Comprehensive targeted super-deep next generation sequencing enhances differential diagnosis of solitary pulmonary nodules

Mingzhi Ye^{1,2,3,4,5*}, Shiyong Li^{1,4*}, Weizhe Huang^{2*}, Chunli Wang^{6,7*}, Liping Liu², Jun Liu^{6,7}, Jilong Liu¹, Hui Pan², Qiuhua Deng², Hailing Tang², Long Jiang², Weizhe Huang², Xi Chen^{6,7}, Di Shao¹, Zhiyu Peng⁴, Renhua Wu^{6,7}, Jing Zhong⁴, Zhe Wang⁴, Xiaoping Zhang⁴, Karsten Kristiansen⁵, Jian Wang⁴, Ye Yin⁴, Mao Mao⁴, Jianxing He², Wenhua Liang²

¹BGI-Guangzhou Medical Laboratory, BGI-Shenzhen, Guangzhou 510006, China; ²The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China; ³BGI-Guangzhou, Guangzhou Key Laboratory of Cancer Trans-Omics Research, Guangzhou 510006, China; ⁴BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China; ⁵Department of Biology, University of Copenhagen, Copenhagen, Denmark; ⁶Tianjin Medical Laboratory, ⁷Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin 300308, China

Contributions: (I) Conception and design: J He, M Mao; (II) Administrative support: Z Peng, X Zhang, Y Yin, W Wang; (III) Provision of study materials or patients: W Liang, L Liu, H Pan; (IV) Collection and assembly of data: Q Deng, L Jiang, W Huang; (V) Data analysis and interpretation: S Li, C Wang, J Liu, X Chen; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. *These authors contributed equally to the work.

Correspondence to: Wenhua Liang, MD; Jianxing He, MD, PHD. Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, No. 151 Yanjiang Rd., Guangzhou 510120, China. Email: liangwh1987@163.com; drjianxing.he@gmail.com.

Background: A non-invasive method to predict the malignancy of surgery-candidate solitary pulmonary nodules (SPN) is urgently needed.

Methods: Super-depth next generation sequencing (NGS) of 35 paired tissues and plasma DNA was performed as an attempt to develop an early diagnosis approach.

Results: Only ~6% of malignant nodule patients had driver mutations in the circulating tumour DNA (ctDNA) with >10,000-fold sequencing depth, and the concordance of mutation between tDNA and ctDNA was 3.9%. The first innovative whole mutation scored model in this study predicted 33.3% of malignant SPN with 100% specificity.

Conclusions: These results showed that lung cancer gene-targeted deep capture sequencing is not efficient enough to achieve ideal sensitivity by simply increasing the sequencing depth of ctDNA from early candidates. The sequencing could not be evaluated hotspot mutations in the early tumour stage. Nevertheless, a larger cohort is required to optimize this model, and more techniques may be incorporated to benefit the SPN high-risk population.

Keywords: Solid pulmonary nodule; early diagnosis; circulating tumour DNA (ctDNA); lung cancer; tumor mutational burden (TMB)

Submitted Mar 15, 2018. Accepted for publication Mar 26, 2018. doi: 10.21037/jtd.2018.04.09 View this article at: http://dx.doi.org/10.21037/jtd.2018.04.09

Introduction

Lung cancer continues to be the leading cause of cancer mortality in both men and women worldwide (1). Early diagnosis is crucial for improving lung cancer survival, given that the prognosis of stage I lung cancer is considerably favourable with a 5-year survival rate of more than 70% compared with metastatic late-stage disease (<5% survival) (2). Currently, the most successful method for early detection is low-dose computed tomography (LDCT) scan screening, which was demonstrated by the National Lung Cancer Screening Trial (NLST) study to reduce mortality by 20% compared with chest radiograph screening of lung cancer (3).

The widespread application of LDCT has led to a significant increase in the detection of lung nodules (4,5). The prevalence of solitary pulmonary nodules (SPN) (<3 cm in diameter) is 10-20% in the United States (6) and is higher in people with Asian ancestry probably due to genetic and environmental factors. Most SPN found in CT scans are benign, even among high-risk populations such as smokers. A few algorithms or prediction models based on nodule features in the CT scan have been developed; however, their accuracy remains unsatisfactory (7). On one hand, timely identification of malignant nodules is crucial because they represent a localized disease and are potentially curable. On the other hand, it is costly and possibly harmful to manage an SPN with radiation exposure from repeated CT scans or invasive procedures such as biopsy or surgical resection that are associated with potential morbidity and induce unnecessary anxiety. Therefore, there is a critical need for additional tests that can further stratify the SPN found by LDCT as malignant and non-malignant.

Non-invasive tests are preferable. ¹⁸F-FDG-PET/CT only slightly adds to diagnostic value, and its use is limited by its low cost-effectiveness (8). A few plasma biomarkers, such as CEA and CA-125, have been used to screen and diagnose lung cancers (9-11). However, the sensitivity of serum biomarkers is relatively low because they are proteins and thereby will be elevated only when the tumour burden is high. Therefore, there is no sufficiently reliable biomarker that exhibits both high sensitivity and specificity for the diagnosis of malignant SPN. ctDNA represents a promising option: it is released or excreted by tumour cells, circulates in the blood of a patient with cancer, and can serve as direct evidence of malignancy (12).

Because of the diverse mutation pattern of lung cancer, it cannot be evaluated using conservative singlegene mutations or hotspot mutations. Unlike PCR-based the detection

S821

techniques, NGS simultaneously allows the detection of a wide spectrum of loci. Comprehensive analyses could theoretically increase sensitivity. In addition, genetic mutations should be more reliable than other qualitative markers (e.g., antibody or micro-RNA level), which require tricky cut-offs.

Previously, a report described using the total plasma cell-free DNA (cfDNA) level to discriminate non-small cell lung cancer (NSCLC) from benign lung pathologies and healthy controls with 86.4% sensitivity and 61.4% specificity (13). However, debates remain regarding the lower limit of detection of ctDNA NGS. We hypothesized that the analysis of the lung cancer-related somatic mutations from ctDNA could provide better opportunities for minimally invasive SPN diagnosis. We hereby aimed to develop a practical tool based on ctDNA profiling and super-deep sequencing methods and test its ability to distinguish between malignant and non-malignant SPN in this pilot study. However, debates remain regarding the lower limit of detection of ctDNA NGS.

Results

Lung peripheral nodule clinical features and tumour serum protein marker classification

A total of 1,254 consecutive candidate patients were reviewed for resection of lung peripheral nodules in the First Affiliated Hospital of Guangzhou Medical University. In postoperative pathological examination, 69% of lung peripheral nodules were diagnosed as malignant, and the distribution of malignant SPN subtypes is shown in Figure S1. Almost 80% of SPNs were adenocarcinoma, which included 13% AAH (atypical adenomatous hyperplasia)/AIS (adenocarcinoma in situ)/MIA (minimally invasive adenocarcinoma) malignancy patients. Surgery and biopsy were risky for the patients and could cause complications. A non-invasive method was required to identify the malignancy of surgery-candidate lung peripheral nodules. Tumour serum protein markers (CEA, NSE, CA125, CA153, and CYFRA21-1) are conventionally used to determine the malignancy of SPN. However, only CEA and CYFRA21-1 in malignant SPN were significantly higher than in non-malignant SPN. The expression of NSE and CA153 in this statistical cohort was not different between malignant and benign cases based on the p-value calculated by the unpaired *t*-test (Figure 1). The expression of CA125 in benign SPN was significantly higher than in malignant SPN. The mean expression of

Figure 1 Clinical distribution of all SPNs. The pie chart (A) shows the distribution of SPN histological types. The expression comparison of tumour serum protein markers is shown in (B). P values were calculated by an unpaired *t*-test. Different colour indicates different markers; dot indicates benign SPN; little triangle indicates malignant SPN. Other cancer, malignant SPNs that cannot be categorized by the listed cancer types. SCLC, small cell lung cancer; SPN, solitary pulmonary nodule.

serum protein markers was similar. Therefore, this signature limits serological indicators as an accurate diagnosis of early lung cancer. Neither CEA (cut-off 5 ng/mL, specificity 90.1%, sensitivity 23.8%) or CYFRA21-1 (cut-off 3.3 ng/mL, specificity 80.6%, sensitivity 28.5%) nor their combination (specificity 77.6%, sensitivity 42.1%) could precisely predict malignancy. When using 10 ng/mL as the cut-off, CEA achieved a specificity of 97.1%, but the sensitivity was only 9.7%.

ctDNA seemed to be a good option as it has been largely reported and named as a non-invasive method for patients' targeted genes tests and recurrent monitoring (14,15). In this study, both surgically resected lung peripheral nodules and plasma DNA were investigated by extra-deep high throughput sequencing of at least 10,000-fold depth to classify malignancies or non-malignancies in the early stage of lung cancer. The pipeline of this research is shown Figure S2. Thirty-five prospective samples were consecutively collected to perform the next generation sequencing (NGS) to develop a non-invasive malignant peripheral nodule prediction method. All the lung surgery candidate nodules, formalin-fixed, paraffin embedded (FFPE) tissues, and corresponding blood samples were collected as controls. Clinical summary information of the selected patients with lung pulmonary nodules is shown in *Table 1*; 62.9% of the

patients were males, and 37.1% were females. Clinical histological results identified malignant peripheral nodules in 31 out of 35 patients and benign peripheral nodules in the remaining 4 patients. Out of 31 malignant SPNs, 81% of patients were diagnosed with lung adenocarcinoma, which had a much higher distribution than our statistical cohort, likely because of the relatively small sample size. All included cases were in clinical stage I. In postoperative pathological evaluation, 83.9% of the patients remained in stage I, while 29% of patients had advanced to stage II and III which were diagnosed postoperatively by incidental finding of positive lymph nodes. Therefore, all cases are necessary to be screened by NGS to explore the genomic profile. Each sample's detailed clinical information is recorded in Supplementary *Table S1*.

