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Introduction

Early immunosuppression strategies after solid organ 
transplantat ion inc luded tota l  body i rradiat ion, 
cyclophosphamide, and methotrexate (1). Predictably, 
myeloablative therapy prior to solid organ transplant led to 
major complications related to the treatment rather than 
rejection (1). With the discovery of 6-mercaptopurine/
azathioprine, kidney transplantation outcomes became 
more successful in the 1960’s, and work by Dr. Thomas 
Starzl and others demonstrated the effectiveness of 
combination immunosuppressive therapy for maintaining 
prolonged graft survival (1-3). Unfortunately, advances 

in lung transplantation did not occur as quickly after Dr. 
James Hardy performed the first lung transplantation in 
the United States in 1963 (4). It was not until the advent of 
cyclosporine that lung transplantation began to experience 
prolonged graft survival (5).

Induction therapy

The first lung transplant surgeries of the modern era 
were performed without the use of induction therapy (6). 
Unfortunately, early survival remained poor with a median 
survival of 3.0 years from 1988 to 1991, a survival rate 
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which, by the turn of the century had not significantly 
changed (7). Recipients were plagued by high rates of 
early acute cellular rejection (ACR) and bronchiolitis 
obliterans syndrome (BOS), or late allograft failure (7,8). 
ACR is attributed to immune stimulation mediated by 
host T-cells infiltrating the allograft after activation by 
MHC-presentation of foreign donor antigens. The risk 
of ACR in the early post-transplant period may be further 
increased by changes in antigen presentation associated 
with organ retrieval and processing (9). In order to target 
this T-cell mediated process, some centers proposed the 
use of induction therapy to deplete lymphocyte stores, 
disrupt T-cell function and induce immune tolerance 
(10,11). This reflected similar practices in cardiac (12) and 
renal transplantation (13). Supporters cited the additional 
possibility that early induction would reduce the required 
doses of nephrotoxic calcineurin inhibitors in the early 
post-transplant period (14). Critics were concerned 
about the risks of compromising systemic immunity and 
consequently increasing rates of infection and malignancy, 
both of which had been reported in other solid organ 
transplants (15,16). 

While the debate over the risks and benefits of induction 
therapy continues, induction therapy use has increased. 
Induction therapy was utilized in approximately 50% of 
lung transplants in 2004 as compared to its use in greater 
than 70% of lung transplants in the first half of 2016 (17-19).  
Despite nearly 20 years since the first use of induction 
therapy, its role in lung transplantation has not been 
rigorously studied. A 2013 meta-analysis found only three 
randomized clinical trials directly addressing this question 
(total n=140) and demonstrated no significant difference 
in mortality, ACR grade 2 or higher, or BOS, though 
cumulative hazard ratios trended in favor of induction 
therapy (20). A recent retrospective analysis of the United 
Network for Organ Sharing (UNOS) database including 
more than 6,000 subjects demonstrated significantly 
improved survival for subjects receiving alemtuzumab or 
basiliximab compared to no induction therapy (21). Perhaps 
the tides are finally turning. 

The three induction agents currently in use are polyclonal 
anti-thymocyte globulin (ATG), anti-CD52 monoclonal 
antibody (alemtuzumab) and interleukin-2 (IL-2)  
receptor antagonists (basiliximab). Since 2004 more than 
80% of induction therapy recipients received IL-2 receptor 
antagonists, a continued trend upward from approximately 
40% in 2006 (19).

ATG

ATG is composed of polyclonal immunoglobulins 
derived from either horse or rabbit exposure to human 
thymocytes. The resulting polyclonal immunoglobulins 
are directed at multiple different human lymphocyte 
antigens. Immunoglobulin binding leads to complement-
mediated lymphocyte cell lysis, antibody-mediated 
cell  lysis,  macrophage-mediated phagocytosis and 
lymphocyte opsonization followed by removal through the 
reticuloendothelial system (22). Induction doses of ATG 
vary based on the given formulation (rabbit vs. equine) 
but are administered for 3 consecutive days following 
transplantation (10). Lymphocyte depletion may last as long 
as 6–8 months (23).

