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Introduction

Influenza is an acute, contagious infectious disease caused 
by influenza virus; the disease can be harmful to human 
health, even leading to death. Great progress has been made 
in the treatment of influenza, especially for patients with 
severe influenza infection. The most effective approaches to 
prevention and control measures against influenza disease 
are vaccination and antiviral therapy. However, owing 
to antigenic variation of influenza viruses and individual 
differences in host immunity, the influenza vaccine can 
be less than effective. Thus, timely and regular antiviral 
treatment is especially important for confirmed influenza-
positive patients, which can greatly reduce the patient’s 
symptoms and complications and shorten the course of the 
disease (1,2). 

In recent years, together with new understanding of 
the pathogenesis of influenza, it has been recognized that 
influenza viruses can directly affect the host and can also 
cause indirect effects via severe immunological disorders. 
Influenza virus infection can promote chemokine and 
cytokine secretion, which help to clear influenza viruses 
from the host. However, in some cases, excessive or 
uncontrolled release of inflammatory cytokines occurs after 
influenza infection, resulting in a so-called “cytokine storm” 
that can lead to multiple organ damage and even death (3-6).  
Methods to alleviate the damage caused by a cytokine storm 
in response to influenza virus infection have become an 
important part of anti-influenza strategies.

We now have greater understanding of influenza viruses, 
including the direct harm caused by the virus itself as well 
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as the cytokine storm induced by influenza viruses. These 
can act together and cause multiple organ dysfunction, 
such as acute respiratory distress syndrome (ARDS). In this 
review, we discuss reliable and effective antiviral and anti-
inflammatory therapies, which must both be considered to 
guide the treatment of influenza patients.

Etiology, epidemiology, and impact of influenza 
viruses

Influenza viruses belong to the family Orthomyxoviridae 
and are single-stranded, negative-sense, segmented RNA 
viruses. According to nucleocapsid protein (NP) and matrix 
protein, influenza viruses are classified into influenza A, B, 
C, and D. Influenza A and B viruses contain eight different 
RNA segments, whereas influenza C viruses only have 
seven different RNA segments, lacking a fragment encoding 
the neuraminidase (NA) protein. The influenza virus 
genome is segmented, thus re-assorting among different 
virus strains readily occurs. In addition, influenza virus 
RNA often does not function correctly during replication; 
consequently, influenza has a higher mutation frequency 
than other viruses. Therefore, new influenza subtypes can 
easily emerge, leading to influenza epidemics. Influenza 
viruses have different species specificity. Influenza A virus 
can infect humans as well as pigs, horses, seals, whales, and 
ferrets, among other species. Influenza B virus has thus 
far been isolated in only humans, and influenza C virus 
has been isolated in only humans and pigs (7). Influenza D 
virus, recently reported in 2016, has not been implicated in 
human infection (8). 

Influenza A and B viruses contain eight different 
negative sense (anti-mRNA sense) RNA segments that 
encode at least 11 viral proteins, including hemagglutinin 
(HA), NA, NP, matrix proteins (M1, M2), nonstructural 
proteins (NS1, NS2), and polymerase (PA, PB1, PB2, 
PB1-F2). Influenza C viruses only have seven different 
RNA segments, lacking a fragment encoding NA. The 
current study confirms that some of these proteins have 
an important role in the infection of the host by influenza 
virus. HA is responsible for virus attachment to host 
respiratory epithelial cells and facilitates virus entry into 
cells. NA can help the virus to pass through mucous 
membranes, which helps to promote the release and 
spread of newly synthesized virions from infected cells (9).  
The PB1, PB2, and PA subunits of influenza virus can 
form a heterotrimer that associates with NP-complexed 
viral RNA (vRNA) to form virion ribonucleoproteins 

(vRNPs) (10). M2 is a multifunctional protein whose 
transmembrane domain plays a critical role in ion channel 
activity and whose cytoplasmic domain is required for 
vRNP incorporation and virion morphogenesis (11).  
Detailed information about influenza virus replication and 
the function of each protein have been well summarized in 
other recent reviews (12). These proteins are also the key 
targets for anti-influenza therapies. Currently, influenza 
virus infection can be effectively treated with anti-influenza 
antiviral agents, which are directed against these influenza 
virus proteins. These agents either inhibit viral replication 
by blocking the ion channel at the stage of virus entry 
into cells or they inhibit the function of virus-coded RNA 
polymerases or prevent the release of progeny virions from 
infected cells, among other functions (13,14).