Landscape of somatic mutations and driver genes

DNA from white blood cells was used as a corresponding normal control to detect somatic mutations from FFPE and ctDNA samples. All of the samples were analysed by lung cancer target capture and sequenced by the Illumina HiSeq 2000 instrument. The lung cancer panel included the exon region of lung cancer driver genes and top mutational lung adenocarcinoma-related genes, based on the COSMIC

Journal of Thoracic Disease, Vol 10, Suppl 7 April 2018

 Table 1 Clinical information of patients with lung pulmonary nodules sampled for ultra-deep sequencing

Clinical feature (35 total samples)	Data
Age at surgery [median, range]	59 [27–81]
Gender	
Male	22
Female	13
Cancer type	
Benign	4
Cancer	31
AIS/MIA	2
Adenocarcinoma	25
Squamous carcinoma	1
Other cancer	3
Clinical tumour stage	
I	35
Pathological tumour stage	
I	21
11*	5
111#	4
NA	1

*, unexpected N1 lymph nodes incidentally found by pathological examination; #, unexpected N2 lymph nodes incidentally found by pathological examination. AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma.

database (*Table S2*). Followed by deep sequencing, at least 99.9% of the target genomic regions of each case were covered (*Table S3*). The median depths were 600× (from 171 to 1,941) for the 38 FFPE samples, 823× (from 524× to 2,543×) for the 38 normal control samples, and 1,896× (from 610 to 7,653) for the 35 ctDNA samples.

In total, 89 non-silent SNV/InDels/SV (range from 0 to 11) were discovered in the 31 tumour tissue samples. No mutations were detected from the 4 benign pulmonary nodules (*Figure 2*). Twenty-nine of the 31 cancer samples contained at least one non-silent mutation, and non-silent mutations were detected in all of the lung adenocarcinomas. The two samples in which mutations were not detected were lung carcinoid tumours. This might be because of the limitation of the panel's gene list, which was based on lung adenocarcinoma and was not available for lung carcinoid tumours and squamous carcinoma. Each sample's detailed

mutational information, excluding that of SV, is shown in Table S4. Four fusions were detected in 3 samples, and 2 of them (ALK, ROS1) were found in sample S23_A. ALK was found in sample S5 A, and RET was found in sample S27 A. However, only 3 out of 4 were successfully validated by immunohistochemistry, except ROS1 fusion in sample S23 (Table S5). Twenty-eight non-silent mutations (SNV/InDel) were detected in the corresponding plasma samples. Only 1 non-silent mutation was detected in the plasma of benign sample S32 N (Figure 2, Table S6). Clinical information of each patient is shown in Figure 2, with the distribution of stage, subtypes, sample types, and gender. The malignant SPN were divided into two groups according to the tumour stage in Figure 2 (stage I vs. stage II-III). For the patients with SPN, each patient's mutational number had no difference in the tissue or plasma samples (Figures 2,S3). Compared with the mutations in the tissue of benign cases, mutations detected in the tumour tissue had a significantly higher mutational ratio. The mutational number from ctDNA was also assessed with respect to the size of SPN or the mutations in tissue, but no correlation was found (Figures 2,S4). After comparison of the mutational consistencies between tissue and plasma (Figure S5), only 6 out of 152 mutations detected in FFPE were found in the corresponding ctDNA samples; the concordance between ctDNA and FFPE samples was much lesser than that in a previously reported study (16). Even more, 5 out of the 6 overlapping mutations came from one sample (S8 A), which shows a lack of efficacy in early stage ctDNA evaluation to some degree.

Well-known driver genes were detected in 22 out of 31 (71%) malignant FFPE samples, and the frequency of each driver gene was as follows: EGFR: 46%, KRAS: 3%, ALK/ ROS1/RET fusion: 11%, BRAF: 3%. The frequency of each driver gene was different from that in our previous study (17,18), especially KRAS, which might be because of sample size limitation and the sequencing panel, which was designed only for lung adenocarcinoma. Except for sample S23 A with non-validation ROS1 fusion, all the other SPNs had a unique driver gene (Figure 3). Of the EGFR-positive SPN samples, 37.5% had compound EGFR mutations; 8 samples contained L858R mutations, and 7 samples had exon 19 deletions (Table 2). Even 3 EGFR mutations were found in sample S22 A. Although all the EGFR compound mutations were rare, SNV/InDel and the co-EGFR mutational ratio were higher than in a recent Asian study (19), This previous study proved that patients with a single EGFR mutation had better survival rates than patients with compound EGFR

Figure 2 Somatic mutation landscape of FFPE and ctDNA samples. (A) The bars represent the non-silent mutational number of each sample. The samples are sorted by the tumour stage [benign, stage I (AIS/MIA, adenocarcinoma), and stage II–III] and number of non-silent mutations. Mutational type is distinguished by colour. ctDNA mutational landscape is shown in (B). The major clinical information (plasma, gender, tumour stage, cancer subtype) is shown in (C). ctDNA, circulating tumour DNA; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; FFPE, formalin-fixed, paraffin embedded.

Figure 3 Driver gene mutations detected in paired samples. Distribution of driver gene mutational frequency is shown in (A), and each patient's driver gene in FFPE and plasma samples is shown in (B). FFPE, formalin-fixed, paraffin embedded.

mutations, and there were no differences in disease-free survival rates. All the *EGFR* co-mutation samples had similar allele frequencies of each *EGFR* mutation. Driver mutations were found in only two ctDNA samples, both of which were mutated in *EGFR*, but the *EGFR* driver mutation in sample S4 was different in the tumour tissue and plasma. An *EGFR* compound mutation (L858R + S768I) was detected

both in sample S8_A tissue and plasma samples. Overall, the extremely low driver mutation concordance between the FFPE and corresponding ctDNA suggested that ctDNA content in SPN patients was also too low to be efficiently sequenced by the NGS method. ddPCR was performed as a sensitive tool for low-frequency mutation testing to validate known hotspot driver mutations detected in the FFPE and

ctDNA samples.

Driver mutation validation by ddPCR

ddPCR is a well-known low-frequency mutation detection platform and serves as an efficient tool to test the reliability of sequencing data from NGS. As for the limitation of ctDNA quantity, only 6 samples with *EGFR/KRAS* hotspot driver mutations were validated to confirm the mutation accuracy and frequency detected by NGS (*Table 3*). Meanwhile, four corresponding FFPE samples were also randomly selected to be validated by ddPCR as a control. A similar mutant allele frequency of FFPE samples was

 Table 2 EGFR mutational landscape

EGFR mutational type	N=16	%
L858R	5	31.2
Exon 19 deletion	4	25.0
Rare SNV	1	6.3
Co-mutation	6	37.5
L858R + R889G	1	6.3
L858R + S768I	1	6.3
L858R + V834L	1	6.3
Exon19del + L833V	1	6.3
Exon19del +A750Pro	1	6.3
Exon19del + N756H+ A755G	1	6.3

Table 3 Mutational frequency detected by NGS and ddPCR

observed with NGS and ddPCR. Results from ddPCR detection indicated that there was a good concordance between the NGS and ddPCR detection, providing favourable evidence that the sequencing data are reliable. The ddPCR results helped prove that the mutational concordance between ctDNA and FFPE of SPN was much lower than in a previous study (16).