One of the major concerns regarding ATG use is the 
possibility of an acute cytokine storm in response to 
ATG infusion. Subjects may develop non-cardiogenic 
pulmonary edema, chest pain and shortness of breath. 
Milder syndromes have also been reported including a 
serum sickness-like illness with diffuse rash, fever, pruritus, 
myalgia and arthralgia. Serum sickness may occur days to 
weeks after infusion. A majority of ATG-treated patients 
will develop anti-rabbit or anti-equine antibodies (24) which 
may complicate subsequent ATG dosing. Additionally, 
thymoglobulin is a treatment option for high grade and/or 
refractory acute rejection (25) thus prior exposure to ATG 
may theoretically complicate subsequent use though there is 
no available literature to support this.

Alemtuzumab

Alemtuzumab is a monoclonal antibody directed against the 
cell surface marker CD52. CD52 is expressed on the surface 
of B-cells, T-cells, monocytes, macrophages, and NK  
cells (26). Alemtuzumab binds to this cell surface protein 
leading to complement-mediated cytolysis, antibody-
mediated cytotoxicity and programmed cell death. 
Alemtuzumab is dosed at 30 mg IV prior to reperfusion 
or immediately following transplantation (27,28). 
Alemtuzumab has a 12-day half-life; however cell function 
is impaired significantly longer with monocyte, B-cell and 
T-cell recovery at 3, 6 and 12 months respectively (29).

Given the prolonged lymphopenia associated with 
alemtuzumab therapy, there is significant concern regarding 
risk of infection and post-transplant lymphoproliferative 
disease (PTLD). Recent work has been limited to single 
center and large registry studies and the results have been 
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heterogeneous with multiple single center studies showing 
no significant difference in rates of infection (27,30) or 
PTLD (28) between alemtuzumab and basiliximab groups, 
while the UNOS registry analysis demonstrated increased 
rates of non-CMV infection and PTLD following the 
use of alemtuzumab compared to either basiliximab or no 
induction therapy (21).

IL-2 receptor antagonists

IL-2 receptor antagonists are chimeric antibodies (mouse 
+ human) directed against the alpha subunit of the CD25 
cell surface protein (the IL-2 receptor). Basiliximab is 
currently in use within the US, while daclizumab is no 
longer on the market due to decreased demand. These IL-2 
receptor antagonists bind to the IL-2 receptor and block 
IL-2 dependent signaling. T-cells rely on IL-2 signaling 
for proliferation and differentiation thus IL-2 receptor 
antagonists inhibit this process. Unlike the other induction 
agents however, IL-2 receptor antagonists do not lead to cell 
death or significant T-cell depletion. Basiliximab is dosed 
at 20 mg at time 0 and 4 days after transplantation based on 
literature demonstrating increased rates of ACR if the first 
dose is given post-transplantation (31) mirroring findings 
seen in pediatric heart transplantation (32). Basiliximab has 
a half-life of 7.2±3.2 days (Basiliximab drug insert) but may 
block the receptor for up to 59±17 days when combined 
with triple drug therapy consisting of cyclosporine, 
prednisone and mycophenolate mofetil (Basiliximab drug 
insert). Basiliximab is a humanized antibody and thus not 
associated with the infusion reactions observed during ATG 

and alemtuzumab treatment. 

Outcomes with induction therapy

There are limited randomized controlled trials comparing 
no induction, ATG, alemtuzumab and basiliximab, and 
hence clinical practice is based largely on observational 
studies, large registry analyses and center preference 
(Table 1). Compared to no induction, ATG has been 
associated with decreased rates of ACR, increased 
malignancy, a trend towards increased CMV infection 
and no significant difference in BOS or overall graft 
survival (10,33). Compared to historical controls who did 
not receive induction, the IL-2 receptor antagonists have 
been associated with decreased early ACR (34,35) without 
increased incidence of infection or malignancy while 
alemtuzumab use as induction therapy has revealed more 
conflicting results. One large retrospective analysis showed 
significantly fewer episodes of ACR, greater freedom from 
BOS, increased overall survival with significantly fewer 
deaths from graft failure and a trend towards increased risk 
of PTLD with alemtuzumab compared to no induction (28). 
However, another smaller study using historical controls 
demonstrated no significant difference in ACR, survival or 
infection rates (36). Notably both studies reported reduced 
dose maintenance immunosuppression post-transplantation 
among subjects using alemtuzumab, further emphasizing 
the potential effectiveness of this therapy. 

