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Introduction

Cardiovascular diseases are among the leading mortality 
cause in the World and the use of cardiac patches remains 
among the main therapeutic solutions for their surgical 
treatment.

Currently applied cardiovascular patches can be 
of synthetic origin or biological derivation. Synthetic 
materials like Dacron® (Koch Industries, Inc., Wichita, KS, 
USA) are rigid and not flexible, thus unable to contract 
simultaneously with the beating heart tissue. Moreover, 
their biocompatibility is poor. In fact, they are known to 
induce local inflammatory reactions and endocarditis in 
the recipient patient (1). As a consequence, thickening, 
fibrotic processes and calcification may occur, as well as no 

regeneration of the autologous tissue (2).
A greater cl inical  interest  has been devoted to 

biologically derived patches and substitutes. A large class 
of biological devices has been applied or is presently 
under study for the repair, correction and reconstruction 
of cardiovascular alterations. Autologous and xenogeneic 
pericardia, porcine intestinal submucosa extracellular 
matr ix  (SIS-ECM),  as  wel l  a s  t i s sue  engineered 
myocardium, blood vessels and heart valves have been 
proposed as more valid alternatives to synthetic materials 
for several surgical indications.

This review will offer an overview on the different 
solutions of regenerative medicine tested at the preclinical 
level and will discuss the outcomes of their clinical use in 
the cardiovascular surgical field. 
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Pericardial patches (PP)

Preclinical experiences

The first application of a chemically stabilized animal 
pericardium dates back to 1971, when the Ionescu-Shiley 
bioprosthetic heart valve, manufactured with this tissue, was 
implanted clinically in aortic position (3). The successful 
results achieved in the following years encouraged the 
rapid spread of pericardial xenografts in several other 
cardiovascular applications (4). The wide use in vascular 
surgery, correction of congenital and acquired heart 
diseases, and pericardial closure following heart procedures 
was sustained by its potentially unlimited availability, low 
antigenicity thanks to glutaraldehyde (GA) shielding, 
modest infection incidence, easy handling, and minimal 
suture line bleeding.

The early literature about the chemical modifications 
and biological behavior of GA was characterized by the 
paucity of in vitro studies. Initially, cardiac surgeons were 
more interested about feasibility and functionality of PP 
implants rather than on their actual biological effects. 

Recently, cytotoxicity of commercially available 
GA-crosslinked bovine pericardial patches (BPPs) was 
demonstrated by in vitro direct contact and extract assays 
of murine fibroblast culture. Moreover, the activation 
of human macrophages associated with the release of 
inflammatory cytokines was observed (5). These results were 
documented also for commercial GA-treated xenogeneic 
heart valves by quantifying the ratio among anti-/pro-
inflammatory cytokines (6).

Early in vivo animal experiments were performed mainly 
in dogs and revealed the most typical drawbacks related 
to the use of bioprosthetic GA-treated tissues at the early 
and mid-term evaluation. GA-treated xenografts were 
tested to close defects of pericardium (7-9) and atria (9-11),  
as well as substitutes of mitral chordae (8) and aorta (9). 
These materials progressively caused fibrotic deposition, 
patch thickening and shrinkage, chronic inflammation, and 
several grades of calcification not related to the sutures. 
Adherences to the epicardium were found in case of 
pericardial substitutes (7,8) and were particularly severe 
when cardiopulmonary bypass was performed (12). After 
one year follow up, they appeared, however, attenuated in 
respect to those generated with synthetic materials (13).

In general, the comparison of different synthetic 
polytetrafluoroethylene (PTFE), woven Dacron® and 
biological materials (canine autologous atrium and 
pericardium, bovine pericardium) revealed that these severe 

complications were common and independent from the 
type of substitute (10,11). Furthermore, the distribution 
of calcific foci was reported as strongly correlated to 
implantation site, function, and bloodstream contact with 
these patches (8,9).

Subcutaneous implants in rats allowed to better 
investigate the correlation between GA exposure and 
occurrence of calcification, substantiating the association 
between treatment duration and rate of BPP mineralization 
(14,15). 

Despite the wide use in the last 50 years, there are 
still open issues and controversial opinions regarding the 
effective long-term durability and the biocompatibility 
of aldehyde-treated PPs. Indeed, GA treatment does 
not completely prevent host’s response and foreign body 
reactions may occur following implantation (16,17). 
Nevertheless, the progressive evolution of GA-treated PPs 
demonstrated their improved performances in terms of 
hemocompatibility and tissue compliance in respect to the 
synthetic ones, rendering ordinary their clinical practice. 

Clinical applications

Nowadays, the biomedical industry offers a broad range 
of commercial products based on xenogeneic pericardia, 
accessible from several species and supplied with different 
chemical treatments (Table 1). Most of these products are 
GA-treated in order to induce an immunologic barrier, 
but also to increase their durability and mechanical 
stability. Moreover, in the last years, the manufacturers 
began to finally perceive the critical issues related to the 
indiscriminate use of chemical crosslinking and responded 
with anti-calcification treatments and procedures directed 
to stabilize free aldehydes.

Although these biomaterials  general ly  present 
low thrombogenicity and convenient hemodynamics 
performances, unfavorable outcomes, such as restenosis, 
intimal hyperplasia, pseudoaneurysmal deformations, 
shrinkage, rupture, cartilaginous degeneration, thrombosis, 
dystrophic calcification, and fibrosis, are not rare reported 
events.

Pericardial closure
One of the early PP applications was the pericardial 
closure in case of unfeasible primary suture. Although 
there is a lack of medical consensus on this procedure, 
it contributes to prevent cardiac herniation, tamponade, 
and sternum adherences that might increase post- and re-
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operative mortality and morbidities, such as hemorrhages 
and damages to the heart and great vessels (31). In the past, 
several attempts of pericardial closure were performed with 
synthetic materials, as Silastic (32), Dacron® (33,34), silicone 
rubber (35), polyurethane (36), and PTFE (36-38), and 
with biological tissues, as pleura (39), dura mater (34), and  
fascia lata (40-42). Indeed, PPs of bovine, porcine, and 
equine origin were mostly used with this aim. As an 
example, the application of GA-treated porcine PPs (PPPs) 
was clinically successful after 9-month surgery (7) but, in the 
long term (more than 4 years), it revealed to cause a severe 
epicardial reaction (43). Results with GA-treated BPPs 
were controversial. Yakirevich et al. disclosed freedom from 
adhesions and immunoreactions in patients re-operated 
after 7 years (44), while Skinner and colleagues reported 
a strong epicardial inflammation (45), which rendered 

necessary the complete patch removal (46). GA-treated 
equine pericardial patches (EPPs) demonstrated to be a 
valid alternative, thanks to the low rate of bioprosthesis-
related complications and reduced adhesion in recurrent 
sternotomy (47).