Malignant lung peripheral nodule prediction

A new model used to predict the malignancy of lung peripheral nodules based on the 35 plasma samples was developed using two matrixes: (I) the score of mutation (MS) contributing to the lung adenocarcinoma genesis and development and (II) the tumour burden of cfDNA (TMB), which was used to evaluate the whole mutational frequency within the panel region. Cancer gene census from the COSMIC database was used to divide the mutational genes into three groups: (I) oncogene, (II) tumour suppressor gene, and (III) non-cancer-related gene. Well-known LUAD driver mutation was added as a fourth group (such as *EGFR*:L858R, *KRAS*:G12V, *ROS1/RET/ALK* fusion, and so on). The score of each mutation was assigned based on the formula below:

 $MS = sum(S_i) S_i = \begin{cases} 2^3 \ class1 \ : \ well \ - \ know \ LUAD \ driver \ mutation \\ 2^2 \ class2 \ : \ oncogenic \ mutation \ except \ class1 \\ 2^1 \ class3 \ : \ mutation \ in \ tumor \ suppressor \ gene \\ 2^0 \ class4 \ : \ mutation \ except \ before \ class \end{cases}$

i = mutation in one sample

Table 5 Initiational nequency detected by 1966 and dat OK										
Sample ID	Gene	Mutation	Sample type	NGS freq	ddPCR freq					
S8_A	EGFR	p.L858R	ctDNA	0.0094	0.0049					
S8_A	EGFR	p.L858R	FFPE	54.70%	48.21%					
S6_A	EGFR	p.L858R	ctDNA	Negative	1.7%					
S6_A	EGFR	p.L858R	FFPE	16.77%	16.86%					
S9_A	EGFR	p.L858R	ctDNA	Negative	Negative					
S9_A	EGFR	p.L858R	FFPE	24.08%	20.20%					
S19_A	EGFR	p.L858R	ctDNA	Negative	Negative					
S24_A	EGFR	p.L858R	ctDNA	Negative	Negative					
S3_A	KRAS	p.G12C	ctDNA	Negative	Negative					
S3_A	KRAS	p.G12C	FFPE	24.54%	22.35%					

NGS, next generation sequencing; ctDNA, circulating tumour DNA; FFPE, formalin-fixed, paraffin embedded.

Figure 4 Benign/malignant SPN distribution. TMS and TMB of SPN distribution, which was calculated by in-house software. Different colour indicates different type of SPN. Other cancer, malignant SPN except adenocarcinoma. TMB, tumour mutational burden; TMS, ctDNA mutational score; SPN, solitary pulmonary nodule.

All the potential mutational reads in the panel except germline mutations, which were identified by the normal control, were used to calculate the value:

 $TMD = \frac{sum(N_i)}{sum(D_i)}$ i = all the mutant sites except germline mutations

 D_i represents the reads of genomic *i*-th site; N_i represents

the summary reads of non-reference base at potential mutation *i*.

Based on the method developed in our study, the MS and TMB values of each sample are shown in *Figure 4*. The green dot represents benign samples. Thus, all four benign samples were distributed in the region within TMB ≤ 0.2 , MS ≤ 2 . If TMB =0.3 or MS =4 was used as the cut-off value for malignant SPN prediction, 33.3% of malignant adenocarcinoma samples could be predicted accurately based on the ctDNA samples. In contrast, the sensitivity of CEA (cut-off 10 ng/mL with 97% specificity) was only ~10%, which was lower than the mutation model prediction.

Discussion

LDCT, as an imaging tool for early lung cancer screening, provided insufficient benefit to participants in this study. It is reported that 39.1% of all participants in the LDCT arm of the trial had at least one positive screen, and 96.4% of these initial positive screenings represented false positives for lung cancer (20). Overabundance of false positives could lead to higher screening costs and unnecessary invasive procedures on candidates who do not actually have lung cancer (21). According to our thousands of medical records, we found that nearly 30% of peripheral nodules in lung surgery candidates were non-malignant, and tumour serological markers do not reliably diagnose malignant nodules with high sensitivity. It seemed that protein biomarkers from serum played a less important role and produced false signals during the test. As for the non-malignant cases, some patients underwent operations because of false prediction, whereas most of the rest chose surgery out of fear of the possibility of malignancy. Thus, ctDNA is defined as a more reliable tool to deliver more specific information for both patients' and physicians' reference, also to further define the high-risk population, and to provide a more cost-effective method for diagnosis. ctDNA may provide an opportunity for accurate diagnosis with the advantages of non-invasiveness and no bias of heterogeneity.

Peripheral nodule DNA from surgery candidates had no significant correlation with tumour size and stage, but mutational numbers were significantly different between the benign and malignant nodules. Driver mutations were detected in 71% of malignant nodules. As for DNA mutations from the SPN plasma, advanced tumorigenesis stages and SPN size had no significant influence on somatic

Journal of Thoracic Disease, Vol 10, Suppl 7 April 2018

mutations. Moreover, the difference between benign nodules and malignant nodules was not significant. Only ~3.9% of DNA mutations from lung nodules could also be detected in the respective ctDNA by the 10,000-fold sequencing. The concordance of hotspot driver mutations between the malignant nodule DNA and the corresponding ctDNA was only 5.8%, which was much lower than the 85% concordance of cancer tissue DNA and ctDNA in the advanced tumour stage (22). Meanwhile, there was no significant difference in concordance between the stage I and those of stage II and III which were diagnosed postoperatively by incidental finding of positive lymph nodes. This might because the early ctDNA signal of peripheral nodules had not been released into the blood system, or the early DNA mutation frequency was too low to be detected with nowaday sequencing approaches. Thus, improving sensitivity of tumour detection should not be attempted through increasing depth or coverage of sequencing. Somatic mutations were significantly different between benign and malignant tissue DNA but not ctDNA, given that it could not be tested and evaluated with conservative single-gene mutations and hotspot mutations in the early tumour stage due to the possible mechanisms and pathways. Interestingly, somatic mutations were also found in benign nodules, and most of the ctDNA mutations were not detected in FFPE samples, which needed further large-scale validation study.

Mutation concordance (including driver mutation) also suggested that predicting malignant nodules through driver mutation detection based on ctDNA has limited application. This finding encouraged us to grade and score all of the specific mutations to set up a prediction model according to how strongly the mutations correlate with lung cancer. The model first integrated the whole mutational differences, which not only included 'tumour mutational burden' but also evaluated the influence of 'potential mutation'. It overcame the limitation of ctDNA low-frequency mutation detection by NGS. According to this model, we could predict 33.3% of malignant patients (sensitivity) with 100% specificity. Therefore, circulating cfDNA from patients with early lung cancer could reasonably accelerate early diagnosis by ultra-deep sequencing of at least 10,000-folds depth (>1,000-fold unique reads depth) and whole tumour mutation evaluation. This model was the first non-invasive method to predict the malignancy based on ctDNA, which could benefit more than one-third of pulmonary nodule candidates. The potential clinical application of this tool, after extensive validation, is supplemental to LDCT, which

yields a great number of false positive cases (7). The high specificity (100%) of the ctDNA genetic model can help us 'rule in' some cases (~30%) that are highly suspected to have malignant disease and should be subjected to surgery with great confidence.

More work shall be done in further studies. Because of the relatively low concordance of tissue DNA and ctDNA mutations, it was obvious that lung cancer genes-targeted capture sequencing was not efficient enough to diagnose with ideal sensitivity by simply increasing sequencing depth or coverage of ctDNA from early candidates. To achieve clinical utility, we propose that sequencing panel contents could be expanded from lung adenocarcinoma to other subtypes to better depict the performance for whole lung nodule patients. This model also shall be optimized by following larger cohort WGS sequencing data and correlated clinical data so that more cancer related gene mutations can be established in this mutational model for more sensitive differentiation in future studies. Therefore, following the remarkable findings of the cfDNA study, ctDNA could still play an important role in diagnosing nodules identified by LDCT or biomarkers as benign or malignant (21). The field is still rushing towards the identification of screening- or diagnostic-specific markers for malignant circulating cfDNA. Other techniques with theoretically higher sensitivity, such as multiplex methylation or cancer-related antibodies detection, might be incorporated to establish a multidimensional, powerful tool for early diagnosis.

Acknowledgements

Funding: This work was supported by National Key R & D Program of China (2016YFC0905400); Guangzhou Key Laboratory of Cancer Trans-Omics Research (GZ2012, NO348) and Guangzhou Science and Technology Project (20140000001-2 and 20140000004-5); Pearl River Nova Program of Guangzhou (No. 201506010065); project 2015B020232008 from Guangdong Province as well as National Precision Medicine Project (SQ2016YFSF090334); Chinese National Natural Science Foundation (Grant No. 81501996); Key Project of Guangzhou Scientific Research Project (Grant No. 201804020030); Guangdong Doctoral Launching Program (Grant No. 2014A030310460); and Doctoral Launching Program of Guangzhou Medical University (Grant No.2014C27); Tianjin Municipal Science and Technology Special Funds for Enterprise Development (No.

14ZXLJSY00320) and special foundation for High-level Talents of Guangdong (2016TX03R171); Key Project of Livelihood Technology of Guangzhou (2011Y2-00024).

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Ethical Statement: The study protocol was reviewed and approved by the Institutional Review Board of the First Affiliated Hospital of Guangzhou Medical University (No. 2015-25). A written informed consent form, describing the purpose of the study, was signed by all of the participants.