About 20–30% of children and 5–10% of adults in the 
general population are affected by influenza annually. 
Approximately 3–5 million people develop severe influenza 
infection, leading to about 1 million deaths per year (15). 
Four influenza A pandemics have occurred during the 20th 
century: the 1918 Spanish influenza pandemic (H1N1), the 
1957 Asian influenza pandemic (H2N2), the 1968 Hong 
Kong influenza pandemic (H3N2), and the 1977 Russian 
influenza pandemic (H1N1). In the present century, the 
threat of influenza A virus pandemics remains. In 2009, 
a new H1N1 influenza virus pandemic swept through 74 
countries in 2 months, causing nearly 20,000 deaths (16). 
Furthermore, research has been focusing more on avian 
influenza A viruses, which are transmitted among birds and 
can cause cross-species transmission to infect humans; these 
viruses include H5N1 (17), H7N9 (18,19), and H5N6 (20). 
Human infection with avian influenza virus can cause acute 
lung injury, leading to severe ARDS and multiple organ 
dysfunction syndrome (MODS); the disease severity and 
mortality rates are higher than those owing to severe acute 
respiratory syndrome (SARS) coronavirus. Data published 
by the China Centers for Disease Control (CDC) show 
that the mortality rate of highly pathogenic avian influenza 
A (H5N1) virus is >60%, and influenza A (H7N9) virus 
has a mortality rate of about 40%. Thus, influenza virus 
continues to be a major threat to human health and public 
safety, especially avian influenza.

 

Pathogenesis of influenza virus infections

Influenza can lead to different degrees of inflammation. 
Initial symptoms are usually mild, and patients typically 
develop fever, cough, expectoration, and other symptoms of 
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upper respiratory tract infection. However, some patients 
quickly develop severe symptoms and pneumonia, ARDS, 
and other organ dysfunction (21). It is generally believed 
that the pathogenesis of influenza virus infection includes 
two main aspects: direct damage caused by virus replication 
and indirect damage caused by an influenza-induced 
cytokine storm.

Direct damage caused by influenza virus

The surface hemagglutinin protein (HA) of influenza virus 
is a glycoprotein that binds to sialic acid receptors on host 
cells in the respiratory tract; HA mediates viral adsorption 
and fusion. Influenza viruses then enter host cells via 
endocytosis, the viral genome is transcribed and replicated 
in the nucleus, and viral nucleoprotein synthesized in the 
cytoplasm enters the nucleus and combines with viral RNA 
to form a nucleocapsid that is exported to the cytoplasm. 
The nucleocapsid is tightly wrapped in a cell membrane 
modified by virus-specific membrane proteins, and viral 
particles are subsequently released through a budding 
process to infect other normal cells (22). Depending on 
the viral receptors present, seasonal influenza viruses will 
generally adhere to and multiply in epithelial cells of the 
upper respiratory tract. However, avian influenza A viruses, 
such as H7N9 and H5N1, can invade epithelial cells of the 
lower respiratory tract and alveolar type II pneumocytes 
where it can efficiently replicate, which may cause 
deteriorating lung function (23-25). 

Adhesion, multiplication, and release of influenza virus 
in epithelial cells can damage the barrier function of the 
respiratory tract mucosa, which can cause further damage 
to the host. First, this process damages the integrity of 
the normal epithelial cell layer and enhances bacterial 
colonization, allowing strongly adhesive bacteria [such as 
Streptococcus pneumoniae (S. pneumoniae)] to colonize (26,27). 
Second, viral replication exposes the basement membrane, 
which is rich in fibers that connect proteins, causing 
respiratory pathogens (such as S. pneumoniae) to have 
high-affinity binding to proteins. Third, the NA protein 
of influenza virus can promote viral release from infected 
cells and help the virus spread in the respiratory tract while 
simultaneously exposing bacterial receptors in respiratory 
tissue, which can increase secondary bacterial infection 
by cleaving sialic acid receptors of epithelial cells (28-30). 
Finally, influenza virus-infected cells may have reduced 
expression of antimicrobial peptides, thereby affecting the 
natural defense function of the host epithelium (31). 