Congenital and acquired heart defects
GA-treated autologous PPs (APPs) or BPPs were used to 
correct a wide spectrum of congenital heart defects because 
of their versatility and easy handling. During the surgery of 
Tetralogy of Fallot, these patches were applied to reconstruct 
the right ventricular outflow tract (48) but pulmonary 
incompetence arose due to the absence of contractility (49). 
The main side effect observed was the aneurysmal dilatation 
of the bioprosthetic tissue, which was demonstrated to 
be size-related to the patch itself (50). For equivalent 

Table 1 Overview of the pericardial patches currently available on the market

Product name Manufacturers Tissue source Pre-commercial treatment

CardioCel Admedus, Malaga, Western Australia Bovine pericardium Decellularized, GA-crosslinked and treated 
with a proprietary anticalcification treatment 
(ADAPT ) (18)

Edwards Bovine Pericardial 
Patches

Edwards Lifesciences
Irvine, California, USA

Bovine pericardium GA-crosslinked and treated with a proprietary 
anticalcification treatment (XenoLogiX) (19)

Matrix PatchTM Auto Tissue Berlin GmbH Equine pericardium Decellularized (20)

No-React BioIntegral Surgical
Mississauga, Ontario, Canada

Porcine pericardium Proprietary method, heparin based, to prevent 
the reduction of aldehyde release of GA-
crosslinking treatment (21)

Peri-Guard Baxter International Inc.
Deerfield, Illinois, USA

Bovine pericardium GA-crosslinked (22)

Peripatch-EQ
Peripatch-BV

Neovasc Inc.
Richmond, British Columbia, Canada

Equine and bovine 
pericardium

Proprietary method (23)

PhotoFix CryoLife
Kennesaw, Georgia, USA

Bovine pericardium Decellularized and photo oxidized (24)

Vascutek Porcine Pericardial 
Patch

Vascutek LTD
Inchinnan, UK

Porcine pericardium GA-crosslinked (25)

SJM BiocorTM Patch St. Jude Medical
Saint Paul, Minnesota, USA

Bovine pericardium GA-crosslinked (26)

SJM Pericardial Patch with 
EnCapTM AC Technology

St. Jude Medical
Saint Paul, Minnesota, USA

Bovine pericardium GA-crosslinked and treated with a proprietary 
anticalcification treatment (27)

SURGIFOC FOC Medical
Buenos Aires, Argentina

Bovine and porcine 
pericardium

GA-crosslinked (28)

dCELL vascular patch Tissue Regenix Group PLC Porcine pericardium Proprietary decellularization process based on 
SDS and protease inhibitors (29)

Vascu-Guard Baxter Bovine pericardium GA-crosslinked (30)
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considerations, correction of congenital septal defects using 
autologous and GA-treated heterologous pericardia might 
undergo the same post-surgery evolution (51-53). Schoof 
et al. reported absent inflammation and tissue thickening 
of chemically untreated APPs, thanks to the progressive 
adaptation of the biomaterial (54). After 60 months of 
follow up, no calcifications were disclosed for BPPs used 
for the correction of various congenital heart defects (55).  
Conversely, a case report accounted for the early 
degeneration of a GA-treated BPP used for mitral valve 
augmentation. Calcification, fibrosis, pannus formation, 
thickening, neovascularization, disruption of patch 
microscopic structure but no immunogenic response were 
described (56). A comparison between GA-fixed BPPs and 
cryopreserved homografts used for aortic reconstruction 
in the correction of the hypoplastic left ventricle (LV) 
demonstrated that xenografts were less immunogenic, had a 
similar post-operative recurrent obstruction, besides being 
cost-effective (57). 

Other appl icat ions  of  PPs in congenita l  heart 
diseases were represented by the corrections of tricuspid 
insufficiency in Ebstein’s anomaly (58), double outlet of the 
right ventricle (59,60), complete atrioventricular septum 
defect (61,62) and reconstruction of the bicuspid aortic 
valve (63).

PPs were also adopted in valvuloplasty intervention 
in case of limited amount of autologous tissue. Aortic 
valvuloplasty with autologous GA-crosslinked APPs 
generally demonstrated to be effective in the correction of 
aortic structural defects (fenestration, bicuspid valve) and 
degenerations (calcification and prolapse) up to 7 years (64). 
As a result of the GA-treated APP implantation, the timing 
of re-intervention for pediatric patients was postponed up 
to 15 years with outcomes superior to the ones obtained 
in Ross operation and balloon valvuloplasty (65). These 
biomaterials were also used to enlarge the annulus prior to 
valve replacement (66).

In the correction of rheumatic disease sequelae, GA-
crosslinked APPs served to prevent damages to the 
conductive system during procedures of tricuspid valve 
replacement (67), as well as they were adopted to avoid 
the rupture of the left ventricular myocardium during 
mitral valve replacement following its calcification (68). 
Furthermore, in the settings of myocardial infarction, 
GA-treated APPs (69) or EPPs (70) were applied to elude 
cardiac rupture. 

The dilated wall of ventricular aneurysm might 
be repaired by isolating the deformation through the 

endoaneurysmorrhaphy technique. In this case, the 
application of synthetic substitutes was very often associated 
with post-operative comorbidities, such as infections 
and compliance disparity, while the use of crosslinked 
APPs turned to be more effective, leading to moderate 
calcifications only (71-73).

As a general consideration, the use of APPs is associated 
to a lower infection rate, being advantageous also to 
reconstruct the LV in those patients with severe sepsis 
(both endocarditis and myocardial abscess) and, hence, 
considerably reducing the risk of relapses (74). A similar 
resistance in infected fields was demonstrated for BPPs 
(75,76). Commonly, the repair of aortic and mitral valves 
with both bovine and autologous GA-treated PPs increased 
patient survival over the replacement (77,78). 

Vascular surgery
PPs were introduced in vascular surgery in 1991 since their 
compliance is more similar to native vascular tissues than 
to artificial grafts. As in other surgical uses, GA treatment 
helped to stabilize PP tissue and prevent aneurysmal 
dilatations. In particular, BPPs presented superior 
hemostatic properties and inferior suture line bleeding in 
respect to Dacron® (79). 

One of the main drawbacks correlated to the use of GA-
treated grafts and patches is, however, their challenging 
endothelialization due to the cytotoxic effects of the gradual 
and prolonged aldehyde release from the biomaterial 
surface (80-82). As a consequence, thrombogenicity and 
graft failure might occur, also as symptomatic of collagen 
instability with a subsequent predisposition to aneurysmal 
deformations (83). 

In aortic arch and root substitution, GA-treated 
xenogeneic PPs overcame the limitations of the most 
common substitute, i.e., Dacron®, such as poor hemostasis 
and handling. The mid-term follow up evidenced 
appropriate performances without calcification or tissue 
deterioration (84). GA-crosslinked PPs were also applied for 
the reconstruction of valvulated conduits as aortic substitute 
in combination with porcine stentless aortic cusps, showing 
no tissue deterioration after more than 5 years from  
surgery (85).

