 
human to human transmission is limited (14,15). However, 
the 2015 MERS outbreak in South Korea with dozens of 
secondary- and tertiary-generation cases raised the concern 

that MERS-CoV may have adapted to allow a more efficient 
spread in humans (16).

As for the evolution, CoVs are one of the most rapidly 
evolving viruses undergoing frequent genetic recombination 
and mutations. Compared to other RNA viruses, the 
estimated evolutionary rates in HCoVs are moderate to 
high (17,18). For MERS-CoV the mutation rate in the 
complete genome was estimated to be 1.12×103 substitutions 
per site per year (19), while HCoV-OC43 and HCoV-
229E represent an average mutation rate of about 3~6×104 
substitutions per site per year (20,21). Deletion mutation 
also occasionally occurred in the genome of MERS-CoV, 
especially in the accessory proteins (22). Based on the 
analysis of MERS-CoV sequences which are available in 
genbank, diverse MERS-CoV strains are circulating in 
dromedaries and human to date, including Clade A and 
Clade B. Clade B can be further divided into five lineages 
(lineage 1–5 or group 1–5) (16,19). Evidence of genetic 
recombinant has also been found in MERS-CoV (16), as 
well as in other HCoVs, such as HCoV-OC43 (23), HCoV-
NL63 (21), HCoV-HKU1 (24), SARS-CoV (25,26). Several 
groups also reported multiple recombinant MERS-CoV 
prevalent in dromedary camels and humans (26). The 
MERS-CoV outbreak in South Korea in 2015 also revealed 
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Figure 1 Confirmed global cases of MERS-CoV from World Health Organization. MERS-CoV, Middle East respiratory syndrome 
coronavirus.
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a probable recombinant event between two different 
parental Clade B viruses (16). Genetic recombination in 
MERS-CoV indicates that frequent co-infections with 
different lineages of MERS-CoV could occur in camels 
and humans (26). In summary, mutation and deletion in 
accessory proteins and genetic recombination play a major 
role in the evolution of MERS-CoV.

Virology and structure

Coronaviruses are the largest positive strand RNA viruses 
(26–32 kb) that are about 125 nm in diameter (27). 
Four coronavirus genera have been identified including 
alpha- (group 1), beta- (group 2), gamma- (group 3) and 
deltacoronavirus (group 4) genera (28). HCoVs are among 
the alphacoronavirus (HCoV-NL63 and HCoV-229E) and 
betacoronavirus (HCoV-HKU1, HCoV-OC43, SARS-
CoV and MERS-CoV) (Figure 3). Four HCoVs, including 
HCoV-NL63, HCoV-OC43, HCoV-229E and HCoV-
HKU1, are circulating globally in human population and 
primarily contribute to 10–20% common cold (3,29), while 
MERS-CoV and SARS-CoV are the two major causes of 
severe pneumonia in humans (30,31), other four HCoVs 
sporadically causing severe pneumonia were also reported 
(32-35). In 2002–2004 pandemic, SARS-CoV infected over 
8,000 patients and resulted in more than 800 deaths (36).  
MERS-CoV is the etiological agent responsible for the 
ongoing MERS pandemic in Middle East region. No 
specific vaccine and drug have so far been licensed for 
human use (37).

MERS-CoV genome contains a 5'terminal cap structure 

along with poly (A) tails at the 3'end, the replicase gene 
encoding the non-structural protein makes up approximately 
two-third of the genome at the 5' end of genome, which 
contains 16 non-structural proteins(nsp1-16). Four 
structural protein, including spike (S), envelope (E), 
membrane (M) and nucleocapsid (N) protein, and five 
accessory proteins (ORF3, ORF4a, ORF4b, ORF5 and 
ORF8) make up about 10kb at the 3' end of genome  
(Figure 4A). In summary, MERS-CoV genome is typically 
arranged in the order of 5’terminal-ORF1a-ORF1b-S-E-
M-N-3’terminal, accessory proteins are interspersed along 
the structural genes. The viral membrane contains S, E and 
M protein, and spike protein plays vital roles in viral entry. 
MERS-CoV attaches human host-cell receptor dipeptidyl 
peptidase 4 (hDPP4, CD26) (38) via receptor binding 
domain (RBD) of spike protein (39). M and E proteins play 
important role in viral assembly, N protein is required for 
RNA synthesis (Figure 4B) (28).