Indirect damage caused by influenza-induced excessive 
inflammatory response

In addition to direct damage, influenza virus also causes 
indirect damage by inducing an excessive inflammatory 
response. Influenza virus is highly infectious in human 
respiratory cells, including endothelial cells, plasma cell-like 
dendritic cells, epithelial cells, and macrophages. Influenza 
virus infection causes these cells to release chemokines and 
cytokines, leading to aggregation of inflammatory cells such 
as neutrophils, lymphocytes, and monocytes in inflammatory 
regions (22). For example, airway epithelial cells, 
macrophages, and dendritic cells of the lung that are infected 
by influenza virus, viral RNA within an infected cell, and/
or virus debris taken up by phagocytic cells lead to NLRP3 
signaling activation, interleukin (IL)-1β production, and 
recruitment of neutrophils and monocytes to the infection 
site, where they further secrete inflammatory cytokines (32).  
Dysfunction of the chemokine and cytokine response is 
associated with severe avian influenza virus infection (17,33),  
which may contribute to disease severity (34). Additional 
evidence has showed that patients with H5N1 infection 
have higher serum levels of macrophage and neutrophil 
chemoattractant chemokines (CXCL10, CXCL2, IL-8)  
and pro- and anti-inflammatory cytokines [IL-6, IL-10,  
interferon (IFN)-γ], particularly those patients who  
died (17,35). Furthermore, a study on the relationship 
between viral load and cytokines in the second wave of 
H7N9 patients in Guangdong Province, China during 
2013–2014 showed that there was a positive correlation 
between viral titers in different clinical specimens and 
cytokine levels in plasma and bronchoalveolar fluid. 
Specifically, upregulation of proinflammatory cytokines IP-
10, MCP-1, MIG, MIP-1α/β, IL-1β, and IL-8 was found in 
plasma and bronchoalveolar fluid (19). Increased levels of 
IP-10, MIG, MIP-1β, MCP-1, IL-6, IL-8, and IFN-α were 
detected in sera from acute patients with H7N9 infection, 
which were significantly higher than those in healthy study 
participants. Some low pathogenic avian influenza viruses, 
such as avian influenza A (H9N2) virus, can also promote the 
expression of proinflammatory cytokines and chemokines 
in human airway epithelial cells. H9N2 virus can stimulate 
production of proinflammatory cytokines (IL-1β ,  
IL-6) and chemokines (IL-8) (36). Similar findings have 
been observed in patients with severe influenza A (H1N1)
pdm09 and seasonal influenza (37).

As described above, proinflammatory cytokine levels 
increase after influenza virus infection, which can help 
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clear the virus from host cells. However, this increase 
may lead to an imbalance in the host regulatory network, 
leading to a cytokine storm, which can cause more serious 
conditions such as ARDS and MODS (3-5). There is 
evidence that cytokine dysregulation contributes to the 
pathogenesis of H5N1 and H7N9 viruses, which cause 
severe respiratory disease (17,25). Additionally, cytokine 
levels have been positively correlated with prolonged 
hospitalization and C-reactive protein levels and negatively 
correlated with oxygenation index (38). Another study 
suggested IP-10 and IL-6 levels as biomarkers for severe 
cases of H7N9 disease (39). 

Treatment strategy for influenza 

As described above, damage caused by influenza virus 
infection can be classified as direct, such as that caused 
by virus replication, and indirect, such as that caused by 
a cytokine storm. Therefore, the clinical treatment of 
influenza should be focused on both antiviral and anti-
inflammatory therapies. 

Importance of antiviral therapy 

More and more evidence has confirmed that antiviral 
inhibitors are important for influenza treatment. The viral 
load in influenza patients correlates with disease severity and 
prolonged viral shedding (40), particularly in infants and 
young children, who are at high risk of influenza-related 
hospitalization and adverse disease outcomes. Therefore, 
antiviral agents are necessary in influenza treatment. One 
major class of antiviral drug is neuraminidase inhibitors 
(NAI), which can inhibit NA activities such as glycoside 
hydrolase activity, which cleaves glycosidic linkages of 
neuraminic acids to reduce viral spread and second-
round infection. Such drugs include older NAIs, such as 
oseltamivir and zanamivir, and newer NAIs like laninamivir 
and peramivir. The other major class of antiviral drug is 
M2 ion channel protein inhibitors (M2 inhibitors), which 
target the influenza virus M2 protein and can inhibit 
the replication of influenza virus by interfering with the 
M2 protein ion channel activity. M2 inhibitors include 
amantadine and rimantadine. Other antivirals include 
hemagglutinin inhibitors, such as EB peptide and arbidol; 
viral RNA polymerase inhibitors, such as ribavirin; and 
traditional Chinese medicine, which contains anti-influenza 
activity. 