References

- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.
- Rusch VW, Chansky K, Kindler HL, et al. The IASLC Mesothelioma Staging Project: Proposals for the M Descriptors and for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Mesothelioma. J Thorac Oncol 2016;11:2112-9.
- Kramer BS, Berg CD, Aberle DR, et al. Lung cancer screening with low-dose helical CT: results from the National Lung Screening Trial (NLST). J Med Screen 2011;18:109-11.
- 4. Henschke CI, McCauley DI, Yankelevitz DF, et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. Lancet 1999;354:99-105.
- Wahidi MM, Govert JA, Goudar RK, et al. Evidence for the treatment of patients with pulmonary nodules: when is it lung cancer?: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007;132:94S-107S.
- Starnes SL, Reed MF, Meyer CA, et al. Can lung cancer screening by computed tomography be effective in areas with endemic histoplasmosis? J Thorac Cardiovasc Surg 2011;141:688-93.
- Bartholmai BJ, Koo CW, Johnson GB, et al. Pulmonary nodule characterization, including computer analysis and quantitative features. J Thorac Imaging 2015;30:139-56.
- Ruilong Z, Daohai X, Li G, et al. Diagnostic value of 18F-FDG-PET/CT for the evaluation of solitary pulmonary nodules: a systematic review and meta-analysis. Nucl Med Commun 2017;38:67-75.
- 9. Fahrmann JF, Grapov D, DeFelice BC, et al. Serum

phosphatidylethanolamine levels distinguish benign from malignant solitary pulmonary nodules and represent a potential diagnostic biomarker for lung cancer. Cancer Biomark 2016;16:609-17.

- Kupert E, Anderson M, Liu Y, et al. Plasma secretory phospholipase A2-IIa as a potential biomarker for lung cancer in patients with solitary pulmonary nodules. BMC Cancer 2011;11:513.
- Wang W, Liu M, Wang J, et al. Analysis of the discriminative methods for diagnosis of benign and malignant solitary pulmonary nodules based on serum markers. Oncol Res Treat 2014;37:740-6.
- 12. Newman AM, Bratman SV, To J, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 2014;20:548-54.
- 13. Szpechcinski A, Rudzinski P, Kupis W, et al. Plasma cellfree DNA levels and integrity in patients with chest radiological findings: NSCLC versus benign lung nodules. Cancer Lett 2016;374:202-7.
- 14. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem 2015;61:112-23.
- Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 2014;6:224ra24.
- Izumchenko E, Chang X, Brait M, et al. Targeted sequencing reveals clonal genetic changes in the progression of early lung neoplasms and paired circulating DNA. Nat Commun 2015;6:8258.
- Li S, Choi YL, Gong Z, et al. Comprehensive Characterization of Oncogenic Drivers in Asian Lung Adenocarcinoma. J Thorac Oncol 2016;11:2129-40. Erratum in: J Thorac Oncol 2017;12:408.
- Shao D, Lin Y, Liu J, et al. A targeted next-generation sequencing method for identifying clinically relevant mutation profiles in lung adenocarcinoma. Sci Rep 2016;6:22338.
- Kim EY, Cho EN, Park HS, et al. Compound EGFR mutation is frequently detected with co-mutations of actionable genes and associated with poor clinical outcome in lung adenocarcinoma. Cancer Biol Ther 2016;17:237-45.
- 20. National Lung Screening Trial Research Team, Aberle DR, Adams AM, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409.
- 21. Brothers JF, Hijazi K, Mascaux C, et al. Bridging the clinical gaps: genetic, epigenetic and transcriptomic biomarkers for the early detection of lung cancer in the post-National Lung Screening Trial era. BMC Med

Journal of Thoracic Disease, Vol 10, Suppl 7 April 2018

2013;11:168.

22. Lee JY, Qing X, Xiumin W, et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of

Cite this article as: Ye M, Li S, Huang W, Wang C, Liu L, Liu J, Liu J, Pan H, Deng Q, Tang H, Jiang L, Huang W, Chen X, Shao D, Peng Z, Wu R, Zhong J, Wang Z, Zhang X, Kristiansen K, Wang J, Yin Y, Mao M, He J, Liang W. Comprehensive targeted super-deep next generation sequencing enhances differential diagnosis of solitary pulmonary nodules. J Thorac Dis 2018;10(Suppl 7):S820-S829. doi: 10.21037/ jtd.2018.04.09 NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02). Oncotarget 2016;7:6984-93.

Methods

Patient materials

A total of 1,254 consecutive candidate patients were reviewed following the IRB-approved protocols for resection of lung peripheral nodules in the First Affiliated Hospital of Guangzhou Medical University from January 2015 to November 2016. The 35 plasma and formalin-fixed, paraffin embedded (FFPE) tissue samples were collected from patients with lung peripheral solitary nodules \leq 3 cm in diameter of varying size and differentiation. Complete ground glass nodules (GGNs), which were thought to be highly correlated with either non-invasive malignancies or benign changes, were not included in this study. This study is approved by ethical review board of our institution (No. 2015-25).

Blood cell/FFPE cell library preparation and NGS

The library was constructed by shearing peripheral blood cell DNA with an ultrasonoscope to generate fragments with a peak of 250 bps, followed by end repair, A-tailing, and ligation to the Illumina-indexed adapters according to the standard library construction protocol (23). Target enrichment was performed on the designed cancer-related gene capture probe (NimbleGen, Roche Sequencing, Pleasanton, CA, USA). Sequencing was performed with 2×101 bp paired-end reads and an 8-bp index read on an Illumina Hiseq 2,500/4,000 platform (San Diego, CA, USA).

ctDNA library preparation and NGS

Blood samples were collected by different hospitals in China using Cell-Free DNA BCT[®] blood collection tubes (Streck, La Vista, NE, USA) and transported to a clinical diagnosis lab in Tianjin. The tubes were centrifuged at 1,600 g/min for 10 min. Then, we transferred the plasma to 1.5-mL tubes and centrifuged at 18,000 g/min for 5 min to remove any remaining cells and cellular debris. Finally, we transferred the supernatant to a fresh tube and stored it at -80 °C. The ctDNA from each 2-mL volume of plasma was extracted using the QIAamp Circulating Nucleic Acid Kit (QIAGEN, Hilden, Germany) according to the manufacturer's instructions. We quantified the ctDNA isolated from plasma by the Qubit dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA). ctDNA purified from plasma was used in the subsequent NGS panel sequencing assays. The library for ctDNA was constructed with the KAPA LTP Library Preparation Kit for Illumina Platforms (Kapa Biosystems, Wilmington, MA, USA) following the manufacturer's instructions without modification (24). Sequencing was performed with 2×101 bp paired-end reads and an 8-bp index read on an Illumina Hiseq 2,500/4,000 platform.

SNV/InDel calling

Raw reads were first processed by removing adaptors and filtering low-quality reads using SOAPnuke (http://soap. genomics.org.cn/) before aligning to the human reference GRCh37 using BWA aligner (v0.6.2-r126) (25) and removing PCR duplications by PICARD (v1.98). Then, local realignment and base quality score recalibration were performed using GATK (v2.3-9) (26). Subsequently, an in-house software was used to call candidate single nucleotide variants (SNV) using the Bayesian model, after which SNV with strand bias and read location bias were filtered using the Fisher's exact test and Kolmogorov-Smirnov test separately (27). Then, SNVs in the local control set were filtered. SNVs were scored according to GC content, adjacent SNV and InDels, multiple mapping locations, and so on. Finally, SNVs with a low score were removed.

Candidate InDels were extracted from the CIGAR information in the BAM files. Next, the de Bruijn method was used to conduct the local *de novo* assemble based on the K-mers from the mapping reads (28). By comparison with the reference sequencing, InDels were predicted. InDels in the corresponding blood cell samples were removed. Finally, InDels in simple repeat regions of the human genome were checked again because of the possibility of more sequencing errors in these regions.

The method for detecting SNV/InDels in the ctDNA samples was the same as that for FFPE sequencing data, except for one additional step that was used to filter the raw mutant set. Twelve-bp paired reads were used as endogenic duplex consensus molecular barcodes and clustered (29). Those with identical barcodes and similar sequences (with consistency >80%) were considered duplication clusters of one template. The order of paired-end sequences was used to identify the sense and anti-sense strands of the template. Only the mutations with both sense and anti-sense strands were used for further analysis.

Somatic SNV and InDels were annotated by ANNOVAR, and only mutations that changed protein structure were retained for further analysis.

Figure S1 Clinical distribution of all SPNs. SPN, solitary pulmonary nodule; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; SCLC, small cell lung cancer.

Figure S2 Schedule of pulmonary nodules ultra-deep sequencing and mutation spectrum building. ctDNA, circulating tumour DNA.

Figure S3 The mutational number comparison between stage I patients and stage II–III patients.

Figure S4 The correlation between the number of ctDNA mutations and the size of SPN, which was measured by the maximum diameter of SPN. SPN, solitary pulmonary nodule; ctDNA, circulating tumour DNA.

Figure S5 The mutation overlap between the tissue DNA and the corresponding ctDNA sample. FFPE, formalin-fixed, paraffin embedded; ctDNA, circulating tumour DNA.