In head to head studies, alemtuzumab or basiliximab 
may be associated with lower rates of ACR and improved 
overall survival compared to ATG preparations (20,27,37); 

Table 1 Review of induction therapies

Agent
Formulations (brand 
name)

Mechanism of action Side effects
Percent of 
transplant centers 
using for induction*

Anti-thymocyte 
globulin

Horse (ATGAM); 
rabbit (rATG)

Polyclonal equine or rabbit antibodies directed 
at thymocyte cell surface proteins leading 
to degradation and ultimately T-cell death/
depletion (22) 

Acute cytokine 
storm; delayed 
serum sickness-like 
syndrome (24)

13% (19)

IL-2 receptor 
antagonist

Basiliximab 
(Simulect)

Binds to CD25 surface protein on T-cells 
thereby impairing IL-2 dependent signaling (31)

No infusion reactions 
(30)

76% (19)

Anti-CD52 Alemtuzumab 
(Campath)

Binds to CD52, expressed by B cells, T-cells, 
NK cells, monocytes and leads to cell lysis, 
prolonged leukocyte depletion (26)

Cytokine storm; 
prolonged 
lymphopenia (29)

11% (19)

*, values indicate rates of use among recipients who received induction therapy between 2004 and 2016, according to the 2017 report of 
the International Society for Heart and Lung Transplantation (19). ATG, anti-thymocyte globulin.
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though only alemtuzumab has been demonstrated to 
offer the additional benefit of decreased maintenance 
immunosuppression (38). A recent analysis of the UNOS 
national registry demonstrated increased survival free 
of BOS for subjects receiving alemtuzumab compared 
to basiliximab (21). Inherent in this analysis were the 
challenges of large observational datasets including 
significant differences between groups. Nonetheless, 
smaller observational studies have revealed similar findings 
(28,30). Ongoing concerns regarding the risk of prolonged 
lymphocyte depletion associated with alemtuzumab therapy, 
combined with the relatively mild side effect profile of 
basiliximab likely account for the growing prevalence of 
basiliximab use although studies addressing this question 
have demonstrated mixed results (11,21,30). Additional 
randomized controlled trials comparing rates of ACR, BOS, 
infection and PTLD between alemtuzumab and basiliximab 
are certainly warranted. 

While the use of induction immunosuppression is not yet 
universal in lung transplantation, it is becoming increasingly 
common. The preponderance of evidence suggests that 
it is associated with lower rates of ACR and improved 
overall survival. Nonetheless, it is prudent for all centers to 
continue to consider the possibility of increased infectious 
and malignant complications associated with the use of some 
induction therapies. Further research is required to identify 
the optimal therapy choice and the patient population that 
is most likely to benefit from induction therapy.

Maintenance immunosuppression

Maintenance immunosuppressive therapy is arguably the most 
important part of medical care after lung transplantation, and 
its main purpose is to prevent acute and chronic rejection. 
However, this goal must be balanced with side effects 
and major toxicities associated with these medications. 
Maintenance immunosuppressive regimens for lung 
transplantation are largely extrapolated from observational 
studies and trials in renal, liver and heart transplantation 
(22,39). Protocols for maintenance immunosuppressive 
regimens vary among lung transplant centers, but typical 
regimens consist of a three-drug combination including a 
calcineurin inhibitor, an anti-metabolite and a glucocorticoid 
(39-42). Combination regimens allow for higher levels of 
immunosuppression while also minimizing the toxicities of 
an individual medication (22). Due to higher rates of ACR 
in the early post-transplant course, transplant protocols 
typically utilize greater intensity of immunosuppression in 

the first year after transplant (43). Naturally, this potential 
benefit of higher intensity of immunosuppressive treatment 
must be balanced against the adverse effects of over-
immunosuppression including greater susceptibility to 
infection (44) and malignancy (45). 