NAI and M2 inhibitors have been approved by the 

United States Food and Drug Administration for the 
clinical treatment of influenza. However, because of high 
resistance (41-43), M2 inhibitors have been withdrawn from 
the market; currently, NAIs are mainly used. NAIs, such 
as oseltamivir, remain the mainstay of influenza therapy 
as they have good tolerance, low toxicity, lower resistance 
rate, and can effectively inhibit viral replication and 
transmission of various influenza virus strains (44,45). Thus, 
NAIs are currently included in national and international 
guidelines for the use of influenza drugs to guide clinical  
treatment (45,46). 

An accumulation of data has shown that anti-influenza 
drugs, such as oseltamivir, can significantly reduce the 
median duration of symptoms in patients with influenza 
infection and viral shedding (47). Clinical analysis of 
antiviral treatment has revealed that the median length 
of hospitalization of participants who received antiviral 
therapy was significantly shorter than that of participants 
who did not (2,48,49). Findings of a double-blind, 
randomized, controlled trial showed that median duration 
of symptoms and virus isolation were lower in patients who 
received oseltamivir treatment within 48 hours of symptom 
onset compared with those given a placebo (50,51); this 
finding suggests that early antiviral treatment is efficacious. 
However, further clinical trials and basic research studies 
suggest that delayed treatment with NAIs (>48 hours 
since illness onset) remains effective against influenza  
infection (52,53).

Although antiviral monotherapy has been shown to be 
effective, there are some limitations to its use. Primarily, 
viral resistance has been shown to reduce the activity of 
antivirals such as amantadine and rimantadine, which 
have been rendered largely ineffective owing to the high 
prevalence of resistant viruses in nature (54). Initially, NAI 
and M2 inhibitors were highly successful in inhibiting and 
preventing influenza infection, and nearly no resistance to 
influenza virus was detected (55,56). However, in 2003 and 
2004, the frequency of adamantane-resistant A (H3N2) 
viruses in China increased substantially to 57.5% and 
73.8%, respectively (57). Our previous study suggested that 
clinical isolates of H1N1 and H3N2 developed amantadine 
resistance at 93.1% and 100%, respectively, in Guangzhou, 
China, 2009 (43). Dong et al. found that 45.2% of influenza 
A (H1-H17) viruses circulating globally in 2013 were 
resistant to adamantanes (58). Up until 2007, influenza 
viruses resistant to the NA inhibitor oseltamivir had been 
isolated at a low level (13); however, since the beginning 
of 2007, the resistance of influenza A (H1N1) viruses 
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to oseltamivir has increased significantly, by 7.1% (59).  
Moreover, resistance to zanamivir has been reported among 
immunodeficient patients (60). Recently, according to 
antiviral susceptibility monitoring of the World Health 
Organization Global Influenza Surveillance and Response 
System, virtually all influenza A viruses circulating in humans 
have been deemed resistant to one category of antiviral 
drugs, namely, M2 inhibitors (amantadine and rimantadine). 
However, as of October 2017, the frequency of resistance to 
the NA inhibitor oseltamivir remains low (1–2%), (http://
www.who.int/mediacentre/factsheets/fs194/en/).

Thus, clinicians should consider combination therapy 
using two or three antiviral drugs to produce synergistic 
effects, increase anti-influenza virus activity, reduce the 
emergence of drug-resistant virus strains, and lower 
influenza mortality rates (61,62). However, combination 
therapy can reduce the use of individual antivirals and may 
have dose-related drug toxicity and adverse effects (13). One 
such example is oseltamivir-ribavirin combination therapy, 
which significantly inhibits influenza A virus replication in 
experimental mouse models, controls the spread of influenza 
viruses in the respiratory tract, and improves parameters of 
lung function, particularly mean breath volume (63,64). In 
addition, oseltamivir-zanamivir combination therapy has 
been found to be less effective than oseltamivir or zanamivir 
monotherapy for seasonal influenza A (H3N2) virus and 
H1N1 virus (65). Some combination therapies may exhibit 
antagonistic effects. One group noted that oseltamivir and 
peramivir both act on N1 NA enzymes; however, peramivir 
is more likely to bind to N1 NA enzymes than oseltamivir, 
which may lead to antagonistic interactions (66). Moreover, 
a retrospective study of adults infected with H7N9 virus 
showed that oseltamivir-peramivir combination therapy 
was not superior to oseltamivir monotherapy (67). Thus, 
antiviral drugs included in combination therapies should 
have different antiviral mechanisms (68). If the antivirals 
are in the same class, then an antagonistic effect between 
the two drugs is likely to occur because they compete for 
the same binding site, which ultimately affects the antiviral 
activity of the drug. 