Sample_ID	Gender	Age (year)	Histology	Primary site	Primary site (maximum diameter) cm		TNM	Stage	CEA (ng/mL)
S32_N	F	62	Benign	Right sided	3.6	3.6×2.8×2.2	-	-	1.24
S33_N	F	53	Benign	Right sided	1.2	1.2×1×1	-	-	1.72
S34_N	М	39	Benign	Left sided	0.4	-	-	-	3.56
S35_N	М	27	Benign	Right sided	3	3×2.5×2	-	-	1.07
S1_A	F	55	Adenocarcinoma	Right sided	2.5	2.5	T1bN2M0	Illa	1.68
S2_A	М	64	Adenocarcinoma	Left sided	3.5	3.5×3×2.5	T1bN1M0	lla	1.97
S3_A	М	63	Adenocarcinoma	Left sided	2	2	T1bN0M0	lb	4.01
S4_A	М	61	Adenocarcinoma	Right sided	2.6	2.6×2×2	T1bN0M0	lb	3.71
S5_A	М	32	Adenocarcinoma	Unknown	3.5	3.5	T1bN1M0	lla	1.18
S6_A	F	59	Adenocarcinoma	Right sided	1.8	1.8×1.5×1.5	T1aN1M0	lla	7.85
S7_A	F	43	Adenocarcinoma	Left sided	1.2	1.2×0.6	T1aN0M0	la	0.72
S8_A	М	67	Adenocarcinoma	Right sided	3.6	3.6×3	T2N1M0	lla	1.8
S9_A	F	47	Adenocarcinoma	Right sided	2.5	2.5×2.5×2.2	T2N0M0	lb	0.5
S10_A	F	38	Adenocarcinoma	Right sided	4	4×3.5×1.7	T2aNxMx		4.41
S11_A	М	81	Adenocarcinoma	Left sided	2	2×1.5	T1aN0M0	la	0.71
S29_O	М	51	Other	Right sided	2.3	2.3×1.3×0.7	T1bN2M0	Illa	1.88
S12_A	F	70	Adenocarcinoma	Right sided	0.8	1.7×0.5	T1bN0M0	lb	0.88
S13_A	М	73	Adenocarcinoma	Right sided	2	2×1.5	T2aN0M0	lb	4.06
S14_A	М	56	Adenocarcinoma	Right sided	1.3	1.3×0.7×0.7	T1aN0M0	la	2.29
S15_A	М	45	Adenocarcinoma	Right sided	4	4×3×2.5	T2aN1M0a	lia	2.23
S16_A	F	43	Adenocarcinoma	Right sided	2	2×1×0.6	T1N0M0	la	18.15
S17_A	М	50	Adenocarcinoma	Left sided	NA	2.7×2×1.5	T2aN0M0	lb	1.44
S18_A	F	60	Adenocarcinoma	Right sided	1	1×1×1	T1aN0M0	la	0.55
S28_S	М	69	Squamous cell carcinoma	Left sided	3.5	3.5×3×3	T2aN0M0	lb	2.2
S19_A	М	52	Adenocarcinoma	Right sided	3	3×2.7	T2aN2M0	Illa	2.36
S20_A	М	49	Adenocarcinoma	Left sided	3	3×1.8	T1bN0M0	lb	2.26
S30_O	F	31	Other	Right sided	1.3	1.3×1	T1aN0M0	la	0.55
S21_A	F	60	Adenocarcinoma	Left sided	1.3	1.3×0.5	T1aN0M0	la	1.41
S22_A	М	70	Adenocarcinoma	Right sided	2	2×1.8×1.5	T1aN0M0	la	1.63
S26_A	М	59	AIS	Left sided	0.8	0.8×0.5	T1aN0M0	la	2.15
S31_O	М	72	Other	Right sided	2	2×2×1.5	T1aN0M0	la	3.69
S27_A	М	64	MIA	Right sided	1	1×0.8	T1aN0M0	la	3.34
S23_A	F	49	Adenocarcinoma	Left sided	0.8	-	T1aN0M0	la	1.36
S24_A	М	66	Adenocarcinoma	Right sided	1.8	1.8×1.7×1	T1aN0M0	la	1.93
S25_A	М	68	Adenocarcinoma	Left sided	3	3×2.5×2	T2aN3M0	IIIb	11.25

Table S1 Clinical information for the 38 sequencing samples analyzed in this st

AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma.

Table S2 All the gene list	Table S2 (continued)	Table S2 (continued)	Table S2 (continued)	Table S3 Sequencing depth of each sample				
in the sequencing panel (27)	ZEB1	PBX2				Depth		
OR14C36	CDKN2A	WDR62	PIK3CA	Sample_ID	Normal	Tissue	ctDNA	
PARG	NDUFS1	VAV3	NOTCH2	S1_A	761	431	2,948	
ERBB4	ADAM23	CNTNAP2	OR2T2	S10_A	702	636	1,479	
INSRR	TBX6	CHEK2	ALK	S11_A	718	177	3,03	
DDR2	XIRP2	KIAA0907	AKAP6	S12_A	765	386	5,64	
TMEM199	FGFR1	NUDT11	NBPF10	S13_A	823	1,642	1,89	
OR2T33	MET	RYR2	NEF2L2	S14 A	1.428	402	5.88	
DSPP	II 32		OR10G8	S15 A	905	220	7.65	
KCNB2	NTRK3	OR4K2	SHIDDA	S16 A	1.370	275	7.48	
ZNF479	NIAKS		SHZDZA	S17 A	524	1 011	93	
ANAPC1	FAMIJOB			S18 A	801	833	1 45	
MB21D2	REG3A	KRIAP5-5	OR4N2	S10_A	1 507	016	1,40	
TSHZ3	KEAP1	OR2M2	DHX9	519_A	1,597	910	1,024	
MAP1B	PTPRD	TNRC6A	ATM	S2_A	728	197	2,59	
THSD4	RALGAPB	VGLL3	PAPPA2	S20_A	1,961	1,245	94:	
DNAH8	OR4C16	OR2T34	OR4N4	S21_A	1,922	601	1,85	
CNTN5	OR8H2	RET	ERBB2	S22_A	2,224	459	98	
	ATXN1	OR5D18	ZNF814	S23_A	1,362	362	80	
KDR	GAB1	NF1	BEST3	S24_A	2,032	892	77	
	JAK3	RB1	ZNF598	S25_A	1,952	818	1,42	
EPB41L4A	REG1B	KLK1		S26_A	1,716	1,110	88	
1253	LRRC56	FBN2		S27_A	1,820	1,072	89	
OR4M2	FGFR2	NRAS		S28_S	736	1,772	2,59	
SNAPC4	DCAF4L2	OR4C15		S29_O	911	542	3,03	
NTRK1	KIAA2022	LPA		S3_A	757	171	2,60	
PTEN	EPHA5	MMP27		S30_O	1,803	513	70	
OR51V1	FGFR3	ATXN3		S31_O	2,543	1,452	72	
ZFHX4	KIT	CTNNB1		S32_N	672	1,089	3,73	
KRTAP4-8	CROCC	GNA15		S33_N	650	1,441	2,15	
NAV3	CNTNAP3B	EGER		S34 N	1.829	1.113	1.59	
OR10Z1	KRAS	BOS1		S35 N	743	516	1.02	
PCDH11X		DOTEC		S4 A	659	465	3 55	
EPHA3		FOIEC		S5 Δ	619	711	1 89	
APC				56_A	845	268	1,00	
SMAD4				٥٦ ٨	600	700	0.08	
STK11	FAM47A	CDH12		57_A	000	100	2,20	
ZNF804A	AK11	OR5L2		58_A	000	520	2,27	
DDX11	JAK2	NYAP2		A	6/1	409	2,53	
FGFR4	NOTCH1	CLIP1						
OR2B11	PRB2	KRTAP4-11						
	PDGFRA	FOLH1	_					
	Table S2 (continued)	Table S2 (continued)						

Table S2 (continued)

Table S4 List of somatic SNV/InDels identified by	y FFPE sam	ples sequencing dat
---	------------	---------------------