Glucocorticoids

Glucocorticoids are a mainstay of immunosuppressive 
regimens after lung transplantation because they have 
widespread inhibitory effects on the immune system and act 
through a variety of signaling pathways (46). Glucocorticoids 
bind to the intracellular glucocorticoid receptor generating 
a complex that blocks the transcription of inflammatory 
cytokines mainly through an interaction with nuclear factor-
kappa-B (NF-KB), but also through the induction of anti-
inflammatory proteins such as annexin-1 and MAPK 
phosphatase-1 (46). Through these pathways glucocorticoids 
inhibit macrophage activation and reduce lymphocyte 
proliferation and migration (47). Glucocorticoids are 
certainly not without side effects; long term glucocorticoid 
use can lead to infectious complications, osteoporosis, 
diabetes, hyperlipidemia, cataracts, psychiatric and mood 
changes, weight gain, myopathy, hypertension and impaired 
wound healing (48,49). Fortunately, these risks are dose 
dependent and can be somewhat mitigated by reduced 
dosages (50). Prednisone is the classic glucocorticoid used 
after lung transplant; usually after an induction dose, it is 
reduced to 0.5 mg/kg/day in the immediate post-transplant 
period followed by a reduction over the next several months 
to a dose of 5–10 mg for maintenance treatment (39,41). 
Total glucocorticoid withdrawal is rare (42); a few small 
studies have reported varying success after withdrawal (51,52).

Calcineurin inhibitors

Cyclosporine was originally isolated from the fungus, 
Tolypocladium inflatum ,  and its identification as an 
immunosuppressant agent revolutionized solid organ 
transplantation (41). After the discovery of cyclosporine, 
the field of lung transplantation started to demonstrate 
notable success (5). Cyclosporine binds cyclophilins 
present inside cells forming a drug-receptor complex that 
competitively binds and inhibits calcineurin, a calcium and 
calmodulin-dependent protein phosphatase, resulting in 
the inhibition of nuclear factor of activated T-cells (NF-
AT) related transcription factors (53). This leads to reduced 
transcriptional activation of cytokines IL-2, tumor necrosis 
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factor-α, IL-3, IL-4, CD40L, granulocyte-macrophage 
colony stimulating factor, and interferon-γ, thereby 
reducing T-cell activation and proliferation (54). 

Cyclosporine is available in an unmodified and modified 
form. The unmodified form is an oil-based emulsion 
that has unreliable absorption (Sandimmune, Novartis 
Pharmaceuticals Corp.). The unmodified preparation 
has largely been replaced by the modified form (Neoral, 
Novartis Pharmaceuticals Corp.) which provides greater 
bioavailability and more predictable absorption (39,41). 
Careful therapeutic monitoring is needed to ensure efficacy 
and avoid toxicity. Measurements of area under the curve 
(AUC) have shown some superiority for cyclosporine level 
monitoring with reduced ACR and lower nephrotoxicity 
in renal transplant (55). However, determining the AUC 
involves multiple measurements and as a result it is quite 
difficult and not practical (39,41,56). Other options include 
measuring levels 2 hours after the dose (C2) or trough levels 
(C0). Studies have suggested that C2 monitoring is more 
closely correlated with AUC and may reduce nephrotoxicity 
compared with C0 monitoring (57,58). Target cyclosporine 
levels are dependent on the time from transplant and center 
specific protocols, but generally target C0 levels range from 
100–450 ng/mL and C2 levels range from 800–1,400 ng/mL  
(39,41). Nephrotoxicity, both acute and chronic, is the 
principal side effect of cyclosporine and can be mitigated 
by reducing the target level (59). Other side effects 
include hirsutism, gingival hyperplasia, neurotoxicity 
such as seizures and tremors, hypertension, diabetes, and 
dyslipidemia (60-65). 

Tacrolimus is another calcineurin inhibitor that was first 
identified in a soil sample in 1984 and became available for 
clinical use in 1994 after demonstrating efficacy in renal 
and liver transplantation and as a rescue medication in the 
setting of rejection (66). Tacrolimus binds to intracellular 
FKBP12, also forming a drug receptor complex that 
competitively binds with calcineurin and acts through the 
same pathway as cyclosporine to inhibit T-cell activation and 
proliferation (53). Tacrolimus is considerably more potent 
than cyclosporine and has oral bioavailability of around 
20–25% (67). Transplant centers typically monitor trough 
levels despite studies that have demonstrated that post dose 
levels are a better predictor of AUC (68,69). Target trough 
levels for tacrolimus range between 5 and 15 depending 
on comorbidities, time from transplant and center specific 
protocols (39,41). The side effect profile for tacrolimus 
is similar to cyclosporine with less hypertension (65)  
and hyperlipidemia (64) but more neurotoxicity (70,71) 

and diabetes (64). Both tacrolimus and cyclosporine are 
metabolized through the CYP450 3A4 pathway, and careful 
attention with dose adjustment is needed when using 
medications that induce or inhibit these enzymes (69).