A preliminary study on the usage of BPPs compared 
with autologous vein patches for endarterectomy of 
atherosclerotic carotids revealed that restenosis was 
uniformly present in both groups but no aneurysms were 
detected in case of the pericardial substitutes (86). No 
ruptures, aneurysmal dilatation, occlusions, and infections 
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were reported by Grimsley et al. for implanted GA-treated 
BPPs at 54 months from carotid endarterectomy (87). In this 
surgery, BPP-based treatments demonstrated to be durable 
on both short and long terms (88), with a very low rate of 
stenosis (89,90). In the early and mid-term comparison, 
the performance of crosslinked PPs was similar to the one 
of Dacron®, PTFE, and autologous veins if re-stenosis 
rate and perioperative bleeding are considered (91,92).  
Even if generally uncommon, few exceptions of infections 
and aneurysmal formations have been described (93). 

Another successful surgical indication for the use of  
GA-crosslinked APPs is the reconstruction of the 
pulmonary artery and superior vena cava (94), as well as 
angioplasty, as an alternative to bypass grafting (95).

Acellular patches
GA-treated PPs are non-viable tissues, difficultly prone to 
endothelialization and unlikely disposed to remodeling and 
regeneration for a full repopulation and integration with the 
recipient’s body. 

Besides the countless attempts to reduce calcification 
potential (96-102) and cytotoxic aldehyde release from 
crosslinked biomaterials (103,104), new strategies aim at 
obtaining an improved tissue biocompatibility by means 
of decellularization. Ideally, decellularization procedures 
generate scaffolds freed from potentially immunogenic 
and pro-calcific cell elements, while preserving intact the 
properties of the ECM through the application of physical, 
chemical and/or enzymatic treatments (6,105). Several 
techniques have been proposed for pericardial tissues 
(6,106-109) and some of the manufactured products have 
already reached the market as GA-free, decellularized  
PPs (Table 1).

In particular, CardioCel found application for the 
correction of several congenital heart defects in pediatric 
patients, showing no evidence of calcification, infections, 
thickening or hemodynamic alterations on the short and 
long observations (110,111). Furthermore, explanted 
patches showed intima formation, neovascularization, and 
remodeling (112).

SIS-ECM patches

Preclinical experiences

A great attention has been recently addressed to the 
patches derived from the SIS of porcine origin. This tissue 
is particularly promising because of several advantages, 

including superior biocompatibility, manageability, 
time durability and potential to tissue remodeling and 
regeneration, with inferior proneness to scarring and 
calcification. For its peculiarities, SIS has immediately 
gained wide acceptance within the preclinical and clinical 
communities.

SIS derives from the jejunal portion of the porcine small 
intestine, being localized between the mucosal and muscular 
layers. In order to render it more immunocompatible, 
several decellularization treatments were developed (113-
116). Different preparations are already commercialized 
as ECM scaffolds of SIS, the so-called SIS-ECMs. They 
consist of specific matrix proteins, as 90% collagen 
(predominantly type I with minor amounts of types III, IV, 
V and VI), fibronectin and laminin, and other non-fibrillar 
support structures, as glycosaminoglycans (e.g., heparan 
sulfate and hyaluronic acid, thought to help regulating 
the matrix density and inhibiting scar formation during 
the healing process) organized in proteoglycans, as well as 
growth factors and adhesion molecules able to promote a 
‘constructive’ remodeling (117-122). The collagen fibers 
of SIS are preferably oriented along the longitudinal 
axis of the small intestine. This is the result of two types 
of collagen fibers that are aligned roughly 30° respect 
to the longitudinal axis of the small intestine (123,124). 
Probably, this particular spiral arrangement of the collagen 
fibers facilitates dilatation and retraction, i.e., the typical 
movements of the small intestine in the transport of 
the bolus along the digestive lumen. Understanding the 
alignment of ECM collagen fibers is important for the 
design of the ideal mechanical behavior of the scaffold and 
therefore of its strength. 

In its acellular version, SIS has an extremely reduced 
immunogenic behavior (125). In addition, the bioinductive 
properties of the SIS-ECM confer to this scaffold 
an important ability of tissue remodeling. In fact, it 
promotes the viability of the adjacent native tissue. The 
high regeneration potential inherent to SIS originates 
from a decellularized tissue very rich in growth factors, 
such as vascular endothelial cell growth factor (VEGF), 
basic fibroblast growth factor (b-FGF), and transforming 
growth factor beta (TGF-β), but also owning a high 
biodegradability. During the scaffold degradation, a release 
of VEGF, b-FGF and TGF-β occurs, which induces 
angiogenesis, mitogenesis, and cellular differentiation in 
a remodeling process stimulating scar development and, 
thus, encouraging the development of native tissue (119).  
As previously described (122,124), the dynamics of the 
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bioinduction process is not yet well deciphered but several 
hypotheses have been formulated, one not excluding 
the others. Following the first of these, ECM scaffold 
degradation occurs through the action of enzymes and 
monocytes, differentiating in macrophages with M2 
phenotype rather than M1. The M2 phenotype stimulates 
remodeling and integration of the matrix within the tissue 
through the release of anti-inflammatory cytokines (IL-10  
and TGF-β), while the M1 macrophage promotes the 
release of acidic enzymes that degrade the matrix, as well 
as the secretion of pro-inflammatory cytokines (126,127). 
Secondly, the release of growth factors, such as VEGF, 
TGF-β and other peptides (e.g., endostatin and angiostatin), 
from the degradable ECM might induce this process (124). 
As third, the infiltration of the recipient’s cells, including 
bone marrow circulating ones, might support long-term 
tissue remodeling (127).

CorMatr ix ® (CorMatr ix  Card iovascu lar,  Inc . , 
Roswell, Atlanta, and Alpharetta, GA, USA) is one of 
the commercial SIS-ECM products to have found large 
application in cardiovascular surgery. It is marketed as a 
decellularized porcine SIS material, after treatment of the 
native tissue with proprietary techniques and following 
folding in four or six layers, pressed together to form a 
single membrane of around 100 µm-thickness thanks to 
the imposition of 1,200 mmHg pressure (121,128). The 
lyophilized CorMatrix® is available in two sizes and needs 
to be rehydrated (10 minutes at room temperature in a 
sterile saline solution) to return flexible and elastic before 
its application. 

Since the beginning, CorMatrix® attracted the interest of 
scientists and clinicians for its abilities to favor migration, 
cell growth and differentiation thanks to its three-
dimensional structure and to the growth factor content. 
These features promote, in turn, tissue remodeling, 
minimizing inflammatory responses by the recipient, 
as recently reviewed by Mosala Nezhad et al. (122). In 
particular, CorMatrix® is endowed with many characteristics 
of the ideal scaffold. Its biological and structural properties 
make it strong and durable over time. 