Owing to the rapid and extensive emergence of drug 
resistance among the available drugs, as well as the 
increasing need for combination therapy, new antiviral 
strategies with novel mechanisms of action and reduced 
drug resistance potential are urgently required. Recent 
years have seen the development of inhibitors that block 
virus-cell interactions occurring at different stages of 
influenza virus replication, such as attachment, entry, viral 

genome transcription and replication, nuclear export of 
viral products, and viral particles release. The new antiviral 
strategies target HA (69,70), RNA polymerase (71-73), 
NP (74), and NS1 (75); however, to date, no anti-influenza 
drugs targeting NS1 are under clinical development. These 
have been well summarized in other recent reviews (12,76). 
There are new developments in NA inhibitors, such as 
laninamivir, which holds great promise for its long-acting 
inhibitory activity (77). The characteristics of these anti-
influenza virus drugs have been summarized in Table 1.

Here, we only review anti-influenza drugs according 
to the important functional proteins of influenza virus. 
However, other anti-influenza therapies should also be 
adopted, including those that regulate cell metabolism, 
host signaling pathways, and host antiviral response. 
Detailed information has been provided in other recent  
reviews (12,80). 

Importance of anti-inflammatory therapy

In some cases, the cytokine storm induced by influenza 
virus infection is an important cause of ARDS, MODS 
and even patient death (6). Therefore, in addition to 
conventional antivirus therapies, the use of inflammation 
inhibitors in patients, especially those infected by highly 
pathogenic avian influenza viruses, is another possible 
therapeutic approach. Currently, corticosteroids are 
the most widely used and effective adjuvant therapy. 
Glucocorticoids can reduce alveolar effusion, capillary 
permeability, and the inflammatory response of the lung 
parenchyma and interstitium, to shorten the course of 
severe viral pneumonia. The use of glucocorticoids in 
the treatment of severe viral pneumonia has come from 
the experience of SARS treatment in Guangzhou, China. 
SARS coronavirus induces a IFN-γ-related cytokine 
storm in patients, which might be involved in the 
immunopathological damage observed in patients with 
SARS (81). A retrospective study of Guangzhou SARS 
cases showed that corticosteroid use reduced mortality 
and shortened hospitalization (82). In an experimental 
mouse model of H1N1 infection, corticosteroid treatment 
ameliorated acute lung injury induced by 2009 H1N1 
virus (83). However, other reports have suggested that 
corticosteroid therapy does not significantly improve the 
survival of patients with influenza A virus infection (84) and 
may even be associated with higher mortality in patients 
with severe influenza H1N1 infection (85). Among H1N1-
positive patients with ARDS in particular, the early use of 
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Table 1 Inhibitors of influenza virus and their characteristics

Subtype Viral target Classical drugs Advantage Disadvantage Reference

M2 inhibitors A/M2 ion  

channel

Amantadine and 

rimantadine

The earlier used; prevention and 

treatment of influenza

Have no activity again IBV 

and often associated with 

serious side effects; have 

high resistance 

(43,57,78)

NA inhibitors Neuraminidase Oseltamivir,  

zanamivir, peramivir 

and laninamivir 

Have activity again IAV and IBV; 

the long-acting inhibitory activity 

drug has been developed

Drug resistance gradually 

increases

(44,45,59,60,77)

HA inhibitors Hemagglutinin Arbidol, EB peptide, 

RO5464466, and so on

Have the broad antiviral effects; 

more and more this target drugs 

have been developed 

The main limit is the  

hyper-variability of the  

globular head of HA

(69,70,79)

RdRP inhibitors PB1, PB2 and 

PA

Favipiravir,  

Benzbromarone

Has the development of drugs 

with broad efficacy

Lack the clinical data (71-73)

NP inhibitors Nucleoprotein Developmental medications; lack data to present. (74)

NS1 inhibitors Nonstructural 

protein 1

Developmental medications; lack data to present. (75)

IBV, influenza B virus; IAV, influenza A virus.

corticosteroids may be harmful (86). Therefore, there is no 
clear consensus on corticosteroid use in the treatment of 
severe viral pneumonia or on the timing, dosage, and course 
of treatment. 