After clinical trials demonstrated the efficacy of 
tacrolimus in liver and kidney transplantation, Keenan et al. 
published the first randomized controlled trial in 1995 of 
133 lung transplant recipients. They compared a regimen of 
tacrolimus, azathioprine and prednisone, with a regimen of 
cyclosporine, azathioprine, and prednisone and found similar 
ACR rates as well as survival rates, but less obliterative 
bronchiolitis (OB) on transbronchial biopsies (72).  
Subsequent trials by Zuckerman et al. (73,74), Hachem 
et al. (75), and Treede et al. (76) reported variable results 
which are summarized in Table 2. In the largest randomized, 
multicenter study of 249 lung transplant recipients, Treede 
et al. demonstrated lower rates of BOS at 3 years in patients 
receiving a tacrolimus-based regimen compared with a 
cyclosporine-based regimen, 11.6% vs. 21.3%, respectively 
(P=0.037) (76). Partially as a result of these studies as well 
as data from other solid organ transplantation, tacrolimus 
currently is the preferred calcineurin inhibitor and in 2016 
it was used in over 90% of lung transplant recipients at the 
1-year follow-up after transplant (19,78).

Antimetabolites

Azathioprine was the first immunosuppressant in solid 
organ transplantation to be utilized in a multi-drug 
cocktail and has been in use in solid organ transplantation 
since the 1960’s (1,79). Azathioprine is converted to 
6-mercaptopurine (6-MP) and then into 6-thiouric acid, 
6-methyl-MP and 6-thioguanine, ultimately acting as a 
nucleotide blocking agent and halting DNA replication (79). 
Azathioprine is usually dosed at 1 to 2 mg/kg daily with dose 
reductions made based on cell counts (39,41). About 10% of 
the population has a thiopurine methyltransferase (TPMT) 
deficiency which is an important enzyme in azathioprine 
metabolism pathway. TPMT-deficient patients can 
develop severe myelosuppression due to azathioprine (79).  
Other side effects associated with azathioprine therapy 
include hepatotoxicity, cholestasis and pancreatitis (39,79).

Mycophenolate is another antimetabolite; it has become 
the preferred anti-metabolite and in 2016, it was used 
in about 80% of lung transplant recipients at the 1-year 
follow-up after transplant (19,78). Mycophenolate is also 
derived from fungi and is rapidly converted to its active 
form mycophenolic acid (MPA) in the liver. MPA inhibits 
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inosine monophosphate dehydrogenase, the enzyme 
responsible for the synthesis of guanosine nucleotides, 
thereby halting DNA synthesis (39,41,79). Uniquely, this 
is specific for B and T-cell proliferation because most 
cells can access salvage pathways for guanosine nucleotide 
synthesis, whereas B- and T-cells rely solely on the 
inosine monophosphate pathway (39,41,79). The most 
worrisome adverse effect of mycophenolate is bone marrow 
suppression, however diarrhea, nausea, and abdominal 
discomfort are common and for some, debilitating (39,79). 
A newer formulation of mycophenolate sodium, Myfortic, 
contains MPA in a delayed release capsule that may reduce 
GI side effects and has shown comparable efficacy in renal 
and heart transplantation (41). Therapeutic monitoring of 
mycophenolate is possible but the efficacy and importance 
of monitoring has not been established (39). 

Mycophenolate has demonstrated superiority in 
preventing ACR in several randomized trials in renal, heart 
and liver transplantation (80-82), however, the data has 
been less robust in lung transplantation. A few small non-
randomized studies demonstrated reduced episodes of acute 
allograft rejection with mycophenolate compared with 
azathioprine (83,84). Two larger randomized controlled 
trials in lung transplant recipients failed to show a reduction 
in the development of ACR, infection, or BOS (85,86). 