A great number of preclinical studies on different animals 
evidenced the promising features for the application of 
SIS scaffolds in the clinical practice. Thanks to a detailed 
histopathological analysis, it appeared clear that an active 
remodeling process was undergone on porcine SIS-
ECM explants, as proved by surface re-endothelialization, 
repopulation of the matrix with engrafted cells (fibroblasts 
and smooth muscle cells) and neoangiogenesis.

The first SIS study in the cardiovascular field was 
realized in 1989 when Badylak et al. tested the use of 
autologous SIS as a large diameter vascular graft (10 mm) in 
the canine sub-aorta model. This sensibly improved success 
rates in this vascular graft surgery with endothelialization 
of the SIS graft surface and no infection or intimal  
hyperplasia (125).

A study demonstrating the good perspectives of 
CorMatrix® cardiovascular use was   provided by Mosala 
Nezhad et al.  (129): they implanted four different 
biomaterials, including this commercial SIS-ECM, in the 
porcine subcutaneous model with a follow up of 12 months  
after grafting. CorMatrix® underwent a gradual and 
consistent resorption without leaving residues. In addition, 
a progressive attenuation of inflammatory and fibrotic 
responses was documented, facilitating cell migration and 
subsequent formation of a new viable tissue.

Another successful preclinical experience with this 
SIS-ECM was described by Padalino et al. (121). They 
evaluated its efficacy as a possible patch in cardiovascular 
reconstructive surgery, grafting CorMatrix® into the 
abdominal aorta in a genetically modified rodent model 
(GFP-transgenic rat). This study stems from the need 
to find a biological tissue capable of adaptation to the 
recipient’s somatic growth. This ability is often not 
possessed by other bioprostheses, rendering necessary re-do 
procedures during the physical development of the pediatric 
patient. Histopathological analyses of explanted SIS vascular 
grafts revealed no inflammation or calcifying degeneration, 
as well as significant neoangiogenetic remodeling and tissue 
re-endothelialization, originating from the native tissue at 
the patch graft site. 

For the repair of the carotid artery, Fallon et al. implanted 
CorMatrix® (6-ply) as patch in the sheep model. The initial 
stenosis observed after one month completely disappeared 
at 90 days from grafting. In addition, a remodeling process 
interested the graft with SIS-ECM resorption, collagen 
deposition, endothelialization, neoangiogenesis, and no 
calcific degenerations (128). 

Of all preclinical studies published on SIS-ECM, only 
one disclosed negative outcomes. In fact, Pavcnik et al. 
demonstrated a high failure rate (70%) at 3–4 months in an 
ovine carotid graft model due to dilation, stenosis, dissection 
and aneurysm formation. The authors hypothesized that 
the possible causes for graft failure could be related to 
the animal model, the relatively extended length of the  
graft (10 cm) and the surgical technique, as well as the 
response to the SIS-ECM material (130). 
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Clinical applications

Collagen-based connective tissue SIS-ECMs have been 
applied for over 20 years in the clinics for soft tissue repair 
and reconstruction in surgery applications in the fields of 
cardiovascular system (131,132), integument (133,134), 
body wall (135,136), urinary bladder (137,138), rotator 
cuff (139,140), intestine (135,141,142), urethra (143), and 
diaphragm (144). Besides Cormatrix®, already described 
in the previous section, several commercial products of 
acellular SIS-ECM are currently available (e.g., Surgisis®, 
Durasis® and Stratasis®, Cook Biotech, Lafayette, IN, USA; 
Restore®, DePuy, West Chester, PA, USA). A detailed list 
of products with information on manufacturers and pre-
commercial manipulations can be retrieved in the reviews 
by Badylak’s group (124,126) and Scholl et al. (145).

Clinical results with Surgisis® for the treatment of 
carotid endarterectomy in 76 patients were reported by 
McCready et al.: 7 out of all patients were diagnosed with 
an asymptomatic pseudoaneurysm, which caused the 
suspension of the trial. Histopathological analysis revealed 
a robust presence of myofibroblasts, while biomechanical 
testing evidenced a strong lot-to-lot variability in the elastic 
properties of the product (146).

The Food and Drug Administration approved in 2010 
the clinical use of Cormatrix® for cardiac and extracardiac 
indications. Commercialized firstly for the closure of the 
pericardium, its authorized application was then extended to 
the repair of intracardiac defect, aortic and great vessels thanks 
to its high manageability. To date, CorMatrix® has been applied 
in congenital cardiac and vascular surgery (145,147,148), 
pericardial reconstruction (149), intraventricular repair (150),  
arterial and valvular reconstruction in both adults and 
children, also in the case of endocarditis (151-154), acquired 
vascular defects at different sites (151) and repair of damaged 
myocardium after infarction (155). These clinical uses are 
all facilitated by a large scale manufacturability according 
to high quality control, thereby ensuring a continuous and 
standardized supply of material to surgeons. 

However, Cormatrix® application in humans did 
not show the same encouraging outcomes reported in 
preclinical studies. Several trials have demonstrated that 
an intense inflammatory response was present after patch 
implantation. For example, in the study by Rosario-
Quinones et al., 25 pediatric patients were treated with 
CorMatrix® patches (CorMatrix®, Atlanta, GA, USA) 
for repair of congenital heart malformations. Six of these 
grafted patients were submitted to re-do intervention and 

generally, all developed an intense inflammatory infiltration, 
prevalently of eosinophil type, as well as fibrosis. The severe 
eosinophilia observed in these explants was correlated to 
a hypersensitivity reaction to α-gal epitopes (156). These 
antigens are exposed on the cell surface of porcine tissues, 
but not on the human counterparts. Thus, this allergic 
response has to be attributed to the CorMatrix®  itself. 

In another study, Mosala Nezhad et al. used CorMatrix® 
for the bicuspidation of a severely stenotic unicuspid aortic 
valve in a 12-year-old boy. In the long-term follow up 
realized, CorMatrix® remained stable for 2 years. After 
4 years from the grafting, the valve underwent complete 
calcification, fibrotic degeneration, retractions and an 
intense inflammatory infiltrate (157), rendering necessary a 
re-intervention. 

Deorsola et al. applied CorMatrix® to enlarge the isthmic 
narrowing with the aim of restoring the structure of the 
original tissue. In 6 months, some stenotic complications 
appeared at the patch application site, subsequently re-
expanded by angioplasty (158). In the case study report 
by Eckhauser et al., CorMatrix® SIS-ECM (CorMatrix 
Alpharetta, GA) was for the first time used to reconstruct a 
traumatic rupture of the aortoinnominate artery (also called 
brachiocephalic arterial trunk) of a pediatric patient in an 
emergency intervention. This study highlights the safety, 
feasibility and usage readiness of CorMatrix® in major 
arterial reconstruction, also in urgency medicine. However, 
it is important to note that there are no significant long-
term data to support the benefits of this material in artery 
reconstruction (151). 