Animal models

Robust animal models for MERS infection are urgently 
needed to elucidate MERS pathogenesis and develop 
antiviral drugs and vaccines. However, small laboratory 
animals that generally used for emerging virus studies, such 
as mice (40,41), ferrets (42), guinea pig (43) and hamster (44)  
are not susceptible to MERS-CoV infection since their 
homologous DPP4 molecules do not fit as the receptors 
for MERS-CoV entry. No effective viral replications were 
detected in these animals after challenged with high dose of 
MERS-CoV (45). Upon intratracheally (IT) and intranasally 

Direct transmission or through other intermediates?

Figure 2 Transmission of MERS-CoV. MERS-CoV, Middle East respiratory syndrome coronavirus.
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(IN) inoculation with MERS-CoV, New Zealand white 
rabbits remained free of clinical sing of disease (46), 
whereas viral RNA was detected in the respiratory tract, 
and moderate necrosis was observed in nasal turbinates. 
Dromedary camels,  as a reservoir of MERS-CoV, 
developed mild upper respiratory infections after MERS-
CoV infection (47). Alpacas, a close relative within the 
Camelidae family, secreted live virus after oronasal infection 
and remained asymptomatic without showing any upper or 

lower respiratory tract diseases (48,49). In addition, due to 
their cost and relatively larger size, these animal models are 
not suitable for high-throughput research for MERS.

Nonhuman primates

Nonhuman primates are useful models for pathogenesis 
studies and vaccine evaluations for a lot of human infectious 
diseases. MERS-CoV caused transient lower respiratory 
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Figure 3 Phylogenetic analysis of coronaviruses based on complete genomes.
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Figure 4 The MERS-CoV genome structure and virion. MERS-CoV, Middle East respiratory syndrome coronavirus.

tract infection in rhesus macaques. Clinical signs were 
observed by 1-day post infection (dpi) and resolved as 
early as 4dpi. No fatal cases observed in rhesus macaque 
model, the infection is not lethal to the rhesus macaque. 
This model can be used for studying the pathogenesis of 
mild MERS-CoV infection in humans (50). The use of 
common marmosets is still controversial. While a study 
showed that the infection could developed a progressive 
severe pneumonia (51), other groups found that common 
marmosets only developed mild to moderate nonlethal 
respiratory diseases through intratracheal infection with 
MERS-CoV (52).

Mice

Wild-type rodents are not susceptible to MERS-CoV 
infection (41). However, researchers have developed 
several models that rendered mice susceptible to MERS-
CoV infection (53-55). In 2014, the first mouse model for 
MERS infection was generated (53). In this study, mice 
were transduced intranasally with recombinant adenovirus 
5 encoding hDPP4 molecule. This model supports MERS-
CoV replication in the lungs, and mice developed signs 
of interstitial pneumonia, including inflammatory cells 
infiltration, alveolar thickening and mild edema (53). 
This model enables research to use mice for MERS study 

although there are some limitation, such as uncontrolled 
level of the hdpp4 expression and their tissue distribution. In 
2015, the hDPP4 transgenic mice have been developed (54).  
These mice could be efficiently infected by MERS-CoV. 
However, global hDPP4 expression leaded to multiple 
organ damage (54), resulting in the death of the animals 
probably due to the lethal brain infection, as observed 
in ACE2 transgenic mice infected with SARS-CoV (56). 
Most recently, several MERS mouse models have been 
generated by replacing mouse DPP4 gene with homologous 
human DPP4 gene (55,57). Li and colleagues developed 
human DPP4 knockin (KI) mice, where mouse DPP4 
gene fragments had been replaced by homologous human 
DPP4 fragments responsible for receptor binding. Further 
they serially passaged WT MERS-CoV in the respiratory 
tract of these mice for 30 times, resulting a mouse adapted 
MERS-CoV strain (MERSma). MERSma contained 13–22 
mutations that caused significant weight loss and mortality 
in human DPP4-KI mice (55), this model is so far the best 
mouse model for MERS. 