Passive immunotherapy may be a good option for the 
treatment of influenza A (H5N1 or H1N1) infection. 
Treatment with convalescent plasma in patients with 
H1N1 infection can effectively reduce respiratory tract 
viral load, serum cytokine response, and mortality (87,88). 
Furthermore, some groups have applied monoclonal 
antibodies to combat the abnormal secretion of cytokines 
under pathological conditions or have used specific 
recombinant protein to regulate the cytokine storm, which 
can also alleviate immune damage to some extent. For 
example, some studies have found that IP-10 and IL-17 
were significantly elevated in the serum of patients with 
H1N1-induced ARDS. In an experimental mouse model 
of acute lung injury caused by influenza A (H1N1) virus 
infection, anti-IL-17 and anti-IP-10 monoclonal antibodies 
significantly reduced the expression of related cytokines and 
reduced lung injury (89,90).

Anti-inflammatory therapy has become an important 
component of anti-influenza strategies, and equal 
importance should be placed on antiviral and anti-
inflammatory therapies to effectively treat severe influenza 
virus infection. However, the optimal anti-inflammatory 

drug, duration of treatment, and timing of treatment remain 
unclear and require further investigation.

Influenza treatment with traditional Chinese medicine

There are some disadvantages to using antiviral and anti-
inflammatory therapies; mainly, most drugs do not contain 
both antiviral and anti-inflammatory activities. It has 
been postulated that novel antiviral agents could control 
influenza, thus attenuating excessive proinflammatory 
responses and limiting symptoms and tissue damage 
associated with infection. An increasing number of antiviral 
drugs influence host immune responses (91), with the 
most successful drugs possessing both antiviral and anti-
inflammatory functions (92). Based on this concept, 
traditional Chinese herbal medicine (TCM) has an innate 
advantage in that it can target the virus and the host 
simultaneously, offering more effective inhibition of host 
inflammatory responses induced by influenza virus infection. 
Thus, the development of novel therapeutic agents from 
TCM is a promising approach for anti-influenza strategies. 

Various TCMs have been shown to have anti-influenza 
effects, such as the herb Radix isatidis (R. isatidis), 
honeysuckle, forsythia, and compound formulas Lianhua-
Qingwen and MaxinShigan Tang. Lianhua-Qingwen 
capsules are an important TCM that has been confirmed to 
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have anti-influenza A activity in a double-blind, randomized, 
positive-controlled clinical trial (93,94). Furthermore, we 
have found that Lianhua-Qingwen capsules have strong 
efficacy in inhibiting virus-induced excessive inflammation 
immune responses (95), which has also been observed with 
R. isatidis (96). Thus, in addition to directly inhibiting 
viral replication, TCM regulates influenza virus-induced 
excessive inflammatory immune responses; the latter effect 
is has a beneficial role in fighting influenza infection.

R. isatidis, also known as Ban-Lan-Gen in Chinese, 
has traditionally been used for the treatment of influenza, 
viral pneumonia, mumps, pharyngitis, and hepatitis (97). 
Clinical studies have also demonstrated high efficacy of R. 
isatidis in acute pharyngitis (50% caused by a virus) and 
influenza virus-induced acute upper respiratory infections 
and pneumonia, including cough, nasal congestion, 
runny nose, sneezing, and other inflammatory catarrhal  
symptoms (98,99). Another study showed that R. isatidis also 
plays a significant role in the treatment of viral myocarditis 
and other viral-mediated inflammatory diseases (100). These 
clinical observations suggest that R. isatidis has therapeutic 
effects for mild to moderate influenza-like symptoms and 
virus-induced inflammatory catarrhal symptoms. 

Pharmacological studies have also demonstrated that 
R. isatidis components serve two main functions: antiviral 
and anti-inflammatory. Various types of compounds have 
been isolated from R. isatidis including polysaccharides, 
indirubin, clemastanin B, alkaloids, lignans, and flavonoids. 
Our research and previous studies have shown that R. 
isatidis polysaccharides inhibit in vitro replication of 
influenza virus (101); the underlying mechanism may 
include direct competitive binding to the HA of the virus, 
thereby inhibiting viral invasion and replication (102). We 
further elucidated that polysaccharides have a strong anti-
inflammatory effect on influenza virus via suppression of 
host toll-like receptor 3 (TLR3) signaling in vitro (96). 
Moreover, Kido et al. reported that one of the antiviral 
components of R. isatidis, namely, isatis root polysaccharide, 
induces the production of protective IgG antibodies, which 
may serve as an antiviral vaccine adjuvant (103). 