Quarti et al. adopted CorMatrix® ECM in 26 patients 
for cardiac tissue repair and pericardial closure. No major, 
post-operative death complications or calcifications were 
reported but, even in this case, the follow-up length was 
only 25 months, so too short to evaluate the long-term 
functionality of this valve repair (147).

All these studies evidenced the main downside in the 
use of CorMatrix®, i.e., the inflammatory response, often 
intense and predominantly eosinophil, leading to severe 
stenosis and complete calcification of the patch (156,157). 
In addition, no reabsorption of the implanted material, 
minimal or totally absent tissue remodeling and negligible 
reconstruction of native tissues were described (158).  
In all cases, no systematic and long-lasting follow-
up demonstrating real and proven clinical efficacy was 
provided.

Although some reported data are optimistic, the 
uncertainties on the clinical performance remain, as long 
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as there are no large scale trials and consequent systematic 
follow-up. In addition, there is still a lacking consensus on 
robust protocols aimed at quantifying the pathological and 
tissue repair process, as well as the host’s immune response 
mechanisms towards SIS-derived patches. Nevertheless, this 
clinical hesitation is also related to critical ethical doubts 
about the trial extension to the pediatric population, given 
that the reoperation rate due to Cormatrix® failure is equal 
or even higher than 10% for this population.

Bioengineered heart tissues 

Preclinical experiences

In the decades around the years 2000, an incredible ferment 
was generated around the possibility to clinically treat the 
dramatic consequences of myocardial ischemia with cell 
cardioplasty. In this therapeutic vision, lost cardiomyocytes 
could be replaced by the infusion of exogenous cells, as 
supported by the positive results of preclinical experiments 
(159-162). In the in-human translation of this concept, 
skeletal myoblasts, as well as stem cells of hematopoietic, 
mesenchymal, bone marrow and cardiac origin have 
been applied in the setting of acute or chronic cardiac 
ischemia (163-170). Generally, the outcomes of these 
clinical trials resulted to be not sufficient to restore heart 
global function, even if a minor to moderate increase 
of the ejection fraction was documented. The initial 
hypothesis of transdifferentiation of injected cells into 
contracting cardiomyocytes was not proved, apart for those 
cytotypes endowed with an original cardiac commitment. 
Moreover, the ischemic microenvironment characterized 
by inflammation, hypoxia and absence of nutrients was 
not ideal to maintain the viability of infused cells and/or 
favor their participation to healing. Paracrine effects of cell 
therapy were therefore the only responsible for the mild 
amelioration of the ischemic heart function.

The modification of the milieu became the essential step 
towards the target of cardiac myocardium reconstruction. 
The treatment paradigm shifted from the sole cell 
therapy to tissue re-establishment by means of cardiac 
tissue engineering (TE). As firstly described by Langer 
and Vacanti, the engineering of a tissue can be achieved 
by opportunely combining and stimulating cells and 
scaffolds in order to generate a mature and functional  
bioequivalent (171). First attempts with biomaterial 
scaffolds were performed with meshes wrapped around 
the ischemic ventricle to prevent its inexorable dilatation. 

LV restraints, developed in polypropylene, polyester 
and recently nitinol, demonstrated to be efficacious in 
reducing the end-systolic and -diastolic volumes of ischemic 
ventricles in animal models and clinical trials (172-174), 
but did not receive further attention for a routine in-human 
application due to the invasive cardiosurgical intervention. 

The classic concept of TE was, instead, widely explored 
at the preclinical level. Through a multidisciplinary 
approach, novel solutions were designed and tested in order 
to offer more biocompatible and viable alternatives to so far 
used treatments. Scaffolds, cells and stimuli were selected 
among the several options on the basis of specific criterions, 
among which their bioactivity and non-immunogenicity. 
As in the case of cell therapy, cellular elements were 
chosen on their ability to survive, transdifferentiate into 
cardiac cytotypes, as well as integrate into the host tissue. 
Nevertheless, preferred scaffolds had to be biodegradable 
and easily vascularizable in order to prevent occurrences 
of core necrosis. First, the ability to be not seen by the 
recipient’s immune system, i.e., biomimesis, was also 
retained to be an essential property. More recently, the 
advances on the understanding of the response to implanted 
biomaterials have evidenced a peculiar role of inflammation 
and immunoresponse exerted by M2 macrophages in the 
tolerance/integration process leading to regeneration. 
Especially in the case of myocardial reconstruction, the 
in vitro integration of cells and scaffolds has to allow the 
establishment and maintenance of electro-mechanical 
coupling and pulse propagation. In order to achieve such 
an objective, the provision of a specific biochemical, 
biomechanical and electrical conditioning is usually 
performed with a bioreactor, able to reproduce in vitro the 
physiological environment of the tissue to be reconstructed.

First TE experiences faced the dramatic problem of core 
necrosis developing soon cell death when the thickness 
of manufactured tissues exceeded 100 µm. Indeed, the 
technology proposed by Zimmermann and Eschenhagen in 
2000 revolutionized the myocardial TE world. This group 
advanced a novel concept of myocardial tissue construct, i.e., 
the engineered heart tissue, a combination of contractile 
rings realized in Matrigel, i.e., an immature ECM secreted 
by murine fibroblasts, and neonatal rat cardiac myocytes, 
able to develop a force superior to 2 mN following 
mechanical and/or chemical conditioning (175). In a further 
evolution of this approach, they went closer to the clinical 
translation by the replacement of the rodent elements with 
human cardiac myocytes and fibrin (176).

In the TE formulation of a functional tissue, the 
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provision of adequate stimuli is essential but still a crucial 
technical issue, especially when driving differentiation of 
particularly immature cells. Recapitulating in a bioreactor 
the complex native mechanotransduction is still a difficult 
task although the increased knowledge in this field. The 
application of mechanical stimulation is essential in 
inducing cell alignment and force generation but needs 
to be precisely tuned to prevent undesired differentiation, 
fibrotic tissue development and/or apoptosis. A combination 
of neonatal cardiomyocytes and endothelial cells has 
demonstrated under cyclic strain to increase the alignment 
towards the native heart’s one, in respect to none or static 
conditioning (177). 

As for LV restraints, not all TE strategies were devised 
for the in vitro reconstruction of the tissue of interest. The 
development of classical TE equivalents requires a relatively 
long process, which might be demanding to realize, as well 
as time-consuming due to extensive culturing in bioreactor. 
Hence, an associated risk of traditional TE might be the 
inability to obtain a mature and functional tissue substitute 
at the end of the conditioning. In addition, developed TE 
tissues could be available only for elective surgery, thus not 
representing a therapeutic option for patients to be urgently 
treated. 