These trials are summarized in Table 3. 
However, recent analysis from the International 

Society for Heart and Lung Transplant (ISHLT) registry 
demonstrated that 38.1% of lung transplant recipients 
receiving mycophenolate mofetil, cyclosporine, and 
a corticosteroid experienced rejection within the first 
year compared with 58.1% of lung transplant recipients 
receiving azathioprine, cyclosporine and corticosteroid 
therapy (P<0.05) (78).

Mammalian target of rapamycin (mTOR) inhibitors

Sirolimus and everolimus are mTOR inhibitors that are 
structurally similar to calcineurin inhibitors and act by 
binding FKBP12 to form a drug-protein complex like 
tacrolimus. However, they instead block the mTOR instead 
of calcineurin, halting DNA synthesis and consequently 
the proliferation of T and B cells (39,79). Target trough 
levels for sirolimus and everolimus range from 5–15 
(39,79) and 3–8 ng/mL (87,88), respectively. The side 
effect profiles for sirolimus and everolimus are similar 
including myelosuppression, diarrhea, mouth ulcers, 
hyperlipidemia, refractory edema, and most importantly 
impaired wound healing (87,88). Likely related to the 
effects of mTOR inhibitors on fibroblasts, endothelial 

Table 2 Tacrolimus vs. cyclosporine for lung transplant recipients

Study Population, n Methodology Outcomes

Keenan et al., 
1995 (72)

133 Prospective, randomized, single center; 
comparing TAC/AZA/CS and CsA/AZA/
CS; at time of transplant; follow-up 
254–1,555 days

AR: 0.85 (TAC) vs. 1.09 (CsA) AR per 100 days, P=0.07; survival: 
1 and 2-year: 83%, 76% in TAC vs. 71%, 66% in CsA group,  
P= NS; OB: 21.7% in TAC vs. 38% in CsA group, P=0.025

Zuckerman 
et al., 2003 
(73,74,77) 

74 Prospective, randomized, two center, 
open label; comparing TAC/MMF/CS 
vs. CsA/MMF/CS; at time of transplant, 
mean follow-up 507 days; with later 
follow-up of 36 months

Survival: 1 year: 71% (TAC) vs. 82% (CsA), P= NS; survival: 
3-year: 68% (TAC) vs. 57% (CsA), P=0.748; AR: 0.22 (TAC) vs. 
0.32 (CsA) AR episodes per 100 days, P=0.097; 
Freedom from AR at 1 year: 46% (TAC) vs. 35% (CsA), P=0.774; 
BOS incidence: 10% vs. 41%, P<0.01

Hachem, et al., 
2007 (75)

90 Prospective, randomized, single center, 
open label; trial comparing TAC/
AZA/CS vs. CsA/AZA/CS; at time of 
transplant, median follow-up 2.17 years

Composite end point: BOS 0p or cumulative acute rejection 
score or A3 or higher or cumulative lymphocytic bronchiolitis of 
B4 or higher; primary end point: 54.5% (TAC) vs. 84.8% (CsA), 
P=0.002; freedom from BOS 0p: not different, P=0.1

Treede, et al., 
2012 (76)

249 Prospective, randomized, multicenter, 
open label, comparing TAC/MMF/CS 
vs. CsA/MMF/CS; at time of transplant, 
follow-up 3 years

BOS: 11.6% (Tac) vs. 21.3% (CsA), P=0.037; HR of BOS: 1.97 for 
CsA compared with TAC; survival: 1 year: 84.6% (TAC) vs. 88.6% 
(CsA); survival: 3-year: 78.7% (TAC) vs. 82.8% (CsA), P=0.382; 
AR: no difference in cumulative rate of AR at 3 years, P=0.43

AR, acute rejection; CsA, cyclosporine; TAC, tacrolimus; MMF, mycophenolate mofetil; AZA, azathioprine; CS, corticosteroids; NS, non-
significant and not reported in article; OB, obliterative bronchiolitis on transbronchial biopsy; BOS, bronchiolitis obliterans syndrome; HR, 
hazard ratio.
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cells and smooth muscle cells, early studies with sirolimus 
reported airway anastomotic dehiscence (89,90). As a 
result, subsequent studies have avoided mTOR inhibitors 
until at least 4 weeks after lung transplantation (87,88). 
Other notable potential risks with sirolimus are venous 
thromboembolism (91) and drug induced pneumonitis (92).  
Nevertheless, mTOR inhibitors have demonstrated 
advantages when added to immunosuppressive regimens, 
including allowing the reduction of target calcineurin 
trough levels resulting in less nephrotoxicity (93,94) and 
reduced risk of malignancy (95). 