Immunopathogenesis

The lack of human autopsy data as well as good animal 
models hindered our understanding on the immunity 
and pathogenesis of MERS-CoV infection. Based on our 
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knowledge from the studies of SARS, several factors could 
be involved in MERS pathogenesis, including viral and host 
factors, interferon induction, dysregulation of cytokines and 
adaptive immune responses (58,59).

Virus and host interactions

SARS and MERS are both severe pneumonias caused by 
novel CoVs and they shared some similarities in clinical 
and laboratory features (58). For instances, the elderly and 
immunocompromised individuals are more susceptible 
to both SARS-CoV and MERS-CoV infections (60), 
However, the average comorbidity rate are much higher 
in MERS patients than that of SARS patients (76% vs. 10–
30%) (61,62). The mortality rate of MERS so far is about 
35% which is much higher than that of SARS (~10%) (7). 
Although some of the mild MERS patient were not readily 
identified in Middle East region (63), it might also partially 
due to the difference immunopathogenesis of these two 
viruses. Unlike SARS-CoV, MERS-CoV could efficiently 
infect human dendritic cells (64) and macrophages (65)  
in vitro which would help the virus to dysregulate the 
immune system. MERS-CoV also has the ability to infect 
T cells through their highly expression of CD26, leading to 
T cell apoptosis (66), which might potentially disrupt anti-
viral T cell responses. As published previously, the clearance 
of MERS-CoV and SARS-CoV both required virus-specific 
T cell responses (67,68).

Some host factors might also be involved in MERS-
CoV infection. As the increasing expression level of 
prostaglandinD2 (PGD2) in aged lungs impaired 
respiratory DC migration from lung to the draining lymph 
nodes, which in turn diminished the anti-viral CD8 T cell 
responses and resulted in increased mortality following 
SARS-CoV infection (69). Whether any host factors are 
involved in MERS-CoV infection and increase mortality 
rate in patients with comorbidity remain unknown.

Interferon antagonism

It is generally accepted that innate immune response is 
essential for the control of coronavirus infection, and it 
also determines the extent of initial virus replication and 
immune response activation (70). MERS-CoV replication 
is highly sensitive to type I interferon (IFN-I) treatment 
in cell culture suggesting that IFN-I treatment could be a 
possible therapeutic approach in clinical practice (71). The 
combination of IFN-α2b or IFN-β1a with ribavirin was 

effective in reducing MERS-CoV replication in vitro and 
improves outcome in MERS-CoV-infected rhesus macaques 
(72,73). It is well known that CoVs have developed several 
strategies to evade the innate immune response. In SARS-
CoV infection, SARS-CoV accessory proteins ORF3b and 
ORF6 decreased IFN-expression (74), and ORF6 inhibited 
nuclear translocation of STAT1 which is the key molecule 
governing the expression of interferon-stimulated genes 
(ISG) with antiviral activity (75-77). Similarly, MERS-CoV 
structural and accessory proteins, including M, ORF4a, 
ORF4b, and ORF5 had all been proved that could antagonize 
IFN-I signaling and inhibit ISG productions (78,79).

Antibody and T cell responses

Convalescent serum from MERS and SARS patients could 
accelerate virus clearance (80,81). Neutralizing antibodies 
generated in vitro or by vaccination could efficiently prevent 
the secondary infection with the same strain of CoVs in 
animal models (82). However, antibody response in patients 
previously infected with SARS-CoV and MERS-CoV 
tend to be short lived (68,83). On the other hand, T cell 
response often target highly conserved internal proteins 
and are long lived. SARS-CoV-specific memory T cells but 
not B cells could be detected6 years after infection in SARS 
survivors (84). A recent study showed that CD8 T cell 
response could be detected in patients with undetectable 
neutralizing antibody in convalescent MERS patients (63). 
Immunodominant epitopes recognized by T cells in MERS-
CoV infected mice were found in structural protein S, M, N 
(53,85). These MERS-CoV-specific CD8 T cells efficiently 
lysed the target cells in cytotoxicity assays (53). It also had 
been shown previously, that adoptive transfer of SARS-
CoV-specific CD4 or CD8 T cells reduced virus titers in 
the infected mouse lungs (85). 