Table S4 List	of somatic S Chr	SNV/InDels ide	entified by FFPE End_POS	samples sequencing data Ref	Mutational type	Genotype	Function	Gene	Transcript	Exon	Base mutation	Protein mutation
S1_A	chr7	55259438	55259439	Т	Snv	T/G	Missense	EGFR	NM_005228.3	EX21	c.[2497T>G];[=]	p.[Leu833Val];[=]
S1_A S1_A	chr7 chr10	55242468 89717677	55242484 89717686	TTAAGAGAAGCAACAT GAAGACAAG	Del Del	TTAAGAGAAGCAACAT/T GAAGACAAG/G	Cds-indel Frameshift	EGFR PTEN	NM_005228.3 NM_000314.4	EX19 EX7	c.[2240_2254deITAAGAGAAGCAACAT];[=] c.[704_711deIAAGACAAG];[=]	p.[Leu747_Ser752delinsSer];[=] p.[Glu235_Lys237delinsValfs*?];[=]
S2_A S2_A	chr15 chr15	22368734 22368880	22368735 22368881	C C	Snv	C/T C/A	Missense	OR4M2 OR4M2	NM_001004719.2	EX1E FX1F	c.160C>T	p.H54Y p.His54Tyr
S2_A	chr17	7577089	7577090	C	Snv	C/G	Missense	TP53	NM_000546.5	EX8	c.[848G>C];[=]	p.[Arg283Pro];[=]
S3_A S3_A	chr2 chr7	168105289 88965976	168105291 88965977	AG C	Del Snv	AG/A C/A	– Missense	XIRP2 ZNF804B	NM_152381.5 NM_181646.2	intron EX4E	g.[168105291delG];[=] c.3681C>A	p.S1227R p.Ser1227Arg
S3_A	chr11	123901085	123901086	С	Snv	C/A	Missense	OR10G8	NM_001004464.1	-	c.757C>A	p.P253T p.Pro253Thr
S3_A S3_A	chr12	20296030	20296031	т	Snv	T/G	Missense	OR4N2	NM_001004723.1	-	c.424T>G	p.Y142D p.Tyr142Asp
S3_A S3_A	chr14 chr17	20296033 7578405	20296034 7578406	G C	Snv Snv	G/A C/T	Missense Missense	OR4N2 TP53	NM_001004723.1 NM_000546.5	– EX5	c.427G>A c.[524G>A];[=]	p.A143T p.Ala143Thr p.[Arg175His];[=]
_ S3_A	chr17	29559189	29559190	A	Snv	A/G	Coding-synon	NF1	_ NM_000267.3	EX25	c.[3297A>G];[=]	p.[=];[=]
S3_A S3_A	chr19 chr19	9073417 58382263	9073418 58382264	G T	Snv Snv	G/T T/C	Coding-synon Utr-3	MUC16 ZNF814	-	-	c.14028C>A g.[58382264T>C];[=]	·
S4_A	chr1	156834221	156834222	т	Ins	т/тт	Splice-5	NTRK1	NM_001007792.1	IVS3	c.[197+2_197+3insT];[=]	
S4_A S4_A	chr1 chr7	55242464	55242480	GGAATTAAGAGAAGCA	Del	GGAATTAAGAGAAGCA/G	Coding-synon Cds-indel	EGFR	NM_001014796.1	EX7 EX19	c.[2236_2250delGAATTAAGAGAAGCA];[=]	p.[=];[=] p.[Glu746_Ala750delfs*?];[=]
S4_A	chr17 chr17	7576853 7579493	7576855 7579494	ТG т	Del	TG/T T/A	Frameshift	TP53 TP53	NM_000546.5	EX9 EX4	c.[991delC];[=]	p.[Gln331Argfs*?];[=]
34_A S4_A	chr19	9060496	9060497	т	Snv	T/C	Missense	MUC16	-	-	c.26949A>G	p.l8983M p.lle8983Met
S5_A S6 A	chr15 chr7	88690675 55259514	88690676 55259515	G T	Snv Snv	G/A T/G	Intron Missense	NTRK3 EGFR	NM_001007156.2 NM 005228.3	IVS5 EX21	c.[396-42C>T];[=] c.[2573T>G]:[=]	p.[Leu858Ara]:[=]
_ S6_A	chr15	88524578	88524582	TTTG	Del	ΤΤΤΓG/Τ	Cds-indel	NTRK3	 NM_001007156.2	EX15	c.[1595_1597delCAA];[=]	p.[Ser532_Asn533delinsTyr];[=]
S6_A S7_A	chrX chr7	91133541 55242477	91133542 55242478	т G	Snv Snv	T/A G/C	Missense Missense	PCDH11X EGFR	– NM_005228.3	– EX19	c.2303T>A c.[2248G>C];[=]	p.V768D p.Val768Asp p.[Ala750Pro];[=]
S7_A	chr7	55242467	55242477	ATTAAGAGAA	Del	ATTAAGAGAA/A	Cds-indel	EGFR	NM_005228.3	EX19	c.[2239_2247delTTAAGAGAA];[=]	p.[Leu747_Glu749delfs*?];[=]
S8_A S8_A	chr2	168103079	168103080	C	Snv	C/T	-	-	-	-	g.[248616493G>T];[=]	· ·
S8_A S8 A	chr7 chr7	55249004 55259514	55249005 55259515	G T	Snv Snv	G/T T/G	Missense Missense	EGFR EGFR	NM_005228.3 NM 005228.3	EX20 EX21	c.[2303G>T];[=] c.[2573T>G];[=]	p.[Ser768lle];[=] p.[Leu858Arg];[=]
	chr10	43610858	43610859	G	Snv	G/C	Intron	RET	 NM_020630.4	IVS11	c.[2136+675G>C];[=]	
S8_A S8_A	chr15 chr17	88429074 7578190	88429076 7578191	CA A	Del Ins	CA/C A/ATA	Intron Frameshift	NTRK3 TP53	NM_001012338.2 NM_000546.5	IVS17 EX6	c.[2134-110delT];[=] c.[657_658insTA];[=]	p.[Tyr220fs*?];[=]
S9_A	chr7	55259514	55259515	Т	Snv	T/G	Missense	EGFR	NM_005228.3	EX21	c.[2573T>G];[=]	p.[Leu858Arg];[=]
S9_A S9_A	chr17 chr17	7578180	7578181	G	Snv	G/A	Nonsense	TP53 TP53	NM_000546.5 NM_000546.5	EX6 EX2	c.[668C>G];[=] c.[46C>T];[=]	p.[Pro223Arg];[=] p.[Gln16*];[=]
S9_A S10_A	chrX	73960816	73960817 55242470	G	Snv	G/A T/C	Missense	KIAA2022 EGEB	- NM 005228.3	- FX19	c.[3575C>T];[=]	p.[Ser1192Phe];[=]
S10_A	chr17	7577538	7577539	G	Snv	G/A	Missense	TP53	NM_000546.5	EX7	c.[742C>T];[=]	p.[Arg248Trp];[=]
S11_A S11_A	chr5 chr8	71495573 139164634	71495574 139164635	c	Snv Snv	С/Т С/Т	Missense Missense	MAP1B FAM135B	-	-	c.[6392C>T];[=] c.[2083G>A];[=]	p.[Pro2131Leu];[=] p.[Val695IIe];[=]
S11_A	chr10	123256191	123256192	G	Snv	G/A	Nonsense	FGFR2	NM_000141.4	EX13	c.[1717C>T];[=]	p.[Arg573*];[=]
S11_A S29_O	chr7 chr1	55242463 176564076	55242479 176564077	AGGAATTAAGAGAAGC G	Del Snv	AGGAATTAAGAGAAGC/A G/A	Cds-indel Missense	EGFR PAPPA2	NM_005228.3 NM_020318.2	EX19 EX3	c.[2235_2249delGGAATTAAGAGAAGC];[=] c.[1337G>A];[=]	p.[Lys745_Ala750delinsLys];[=] p.[Ser446Asn];[=]
S29_O	chr11	55595205	55595206	С	Snv	С/Т	Missense	OR5L2	NM_001004739.1	EX1E	c.[512C>T];[=]	p.[Ser171Phe];[=]
529_0 S12_A	chr13 chr1	40947637 156843655	40947638 156843656	A T	Snv	AVG T/C	Missense	ны NTRK1	NM_001007792.1	EX9	c.[992T>C];[=]	p.[Leu331Pro];[=]
S12_A	chr1 chr4	248512497 55139766	248512498 55139767	A	Snv	A/G C/A	Missense Coding-synon	OR14C36 PDGERA	NM_001001918.1	EX1E EX10	c.[422A>G];[=]	p.[Gln141Arg];[=]
S12_A	chr6	16328689	16328690	c	Snv	С/Т	Utr-5	ATXN1	NM_000332.3	EX8	c.[-149G>A];[=]	b·[_]
S12_A S12_A	chr7 chr8	55259514 139207677	55259515 139207678	Т	Snv Snv	T/G C/A	Missense	EGFR FAM135B	NM_005228.3 NM 015912.3	EX21 IVS8	c.[2573T>G];[=] c.[824-128G>T];[=]	p.[Leu858Arg];[=]
S12_A	chr15	88423539	88423540	G	Snv	G/A	Coding-synon	NTRK3	NM_001012338.2	EX19	c.[2295C>T];[=]	p.[=];[=]
S12_A S13_A	chr17 chr1	29575816 74574911	29575817 74574912	A	Snv Snv	A/G A/G	Intron Intron	NF1 LRRIQ3	NM_000267.3 NM_001105659.1	IVS29 IVS5	c.[3975-185A>G];[=] c.[867+166T>C];[=]	· .
S13_A	chr2	168100348	168100349	С	Snv	С/Т	Missense	XIRP2	NM_001199144.1	EX7	c.[1781C>T];[=]	p.[Pro594Leu];[=]
S13_A S13_A	chr3 chr4	178951724 55139556	178951725 55139557	G C	Snv	G/A C/T	Intron	PIK3CA PDGFRA	NM_006218.2 NM_006206.4	IVS20 IVS9	c.[2937-157G>A];[=] c.[1365-147C>T];[=]	· .
S13_A	chr4	55976706	55976707	G	Snv	G/A	Missense	KDR	NM_002253.2	EX9	c.[1118C>T];[=]	p.[Ser373Phe];[=]
S13_A	chr8	139164914	139164915	G	Snv	G/T	Missense	FAM135B	NM_015912.3	EX13	c.[1803C>A];[=]	p.[His601Gln];[=]
S13_A S13_A	chr9 chr9	8341215 8486361	8341216 8486362	G	Snv Snv	G/T G/T	Missense Intron	PTPRD PTPRD	NM_001040712.2 NM_001040712.2	EX25 IVS11	c.[3770C>A];[=] c.[1814-1038C>A];[=]	p.[Pro1257Gln];[=]
S13_A	chr17	7577123	7577124	С	Snv	C/A	Missense	TP53	NM_000546.5	EX8	c.[814G>T];[=]	p.[Val272Leu];[=]
S13_A S13_A	chr17 chr17	29553464 29592382	29553465 29592383	G C	Snv Snv	G/A C/T	Missense Intron	NF1 NF1	NM_000267.3 NM_000267.3	EX18 IVS35	c.[2014G>A];[=] c.[4772+26C>T];[=]	p.[Gly672Arg];[=]
S13_A	chr19	1218272	1218273	С	Snv	С/Т	Intron	STK11	NM_000455.4	IVS1	c.[291-143C>T];[=]	
S13_A S13_A	chr19 chr19	31767735 31767736	31767736	G	Snv	G/T	Missense Missense	TSHZ3 TSHZ3	NM_020856.2 NM_020856.2	EX2E EX2E	c.[2963C>A];[=] c.[2962C>A];[=]	p.[Pro988His];[=] p.[Pro988Thr];[=]