Although both sirolimus and everolimus have shown 
some efficacy in preventing rejection and supplementing 
immunosuppressive regimens to limit toxicity from 
calcineurin inhibitors, randomized trials have failed to 
demonstrate a clear reduction in BOS, ACR or improved 
survival (87,88,96). There are four randomized trials that 
have shown mixed results using everolimus or sirolimus in 
terms of reducing the incidence of allograft dysfunction. 
Notably three of the four trials showed less CMV 
infection in patients on mTOR inhibitors instead of the 
antimetabolites (87,88,96,97). Details of these studies are 
shown in Table 4. 

Antibody mediated therapies

Immunosuppression is largely targeted at limiting cell-
mediated immunity, however, the dangers of antibody 
mediated rejection (AMR) for the allograft have become 

increasingly clear over time. Unfortunately, the diagnosis 
of AMR in lung transplant recipients remains somewhat 
elusive despite the recent consensus statement by the 
ISHLT (98). Therapy for antibody-mediated rejection 
involves plasmapheresis, intravenous immunoglobulin 
(IVIG), rituximab, bortezomib and the newer agent 
carfilzomib. Plasmapheresis removes circulating antibodies 
and hopefully donor specific antibodies (DSA) that could 
target the allograft. IVIG has a combination of effects 
resulting in apoptosis of B cells and inhibition of the 
antibody-mediated complement pathway (99). Rituximab 
is a monoclonal anti-CD20 antibody specific for B-cells 
that causes apoptosis and ultimately B-cell depletion (39). 
Bortezomib and carfilzomib are proteasome inhibitors that 
cause plasma cell apoptosis (100).

Development of de novo DSA after transplantation is 
associated with poorer survival and greater risk of BOS and 
chronic lung allograft dysfunction (101-103). Hachem et al. 
conducted a prospective observational study of a treatment 
protocol for patients with de novo DSA in the absence of 
allograft dysfunction, involving rituximab with IVIG versus 
IVIG alone. In this study both treatments similarly cleared 
DSA, but patients who did not clear their DSA were more 
likely to develop BOS (P=0.03) (104). Although the findings 
from this study suggest that aggressive multi-targeted 
therapy to reduce DSA after transplant is beneficial even 
in the absence of allograft dysfunction, larger randomized 
trials are needed to determine how to best approach de novo 
DSA. 

Table 3 Mycophenolate vs. azathioprine for lung transplant recipients

Study Population Methodology Outcomes

Zuckerman  
et al., 1999 (83)

38 Prospective cohort study compared with historical 
control group; MMF/CsA/CS vs. AZA/CsA/CS; 
enrolled at time of transplant, follow-up 6 months

AR: 0.29 (MMF) vs. 1.53 (AZA), P<0.01; 
Infections: 1.57 (MMF) vs. 2.29 (AZA), P= NS

Palmer et al., 
2001 (85)

81 Prospective, randomized, two center, open label; 
MMF/CsA/CS vs. AZA/CsA/CS; enrolled at time of 
transplant, 6 months follow-up

AR: 63% (MMF) vs. 58% (AZA), P=0.82; 
Survival: 86% (MMF) vs. 82% AZA, P=0.57

McNeil et al., 
2006 (86)

320 Prospective, randomized, multicenter trial, open 
label; MMF/CsA/CS vs. AZA/CsA/CS; enrolled at 
time of transplant, 3 years follow-up

AR: 56.6% (MMF) vs. 60.3% (AZA), P=NS; no 
difference in time to first rejection; survival: 1 year: 
88% (MMF) vs. 80% (AZA), P=0.07; survival: 3-year: 
75% (MMF) vs. 69% (AZA), P=0.18; 
Freedom from BOS at 3 years: 73% (MMF) vs. 75% 
(AZA), P=0.70

AR, acute rejection; CsA, cyclosporine; Tac, tacrolimus; MMF, mycophenolate mofetil; AZA, azathioprine; NS, non-significant and not 
reported in article; CS, corticosteroids; AE, adverse events.