In order to skip this limitation, a more straightforward 
approach was conceived, i.e., in situ TE, combining the 
scaffold and/or the cells directly in the surgical theatre. 
With such an approach, several biomaterials alone were 
tested. The formulation of biomaterials available for in 
situ TE was very similar to the one adopted for classical 
strategies. In particular, hydrogels and patches in natural 
materials were widely used (178,179). Several types of 
bioconjugates were generated able to modify their state 
(liquid to hydrogel) in response to environmental or 
temperature changes, in addition to gradually release 
various pro-regeneration proteins. Alginate sulfate was used 
to create multifunctional scaffolds which, upon progressive 
degradation, could release drugs and/or growth factors. 
This was the case of the combined IGF-1/HGF hydrogel: 
an immediate discharge could be generated for the first 
growth factor to prevent cell death and increase survival, 
while a slower release was induced for the second one in 
order to enhance vascularization and prevent fibrosis (180).  

Thermoresponsive polymers were also employed for a 
different scope, i.e., the creation of sheets of specialized 
cells. Synthetic materials, as poly(N-isopropylacrylamide) 
(PIPAAm), were applied by the Japanese group of Okano 
to create layers of cardiac myocytes. In a traditional culture 

system, cells need to be detached from their support by 
the enzymatic effect of trypsin in order to be further used. 
This treatment induces, however, the rupture of cell-cell 
and cell-ECM junctions, particularly essential for cardiac 
syncytium maintenance. Thanks to the PIPAAm technology, 
a modification in temperature from 37 to 20 ℃ is per se 
sufficient to cause the detachment of the entire cell layer, by 
inducing a variation of the polymer hydrophobic properties. 
As demonstrated in their long experience with PIPAAm, the 
mono- or multisheets of cardiomyocytes can be submitted 
to biochemical stimulation with growth factors, vascularized 
or even fashioned in tube to shape a cardiac pump, similar 
to a clinically implanted left ventricular assist device 
(LVAD) (181,182). Cell sheet technology has been realized 
with several cell types apart from cardiac myocytes, as for 
example skeletal myoblasts. Some clinical trials evidenced 
a risk of arrhythmia generated after cell transplantation of 
these cells. Not only sheets of functional skeletal myoblasts 
did not induce ventricular tachyarrhythmias when applied 
as patch, but also their therapeutic effect could be enhanced 
when mesenchymal stem cells were added, thanks to their 
pro-survival and anti-apoptotic effects (183,184).

Such an approach was also pursued to overcome the 
barrier of vascularization. In vivo preclinical evaluation 
evidenced that, in combination with omentopexy, cell 
sheets promoted arteriogenesis and ameliorated coronary 
artery perfusion, by mitigating cardiac hypertrophy and 
scarring (185).

Apart from thermoresponsive materials, great interest 
was generated by self-assembling peptides, i.e., amphiphilic 
molecules able to assemble into nanofibers, membranes 
and hydrogels in a process strictly depending, among the 
many variables, on the peptide sequence, concentration, pH 
and presence of salts. After injection, these self-assembling 
peptides created a suitable intramyocardial environment 
for the survival of endothelial cells, by downregulating 
apoptosis and enhancing the angiogenetic program towards 
a dense tridimensional (3D) net of capillaries (186,187). 
The possibility to decorate and biofunctionalize these 
peptide sequences with growth factors further increase the 
relevance of a potential application in humans (188). 

In this panorama of novel technologies, the introduction 
of 3D bioprinting has allowed to prototype different 
cardiac tissue constructs by the aid of computational 
modeling. Differently from other approaches, especially 
of vascular reconstruction, the use of 3D bioprinters 
offers the opportunity to generate complex structures, as 
ramified arterial trees (189-191). The advantage of the easy 
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switchable combination of cells and scaffold elements might 
turn to be also a drawback, since as in other TE modalities, 
the major difficulty is to reproduce the exact spatial 
distribution and cell maturation of the native tissue in the 
generated bioequivalent. 

Among all preclinical developments in the regenerative 
medicine of cardiovascular organs and tissues, the adventure 
of induced pluripotent stem cells (iPS) has definitely signed 
a step forward, rendering available very plastic stem cells 
of adult origin able to differentiate into all cardiac lineages, 
e.g., cardiomyocytes, endothelial and smooth muscle cells, 
upon appropriate stimulation (192,193). After combination 
with cell sheet technology, Kawamura et al. demonstrated 
that generated layers of iPS-derived cardiomyocytes could 
be applied with successful effects in a porcine ischemic 
cardiomyopathy model upon combination with flap 
omentum (194). Moreover, Ogasawara et al. evidenced that 
iPS-derived cardiac myocytes co-injected with Matrigel and  
pro-survival elements could undergo improved engraftment 
and maturation, in respect with their combination with 
other biomaterials, as the hyaluronan-based hydrogel 
HyStem (195). This represents, however, an obstacle in the 
future clinical application of this therapy intended for the 
treatment of myocardial infarction: the potential clinical-
grade substitute to the xenogeneic Matrigel demonstrated 
to possess limited ability in sustaining cell viability and 
differentiation and, hence, a reduced efficacy as therapeutic 
alternative. As another drawback, this study revealed 
also the formation of cartilage tissue in the cell/hydrogel 
injected area. A severe issue in possible iPS application 
is represented by the ineffective differentiation into the 
cells of interest, and in particular into cardiomyocytes, 
which, in turn, might cause lack of integration and genesis 
of arrhythmic foci. Okano’s group demonstrated that 
it is feasible to remove undifferentiated elements from 
fabricated cardiac cell sheets in specific culture conditions of 
methionine deprivation (196). Such a strategy is particularly 
appealing in the view of implanting beating constructs able 
to perfectly integrate within recipient’s cardiac tissue.

Clinical applications

The large majority of bioengineered myocardial tissues 
developed so far has not yet reached the clinical arena. 
The MAGNUM trial was one of the few studies in which 
the feasibility of implanting a bioartificial myocardium 
(collagen matrix plus bone marrow cells) was tested in 
10 patients by comparison to the sole cell therapy. No 

mortality cases were disclosed, ascertaining the safety of the  
procedure (197). Results at 1 year with these implanted 
constructs revealed a reduction of LV telediastolic volumes 
and filling deceleration time, as well as an improvement in 
NYHA classification and ejection fraction (198). 