S13_A	chr19	31770028	31770029	C	Snv	С/Т	Missense Cds-indel	TSHZ3	NM_020856.2	EX2E	c.[670G>A];[=]	p.[Asp224Asn];[=]
S13_A S14_A	chr7	55259514	55259515	т	Snv	T/G	Missense	EGFR	NM_005228.3	EX21	c.[2573T>G];[=]	p.[Leu858Arg];[=]
S14_A S15_A	chr7	55260497 117622322	55260498 117622323	A	Snv	A/G G/A	Missense	EGFR BOS1	NM_005228.3	EX22	c.[2665A>G];[=]	p.[Arg889Gly];[=]
S15_A	chr7	140453135	140453136	A	Snv	A/T	Missense	BRAF	NM_004333.4	EX15	c.[1799T>A];[=]	p.[Val600Glu];[=]
S16_A S16_A	chr17 chr7	7577533 55242463	7577534 55242479	C AGGAATTAAGAGAAGC	Snv Del	C/A AGGAATTAAGAGAAGC/A	Missense Cds-indel	TP53 EGFR	NM_000546.5 NM 005228.3	EX7 EX19	c.[747G>T];[=] c.[2235_2249delGGAATTAAGAGAAGC]:[=]	p.[Arg249Ser];[=] p.[Lvs745 Ala750delinsLvs];[=]
S17_A	chr1	248511912	248511913	Т	Snv	T/C	_	_	_	_	g.[248511913T>C];[=]	· · · · · · · · · · · · · · · · · · ·
S17_A S17_A	chr2 chr15	79313418 88726716	79313419 88726717	C G	Snv Snv	C/T G/C	Intron Coding-synon	REG1B NTRK3	NM_006507.3 NM_001007156.2	IVS4 EX5	c.[321+74G>A];[=] c.[327C>G];[=]	р.[=];[=]
S17_A	chr17	7579306	7579307	С	Snv	C/A	Intron	TP53	NM_000546.5	IVS4	c.[375+5G>T];[=]	
S17_A S17_A	chrX	9060523 34149098	34149099	C	Snv	C/A	Missense	FAM47A	NM_024690.2 NM_203408.3	EX3 EX1E	c.[26922C>A];[=] c.[1297G>T];[=]	p.[=];[=] p.[Asp433Tyr];[=]
S18_A	chr7	55259523 7577558	55259524 7577559	Т	Snv	T/G	Missense	EGFR TP53	NM_005228.3	EX21	c.[2582T>G];[=]	p.[Leu861Arg];[=]
S28_S	chr4	55146560	55146561	G	Snv	G/A	Missense	PDGFRA	NM_006206.4	EX16	c.[2235G>A];[=]	p.[Met745lle];[=]
S28_S S28_S	chr7 chr15	41730105 88524275	41730106 88524276	G	Snv Snv	G/C C/T	Coding-synon Intron	INHBA NTRK3	NM_002192.2 NM_001007156.2	EX3E IVS15	c.[423C>G];[=] c.[1720+181G>A];[=]	p.[=];[=]
S28_S	chr17	29576012	29576013	С	Snv	C/G	Nonsense	NF1	NM_000267.3	EX30	c.[3986C>G];[=]	p.[Ser1329*];[=]
S19_A S19_A	chr2 chr2	178098955 178098955	178098956 178098956	A	Snv Snv	A/G A/G	Missense Missense	NFE2L2 NFE2L2	NM_001145412.2 NM_006164.4	EX2 EX2	c.[41T>C];[=] c.[89T>C];[=]	p.[Leu14Pro];[=] p.[Leu30Pro];[=]
S19_A	chr7	55249028	55249029	G	Snv	G/A	Missense	EGFR	NM_005228.3	EX20	c.[2327G>A];[=]	p.[Arg776His];[=]
S19_A S19_A	chr7	55259514	55259442	т	Snv	T/G	Missense	EGFR	NM_005228.3	EX21	c.[2573T>G];[=]	p.[Leu858Arg];[=]
S19_A S19_A	chr10 chr18	31809949 48604672	31809950 48604673	G T	Snv Snv	G/A T/C	– Missense	- SMAD4	– NM 005359.5	– EX12E	g.[31809950G>A];[=] c.[1495T>C]:[=]	p.[Cvs499Ara]:[=]
S19_A	chr10	89720787	89720789	GG	Del	GG/G	Frameshift	PTEN	NM_000314.4	EX8	c.[940delG];[=]	p.[Glu314Lysfs*?];[=]
S19_A S20_A	chr18 chr2	48584584 212295788	48584586 212295789	Π G	Del Snv	TT/T G/A	Frameshift Missense	SMAD4 ERBB4	NM_005359.5 NM_001042599.1	EX6 EX21	c.[759delT];[=] c.[2524C>T];[=]	p.[Phe253Leufs*?];[=] p.[Arg842Trp];[=]
S20_A	chr15	22383188	22383189	G	Snv	G/A	-	_	-	-	g.[22383189G>A];[=]	•
S20_A S30_O	chr19 chr14	1205807 20344974	1205808 20344975	G	Snv	G/A	–	-	NM_000455.4 _	=	c.[-1105C>1];[=] g.[20344975G>A];[=]	
S30_O	chr15 chr15	22368861 22368904	22368862 22368905	G	Snv	G/A G/A	-	-	-	-	g.[22368862G>A];[=] g.[22368905G>A]·[=]	
S30_O	chr15	22383188	22383189	G	Snv	G/A	-	-	-	-	g.[22383189G>A];[=]	
S21_A S21_A	chr3 chr7	41281604 55242467	41281605 55242480	T ATTAAGAGAAGCA	Ins Del	T/TAATT ATTAAGAGAAGCA/A	- Cds-indel	– EGFR	- NM_005228.3	– EX19	g.[41281605_41281606insAATT];[=] c.[2239_2250delTTAAGAGAAGCA]:[=]	p.[Leu747_Ala750delfs*?]:[=]
S34_N	chr12	122812400	122812401	T	Snv	T/C	-	_	-	-	g.[122812401T>C];[=]	
S22_A S22_A	chr4 chr7	66217279 55242493	66217280 55242494	c	Snv	C/I C/G	Missense	EPHA5 EGFR	NM_004439.5 NM_005228.3	EX14 EX19	c.[2335G>A];[=] c.[2264C>G];[=]	p.[Gly779Ser];[=] p.[Ala755Gly];[=]
S22_A	chr7	55242495	55242496	A	Snv	A/C	Missense	EGFR	NM_005228.3	EX19	c.[2266A>C];[=]	p.[Asn756His];[=]
S22_A S22_A	chr9	8485833	8485834	G	Snv	G/A G/A	– Missense	– PTPRD	_ NM_002839.3	_ EX28	g.[37188836G>A],[=] c.[2983C>T];[=]	p.[Arg995Cys];[=]
S22_A S22_A	chr17 chr7	39274363 55242468	39274364 55242487	T	Snv	T/G TTAAGAGAAGCAACATCTC/T	– Cds-indel	– FGFR	- NM 005228.3	– FX19	g.[39274364T>G];[=]	n [l.eu747, Pro753delinsSer] [=]
S26_A	chr3	89448595	89448596	С	Snv	C/A	Missense	EPHA3	NM_005233.5	EX7	c.[1560C>A];[=]	p.[Asn520Lys];[=]
S26_A S26_A	chr7 chr17	140477829 7579663	140477845 7579680	TGAGGTGTAGGTGCTG AGCCCTCCAGGTCCCCA	Del	TGAGGTGTAGGTGCTG/T A/A	Cds-indel Intron	BRAF TP53	NM_004333.4 NM_000546.5	EX12 IVS3	c.[1463_1477delCAGCACCTACACCTC];[=] c.[96+20_96+35delTGGGGACCTGGAGGGC];[96+20_96+35delTGGGGACCTGGAGGGC]	p.[Thr488_GIn493delinsLys];[=]
	chr2	114357507	114357508	A	Snv	A/G	-	_	-	_	g.[114357508A>G];[=]	
S31_O S27_A	chr9 chr17	8504437 39274156	8504438 39274157	T G	Snv Snv	T/C G/A	Intron –	PTPRD -	NM_001040712.2 _	IVS10 -	c.[1669-33A>G];[=] g.[39274157G>A];[=]	· .
S23_A	chr6	9056080	117641474 9056999	G	Snv	G/A	Intron	ROS1	NM_002944.2	IVS35	c.[5778-281C>T];[=]	
525_A S23_A	chr19	9058623	9058624	G	Snv	G/A	-	-	-	-	g.[9058624G>A];[=]	
S23_A S23_A	chr19 chr1	10597049 247615261	10597050 247615263	G AA	Snv Del	G/A AA/A	Utr-3 –	KEAP1 –	NM_012289.3 -	EX6E	c.[*278C>T];[=] a.[247615263delA]·[=]	
S23_A	chr17	39253415	39253420	AGACA	Del	AGACA/A	-	-	-	-	g.[39253417_39253420delGACA];[=]	
S24_A S24_A	chr1 chr5	162724923 112174255	162724924 112174256	т G	Snv Snv	T/A G/A	Intron Missense	DDR2 APC	NM_001014796.1 NM_000038.5	IVS6 EX16E	c.[418-22T>A];[=] c.[2965G>A];[=]	p.[Asp989Asn]:[=]
S24_A	chr7	55259514	55259515	Т	Snv	T/G	Missense	EGFR	NM_005228.3	EX21	c.[2573T>G];[=]	p.[Leu858Arg];[=]
S24_A S24_A	chr7 chr7	116412077 116412077	116412078 116412078	T T	Snv Snv	T/C T/C	Intron Intron	MET MET	NM_000245.2 NM_001127500.1	IVS14 IVS14	c.[3028+35T>C];[=] c.[3082+35T>C];[=]	
S24_A	chr9	8492980	8492981	Т	Snv	T/C	Splice-3	PTPRD	NM_002839.3	IVS26	c.[2350-2A>G];[=]	
525_A S25_A	chr1 chr1	156844882 247615150	156844883 247615151	G C	Snv Snv	G/T C/A	Intron –	NTRK1 –	NM_001007792.1 _	IVS11 -	c.[1246+83G>T];[=] g.[247615151C>A];[=]	
S25_A	chr1	248616179	248616180	С	Snv	C/A	-	-	-	-	g.[248616180C>A];[=]	
525_A S25_A	chr1 chr4	∠48737759 55960837	248737760 55960838	G G	Snv Snv	G/T G/T	– Intron	– KDR	- NM_002253.2	– IVS21	g.[248/3/760G>T];[=] c.[2971+131C>A];[=]	• •
S25_A	chr7	57187926	57187927	G	Snv	G/T	_	_	-	-	g.[57187927G>T];[=]	
S25_A	chr11	49168536	49168537	Т	Snv	T/C	-	-	-	-	g.[49168537T>C];[=]	· ·
S25_A S25_A	chr16 chr17	32890555 7578202	32890556 7578203	c c	Snv Snv	C/A C/A	– Missense	– TP53	- NM_000546.5	– EX6	g.[32890556C>A];[=] c.[646G>T];[=]	p.[Val216Leu];[=]
S25_A	chr17	7578202	7578203	C	Snv	C/A	Missense	TP53	NM_001276760.1	EX6	c.[529G>T];[=]	p.[Val177Leu];[=]
525_A S25_A	chr17 chr19	7578204 1218413	7578205 1218414	C A	Snv Snv	C/A A/G	Missense Splice-3	1P53 STK11	NM_000546.5	EX6 IVS1	c.[644G>T];[=] c.[291-2A>G];[=]	p.[Ser215lle];[=]
S25_A	chr19	9060744	9060746	Π	Del	TT/T	-	-	-	-	g.[9060746delT];[=]	