Vaccine and antiviral drug developments

Vaccine

There were still no vaccines and effective antiviral 
therapeutics against MERS-CoV infection (86). The 
spike protein of MERS-CoV, which is responsible for 
MERS-CoV entry is considered as a key target for vaccine 
development against MERS-CoV infection (87). Multiple 
vaccine candidates targeting S protein were developed, 
including DNA vaccines (88,89), subunit vaccines (90,91) 
and recombinant vector vaccines (92,93). DNA vaccine 
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expressing MERS-CoV S1 gene induced antigen-specific 
humoral and cellular immune responses in mice (88). 
In addition, RBD fragment induced the highest-titer 
IgG antibodies in mice compared with other region of S  
protein (90). Recombinant vectors (modified vaccinia 
Ankara and adenovirus vector) expressing MERS-CoV S 
glycoprotein showed immunogenic in mice (94). Attenuated 
live vaccine also has been shown to be protective; however 
the worries of its inadequate attenuation hindered its 
application (95). The protective role of virus specific 
CD4T cells is less studied, especially in respiratory CoV 
infections (63). Most recently, Zhao and colleagues showed 
that airway memory CD4 T cells were generated after 
intranasal vaccination with CoV N protein and mediated 
protection in following CoV challenge (68). These cells 
could upregulated anti-viral innate response at very early 
stage of infection and promoted CD8 T cell response by 
accelerating rDC migration and CD8 T cell mobilization (68). 
More importantly, they also found that these CD4 T cells 
targeting a conserved epitope within N protein cross reacted 
with several other CoVs, indicating that induction of airway 
memory CD4 T cells should be considered as a component 
of any universal human coronavirus vaccine (68) (Figure 5). 

The combination of memory CD4 T cells with those able 
to elicit strong neutralizing antibodies and memory CD8 T 
cells could provide better protection against MERS-CoV as 
well as other respiratory CoV infections.

mAb and antiviral drugs

Neutralizing monoclonal antibodies bind to MERS-
CoV spike protein and prevent virus-entry and following 
membrane fusion, therefore inhibit viral replication and 
reduce clinical diseases in animal models and humans (86). 
Neutralizing human monoclonal antibody (mAb) can be 
used for prophylactic and post-exposure treatments. Several 
potent mAbs have been developed from MERS infected 
patient (96), by humanizing mouse mAb against MERS 
RBD (97) or by screening human antibody phage library (82). 
All of these mAbs targeted RBD region of spike protein (98). 
To avoid viral escape mutants, combination of at least two 
monoclonal antibodies targeting different regions of spike 
protein had been prove to be more effective (86).

In addition, several antiviral drugs had been developed, 
including peptide fusion inhibitor targeting heptad-repeat 
region (HR) of S2 (99), small molecular entry inhibitor 

Figure 5 Airway memory CD4+ T cells mediate protective immunity against emerging respiratory coronaviruses.
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targeting S (100), IFN-β, IFN-γ and ribavirin (101). 
Recently, GS-5734, small-molecule monophosphoramidate, 
prodrug of an adenosine analog which targeted RdRp, 
had been found to inhibit MERS-CoV and SARS-CoV 
replication in multiple in vitro systems (102).

Summary

With the MERS-CoV circulating in the dromedary camels 
in the Middle East region, efforts regarding epidemic 
surveillance, phylogenetic analysis, vaccine and antiviral 
drug developments were still needed to response to the 
global public health threat posed by this virus. Unlike 
SARS-CoV, the virus and host interaction as well as 
pathogenesis and immune responses after MERS-CoV 
infection in animals and humans are less investigated. 
Understanding these basic informations will not only 
enhance emerging CoV research but also will aid our public 
health preparedness against MERS-CoV.
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