Cell sheet technology found in-human application, 
too: multilayers of skeletal muscle-derived cell sheets were 
implanted in patients with dilated cardiomyopathy, treated 
with LVAD. Upon application onto the LV anterolateral 
surface, these engineered sheets integrated and induced 
angiogenesis, systolic wall thickening and regional wall 
contractility, allowing LVAD removal in 2 out of 4  
patients (199). A larger cohort of patients was evaluated in 
the study of Miyagawa et al. In this phase I clinical trial, 
15 and 12 patients with respectively ischemic and dilated 
cardiomyopathy were treated with the ventricular surface 
application of autologous muscle cell sheets after left 
thoracotomy. Patients benefited of the treatment, which in 
general revealed to be safe and feasible. Particularly in the 
case of patients with ischemic cardiomyopathy, an increase 
of the ejection fraction and a decrease of LV end-diastolic 
volume were found to be statistically significant (200). The 
procedure was reported to be safe also in the case of patients 
with severe chronic heart failure. This multicenter, phase 
II clinical trial evaluated the effects of muscle cell sheets in 
7 severely affected cardiopatic patients, which at the end of 
the study revealed ameliorated NYHA class, increased LV 
ejection fraction and improved physical function (201).  

Apart for cell-based strategies, a different therapeutic 
approach reached the clinical application, i.e. the use of 
pure biomaterials. Guided tissue regeneration with alginate 
has been attempted in several clinical trials. Frey et al. 
injected 1% sodium alginate, mixed with 0.3% calcium 
gluconate, through the coronary artery of 27 infarcted 
patients with ST-segment elevation (NCT01226563 
clinical trial). Not only tissue permeation was demonstrated 
after 3 minutes from treatment without adverse events 
for coronary artery perfusion, but also procedure safety 
was confirmed at 6-month follow-up (202). The trial was 
extended internationally, enrolling a total of 303 patients, 
of whom 201 treated with this novel hydrogel scaffold and 
102 assigned to the sham (saline injection). Although safety 
confirmation, no amelioration of the cardiac function could 
be appreciated in respect to the control group (203). In 
the international, multicenter, randomized AUGMENT-
HF trial, a hydrogel in calcium alginate, i.e., Algisyl®, was 
injected in 39 patients with advanced heart failure and 
compared to a similar group of subjects submitted to the 
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standard medical therapy. At 1-year follow-up, Algisyl®-
treated patients presented NYHA increase and ameliorated 
peak VO2 (204,205). A second trial, i.e., AUGMENT-HF 
II (NCT03082508), is now ongoing to demonstrate safety 
and efficacy in an estimated enrollment of 280 subjects with 
heart failure.

Up to now, the few therapeutic regenerative medicine 
approaches reaching the clinical stage to treat heart 
ischemia and failure have been evaluated in small trials. It 
is thus imperative to enlarge the studied cohorts in order to 
fully evaluate the potential effect of these novel therapeutic 
strategies.

Bioengineered blood vessels

Preclinical experiences

The same TE concept has been applied not only for the 
myocardium reconstruction but also for the generation 
of bioengineered vessel replacements. In the last years 
of the previous century, the group of Mayer has started 
to develop novel bioequivalent solutions for both heart 
valves and blood vessels with the aim to overcome the 
limitations of non ‘living’ available prosthetic substitutes. 
By the combination of synthetic polymers, as polyglycolic 
acid (PGA) and polyhydroxyalkanoate (PHA), and ovine 
carotid artery cells, vascular constructs were obtained  
in vitro and implanted into the descending aorta of 7 
lambs. While acellular polymeric tubes in control animals 
lost patency progressively, no aneurysmal dilatation was 
disclosed for TE vascular constructs, which revealed 
at the microscopic level formation of collagen and 
elastin, as well as cell population, both accountable for 
a biomechanical profile similar to the one of a native  
vessel (206). In the same years, the group also demonstrated 
the feasibility to generate pulmonary artery autografts 
starting from identical biomaterials and ovine artery- 
or vein-derived primary cells. The replacement of the 
pulmonary artery in the lamb model showed a maintained 
patency of the novel vessel with its progressive adaptation to 
the somatic growth of the animal. Although calcium content 
was particularly high, no gross calcifications were observed 
and pulmonary artery tissue appeared to be newly created, 
in terms of endothelialization and ECM synthesis. Also in 
this study, the polymeric tube used as control underwent 
thrombosis and loss of patency (207). 

By modifying the formulation of the scaffold, Shinoka 
and Breuer proceeded in the evaluation of TE conduits 

as inferior vena cava interposition vessels. TE constructs 
were realized with PGA, coated with a 10% solution of 
L-lactide and epsilon-caprolactone, and sheep bone marrow 
mononuclear cells. After 6 months from implantation in  
7 juvenile lambs, implanted grafts revealed physiological 
increase of the diameter and patency, as documented 
by magnetic resonance angiography. Analyzed tissue 
composition and ECM distribution were the typical ones 
characterizing a native vein, also expressing distinctive 
markers of normal venous formation (208). The extensive 
studies of the group led to hypothesize in 2010 a mechanism 
by which vessel tissue repopulation could occur. Following 
this hypothesis, the bone marrow cells, initially seeded 
in vitro, abandon the scaffold in favor to monocytes soon 
after implantation, through a program depending on the 
secretion of chemoattractants by the first cytotype. In turn, 
this is followed by the infiltration of smooth muscle actin-
expressing cells and endothelialization, with monocytes 
leaving the tissue after scaffold degradation and ECM 
synthesis (209). It is fascinating that inflammatory response 
has been so early identified as the main actor in recipient’s 
tolerance and remodeling of TE constructs, even if this 
formulated theory is not taking into account the real 
prominence of the scaffold as inductive element of the 
entire process (210).

Despite the improved formulation, experiences with the 
sole scaffold revealed to be particularly disastrous in the 
creation of novel vessels, especially in presence of small 
diameters (<6 mm). Moreover, the major disadvantage of 
PGA use was given by the incomplete degradation of the 
polymeric scaffold able to sensibly modify the proliferation 
pattern of smooth muscle cells (211). The group of 
Niklason strongly contributed to the development of more 
biocompatible blood vessel equivalents. A new scaffold 
formulation in glycolide and trimethylene carbonate, 
eventually added with polyethylene succinate, was compared 
to the classic PGA, showing similar cell bioactivity, but 
increased induction of collagen production and improved 
biomechanical properties (212). 

In addition, small diameter bioengineered vessels were 
grown in vitro by combining a natural ECM, as fibrin, 
with bovine smooth muscle cells and human dermal 
fibroblasts. Pulsatile stretch applied for 30 days on these 
constructs was able to induce proper synthesis of ECM 
main proteins, with newly secreted collagen organized in 
circumferential distribution. Conditioned fibrin-based 
vessels developed burst pressure and compliance similar 
to the native counterparts, as well as appropriate suturable 
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properties (213). 
More recently, this group established a novel approach 

of blood vessel engineering by using decellularized 
tissues. Acellular umbilical arteries might be used as 
small diameter vascular grafts thanks to the maintenance 
of the biomechanical and bioactive properties of their 
original ECM scaffolding, as demonstrated by Gui et al. 
after treatment with CHAPS and sodium dodecyl sulfate 
detergents. These human tubular scaffolds were not only 
prone to endothelialization in vitro, but demonstrated also 
to be patent for 8 weeks in vivo in a rat model of abdominal 
aorta interposition (214). 