Table S5 List of structure variation genes detected in FFPE samples

Sample_ID	Gender	Age	Histology	Gene1	Gene2	Cancer_SoftClip_Sup	Normal_SoftClip_Sup	All_freq (%)	Validation by IHC
S5_A	М	32	Adenocarcinoma	ALK	EML4	22	0	4.14	Yes
S27_A	М	64	MIA	KIF5B	RET	46	0	5.79	Yes
S23_A	F	49	Adenocarcinoma	ALK	EML4	29	0	4.65	Yes
S23_A	F	49	Adenocarcinoma	ERC1	ROS1	22	0	4.92	No

FFPE, formalin-fixed, paraffin embedded; MIA, minimally invasive adenocarcinoma.

Table S6 List of somatic SNV/InDels identified in ctDNA samples

Sample_ID	Chr	Start_POS	End_POS	Ref	Mutational type	Genotype	Function	Gene	Transcript	Exon	Base mutation	Protein mutation
S4_A	chr7	55266511	55266512	А	Snv	A/T	Missense	EGFR	NM_005228.3	EX23	c.[2804A>T];[=]	p.[Gln935Leu];[=]
S8_A	chr7	55249004	55249005	G	Snv	G/T	Missense	EGFR	NM_005228.3	EX20	c.[2303G>T];[=]	p.[Ser768lle];[=]
S8_A	chr7	55259514	55259515	Т	Snv	T/G	Missense	EGFR	NM_005228.3	EX21	c.[2573T>G];[=]	p.[Leu858Arg];[=]
S8_A	chr10	43610858	43610859	G	Snv	G/C	Intron	RET	NM_020630.4	IVS11	c.[2136+675G>C];[=]	-
S14_A	chr10	43610448	43610449	G	Snv	G/T	Intron	RET	NM_020630.4	IVS11	c.[2136+265G>T];[=]	-
S15_A	chr7	55269080	55269081	G	Snv	G/T	Intron	EGFR	NM_005228.3	IVS25	c.[3114+33G>T];[=]	-
S15_A	chr10	43610677	43610678	G	Snv	G/T	Intron	RET	NM_020630.4	IVS11	c.[2136+494G>T];[=]	-
S15_A	chr10	43611827	43611828	Т	Snv	T/A	Intron	RET	NM_020630.4	IVS11	c.[2137-204T>A];[=]	-
S27_A	chr7	55219055	55219056	G	Snv	G/A	Splice-5	EGFR	NM_005228.3	IVS5	c.[628+1G>A];[=]	-
S25_A	chr6	117708978	117708979	А	Snv	A/C	Missense	ROS1	NM_002944.2	EX13	c.[1978T>G];[=]	p.[Trp660Gly];[=]

SV calling

Chimeric read pairs were collected and clustered to detect structural variations (SVs). The clipped parts of the soft clipped reads were collected and mapped to the genome (30). Genome locations of clipped and remaining parts were clustered to determine the accurate break points of SVs.

ddPCR

Droplet digital PCR (ddPCR, QuantStudio 3D Digital PCR System, Life Technologies, Carlsbad, CA, USA) was performed in this study. According to the guidebooks, QuantStudio 3D Digital PCR Master Mix v2 and TaqMan Assay were thawed to room temperature and mixed approximately 10 times. The targeted DNA was diluted to 200–2,000 copies/µL. The reaction mixture was prepared following the recommended protocol, and then the mixture was loaded into the QuantStudio 3D Digital PCR Chip as soon as possible.

References

 Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: overviews and challenges. Biotechniques 2014;56:61-4, 66, 68, passim.

- Xu S, Lou F, Wu Y, et al. Circulating tumor DNA identified by targeted sequencing in advanced-stage non-small cell lung cancer patients. Cancer Lett 2016;370:324-31.
- Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010;26:589-95.
- McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303.
- Kan Z, Zheng H, Liu X, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 2013;23:1422-33.
- Narzisi G, O'Rawe JA, Iossifov I, et al. Accurate de novo and transmitted indel detection in exome-capture data using microassembly. Nat Methods 2014;11:1033-6.
- Lanman RB, Mortimer SA, Zill OA, et al. Analytical and Clinical Validation of a Digital Sequencing Panel for Quantitative, Highly Accurate Evaluation of Cell-Free Circulating Tumor DNA. PLoS One 2015;10:e0140712.
- Wang J, Mullighan CG, Easton J, et al. CREST maps somatic structural variation in cancer genomes with basepair resolution. Nat Methods 2011;8:652-4.