It is unclear whether indirubin, an indole alkaloid, has 
a direct effect on influenza virus in vitro (104). However, it 
is clear that indirubin and its derivatives can significantly 
inhibit influenza virus (H5N1)-induced overproduction of 
inflammatory cytokines, such as IP-10 and MIG, in airway 
epithelial cells and macrophages (105). Moreover, indirubin 
has potent anti-influenza viral activity via inhibition 
of RANTES (also known as CCL5) expression (106). 

Concerning lignans, our preliminary study demonstrated 
that clemastanin B, a lignan, can slightly inhibit replication 
of influenza virus in vitro by inhibiting the expression and 
nuclear export of early influenza virus NP (97). In recent 
studies, we demonstrated that lariciresinol-4-O-β-d-
glucopyrano-side, another lignan, exhibited strong anti-
influenza virus A activity and decreased proinflammatory 
cytokine expression via inhibition of the NF-κB pathway 
in influenza A virus-infected alveolar epithelial (A549) 
cells (107). Thus, as described above, R. isatidis contains 
numerous chemical substances with a broad spectrum of 
anti-viral and anti-inflammatory activities that may serve as 
potential therapeutic targets. 

In-depth study of the clinical and basic pharmacology of 
R. isatidis has revealed its broad anti-influenza effects: it is 
not only a direct antiviral but, more significantly, R. isatidis 
also inhibits virus-induced inflammation by regulating 
excessive host immune responses. These pharmacodynamic 
characteristics are not restricted to R. isatidis; other anti-
influenza medicines also exhibit these activities. Therefore, 
a deeper understanding of new anti-influenza strategies 
using combined antiviral and anti-inflammatory therapies 
is required. Particular emphasis should be placed on the 
pharmacodynamic characteristics of TCM in inhibiting 
influenza virus-induced host inflammatory and immune 
responses. 

In addition, based on the superior anti-inflammatory 
efficacy of TCM, some researchers have investigated the 
treatment of influenza with oseltamivir plus TCMs. Using 
this approach, the median duration of fever after treatment 
was significantly shorter in patients who received Mao-to 
(a Japanese traditional herbal medicine) plus oseltamivir 
compared with those who received oseltamivir only. Clinical 
trials have indicated that combination therapy that includes 
Mao-to is effective in controlling fever owing to type A 
influenza infection in children (108). Another clinical 
trial also found that maxingshigan-yinqiaosan (a TCM) in 
combination with oseltamivir obviously reduced the time 
to fever resolution in patients with H1N1 influenza virus 
infection, as compared with treatment using oseltamivir 
alone (94). These clinical trials indicate that TCMs are 
a good support in oseltamivir treatment that can reduce 
the duration time of fever. There is also evidence showing 
that TCM (Lianhua-Qingwen capsules) significantly 
reduces the severity of illness and duration of symptoms 
including cough, sore throat, and fatigue (93). However, 
data are lacking regarding whether treatment with TCMs 
plus oseltamivir is effective for inhibiting viral shedding 
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or reducing the outbreak rate of viral resistance. These 
topics warrant further research in the future. Nevertheless, 
drug interactions must be seriously considered when using 
TCMs plus oseltamivir. 

Conclusions

Influenza viruses, especially avian influenza viruses, still 
cause significant human disease and can lead to direct or 
indirect harm via viral replication or hyper-inflammatory 
immune responses, respectively. Antiviral therapy is 
particularly beneficial for the treatment of mild influenza or 
influenza-like pneumonia in adults and children. Although 
early antiviral use is critical for controlling influenza, 
delayed use of some NAIs (oseltamivir or peramivir) may 
also be effective. However, anti-inflammatory treatment 
of influenza must not be omitted, especially for avian 
influenza. Therefore, we stress the equal importance of 
antiviral and anti-inflammatory therapies when developing 
anti-influenza strategies. Additionally, the use of TCMs for 
influenza treatment has gained recent attention as TCMs 
have both antiviral and anti-inflammatory activities and may 
represent potent new anti-influenza agents. 
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