Clinical applications

Although in a limited number, first in-human applications 
have been already registered for both synthetic and 
decellularized arterial vessels. A tubular scaffold in PGA 
or in poly-L-lactic acid (PLLA) in combination with 
epsilon-caprolactone has been seeded with bone marrow 
mononuclear cells and successfully implanted in 25 pediatric 
patients with no aneurysmal or calcific degeneration up 
to 15 years, apart for 7 subjects with asymptomatic graft 
stenosis (215). 

In an observational clinical study, Hopkins et al. used 
decellularized allogeneic pulmonary artery patches 
(MatrACELL; LifeNet Health, Inc., Virginia Beach, VA, 
USA) for arterioplasty in 106 patients. No degenerative 
events were reported during follow up, apart from restricted 
cases of narrowing of the juxtaductal region, without 
involvement of the implanted graft or stenosis. These 
results were particularly significant when retrospectively 
compared with a similar cohort of patients treated with 
conventional patches in synthetic material, as PTFE, 
and with cryopreserved pulmonary allografts (14% patch  
failure) (216). Interestingly, even if not properly a 
cardiovascular application, human decellularized vessels 
were effectively applied as dialysis access in 60 patients (217).

Bioengineered heart valves

Preclinical experiences

As previously anticipated, one of the first heart valve TE 
experiences was realized by the group of Mayer, who 
attempted the reconstruction of the right posterior cusp of 
the pulmonary valve with a PGA tissue construct seeded 
with fibroblasts and lined with endothelial cells. This study 

evidenced the feasibility of the procedure, particularly 
with the use of autologous cells, rather than allogeneic  
ones (218). Trileaflet valves in nonwoven PGA conditioned 
in a pulse duplicator with ovine myofibroblasts and 
endothelial cells for 14 days demonstrated to successfully 
reconstruct the right outflow tract in an autologous lamb 
model. In addition, the trilayered architecture of the 
pulmonary cusp was perfectly recreated by deposition of 
collagen and elastin (219). 

PGA was later modified with other more biodegradable 
polymers, as PLLA and polyhydroxybutyrate (P4HB). 
Sutherland et al. constructed in vitro a valve conduit in PGA 
and PLLA, which was seeded with mesenchymal stem cells 
in a bioreactor for 1 month, prior to implantation in the 
juvenile sheep. Even if luminal surface endothelialization 
was achieved, the ECM distribution after 8 months  
in vivo did not reflect the anisotropic one of a mature native  
valve (220). With a similar valve composition and testing 
model, Gottlieb et al. demonstrated progressive decrease 
of the conduit diameter and cusp length after 20 weeks 
of follow up (221). The group of Hoerstrup introduced a 
PGA/P4HB copolymeric heart valve scaffold seeded with 
different cells types and adapted for several implantation 
modalities, as recently reviewed (222). In particular, 
they lately moved to the in situ heart valve TE concept, 
which has been adopted by different groups for ease of 
fabrication, tissue guided regeneration and off-the-shelf 
availability. 

An extensive line of research in heart valve TE has been 
dedicated to decellularized tissues for the reconstruction 
of either semilunar or atrioventricular valves. As in the 
approach with synthetic polymers, the classical concept of 
TE was initially pursued to generate in vitro living heart 
valve substitutes (223-225), but it later became clear that 
the decellularized matrix had a well-defined advantage over 
other scaffolds, i.e. the maintenance of the original 3D 
architecture and matrikine cues of the native mature ECM, 
able to home and guide host’s cells to its repopulation  
(226-228). As we previously discussed (105), the choice of the 
decellularization formula is, hence, pivotal to profit of the 
benefits of a original ECM scaffold and, at the same time, 
to get rid of potentially immunogenic cellular components, 
whether the initial tissue is of allogenic or xenogeneic 
nature. Human leukocyte antigens (HLA), alpha-gal and/
or Neu5GC sialic acids are, in fact, responsible for rejection 
responses in allo- and/or xenotransplantation (226,229,230). 
So far, the only decellularization cocktail of detergents 
proved to remove HLA and alpha-gal is TRICOL, i.e., a 
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combination of osmotic shock, sodium cholate and Triton 
X-100 (226,230).

Clinical applications

Although several engineering strategies were applied, the 
retraction of the valves realized in polymeric materials 
represents still a sensible issue preventing their clinical 
application. More recently, an elastomeric valve scaffold in 
polycarbonate bis-urea has passed brilliantly the preclinical 
phase research and will be now studied in a multicenter US 
clinical trial (231). 

The promising preclinical experience achieved during 
the 1990s with xenogeneic models increased the interest for 
an immediate clinical translation of decellularized porcine 
heart valves in order to reconstruct the outflow tract of 
pediatric patients. Clinical outcomes were catastrophic: 
a hyperacute rejection induced the rapid failure of these 
decellularized valve grafts (232), analogously to the one 
observed for similarly treated bovine ureteric conduits used 
as arterious-venous grafts in adult patients (233). 

While the caution decelerated the research with 
xenogeneic heart valve conduits in the search for more 
appropriate immunologic models to evaluate tolerance 
at the preclinical stage, in-human studies with allogeneic 
valve substitutes demonstrated to be very successful with 
nowadays long-term observation in pediatric and adult 
GUCH patients (234). In the wake of these optimal 
outcomes, two international clinical trials ESPOIR 
(NCT02035540) and ARISE (NCT02527629) were 
launched to assess recurrence of adverse events and freedom 
from dysfunction in a total of 240 patients, treated with 
decellularized valve conduits either for right or left outflow 
tract reconstruction. 

A multicenter trial has also recently started for the 
evaluation of TRICOL-decellularized allogeneic valves 
and preliminary results are indicative of an adequate 
performance during the initial follow up (unpublished data 
from our Centre). 

Conclusions

Regenerative medicine scientists have designed several 
strategies in order to overcome the limitations of synthetic 
materials in the cardiovascular surgery of repair, correction 
and reconstruction of structural alterations. Shielding 
approaches, biomaterial fabrication, decellularization, cell 
reprogramming and differentiation are allowing, among 

the others, to biologically engineer tissue equivalents in the 
search for living, biocompatible and long-lasting functional 
replacements. Preclinical testing experiences, either  
in vitro or in vivo, are generally demonstrating effective 
cardiovascular tissue regeneration. However, the translation 
in the human routine therapy might find several hurdles, 
as first the challenging induction of immunotolerance 
towards the bioengineered graft. Encouraging outcomes on 
many TE replacements have been achieved in experimental 
clinical treatments but, so far, their assessment was limited 
to a reduced number of patients. Enlarged, multicenter 
clinical trials will therefore shed light on the real efficacy of 
these more natural surgical solutions.
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