3148

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(5):3141-3155jtd.amegroups.com

Benvenuto et al. Immunosuppression

Desensitization

The pre-transplant presence of anti-HLA antibodies in 
lung transplant candidates is being increasingly recognized 
and poses major challenges to patient selection and 
donor identification. The solid phase single antigen bead 
technology has increased the recognition and identification 
of anti-HLA antibodies, however there is significant 
controversy on how to approach patients with these 
antibodies (105). Studies have shown that pre-transplant 
sensitization with anti-HLA antibodies may be associated 
with decreased survival after transplantation (106). One 
management approach is to immediately label anti-HLA 
antibodies present above a certain threshold as unacceptable 
antigens for the patient and thus limit the available donor 
pool. Other approaches include desensitization prior to 
lung transplantation to attempt to reduce the anti-HLA 
antibody levels prior to transplant (107), and peri-operative 
desensitization at the time of transplantation (108).

Snyder and colleagues reported the outcomes of a 
desensitization protocol for highly sensitized pre-transplant 

patients with calculated panel reactive antibody (cPRA) 
≥80%. The protocol included rituximab on day 1 and 
26, plasmapheresis for seven treatments over 19 days, IV 
solumedrol for four doses and four doses of subcutaneous 
bortezomib (107). Eighteen patients started the treatment 
and nine patients completed the treatment with early 
completion due to transplant. The cPRA did not change 
with the protocol and the median fluorescence intensity 
(MFI) significantly decreased only for anti-HLA antibodies 
in the 5,000–10,000 MFI range but not high MFI 
>10,000 or low MFI <5,000 anti-HLA antibodies. This 
desensitization protocol was not markedly successful at 
broadening the donor pool, and the clinical impact of these 
pre-transplant anti-HLA antibodies on post-transplant 
outcomes remains unknown (107).

Tinckam and colleagues reported their single center 
experience with a perioperative desensitization strategy 
for patients with DSA and cPRA ≥30% (108). To avoid 
the toxicities of pre-transplant desensitization before 
transplant and to circumvent limiting the donor pool, 
these patients received perioperative plasmapheresis, IVIG, 

Table 4 mTOR inhibitors

Study Population Methodology Outcomes

Snell et al., 
2006 (97)

213 Prospective, randomized, 
multicenter, double-blind; EVE/CsA/
CS vs. AZA/CsA/CS; enrolled BOS 
free patients at 3–36 months after 
transplant; 12–24 months follow-up

Efficacy failure: decline in FEV1 >15%, graft loss, death or loss to 
follow up: EF: 1 year: 21.8% (EVE) vs. 33.9% (AZA), P=0.046; EF: 
2-year: 43.6% (EVE) vs. 44.6% (AZA), P=0.874; 
Decline in FEV1 >15%: 15.8% (EVE) vs. 27.7% (AZA), P=0.034; 
BOS: 1 year: 14.9% (EVE) vs. 24.1% (AZA), P=0.085; BOS: 2-year: 
31.7% (EVE) vs. 35.7% (AZA), P=0.534; AR: 1 year: 7.9% (EVE) vs. 
32.1% (AZA), P<0.001; AR: 2-year: 14.9% (EVE) vs. 41.1% (AZA), 
P<0.001

Bhorade et al., 
2011 (96)

181 Prospective, multicenter, 
randomized, open label; SIR/TAC/CS 
vs. AZA/TAC/CS, enrolled 90 days 
after transplant, follow-up 36 months

No difference in AR episodes; AR: 1 year: 39% (SIR) vs. 48% 
(AZA), P=0.82; AR: 3-year: 46% (SIR) vs. 49% (AZA), P=0.57; no 
difference in BOS at year 1 or 3; BOS: 1 year: 11% (SIR) vs. 3% 
(AZA), P=0.11; BOS: 3-year: 30% (SIR) vs. 22% (AZA), P=0.48

Glanville et al., 
2015 (87)

165 Prospective, multicenter, 
randomized, open-label, MPS/CsA/
CS vs. RAD/CsA/CS, enrolled  
1–3 months after transplant, follow-
up 3 years

As per ITT analysis, no difference in BOS, survival, or time to AR, 
but more AR episodes in MPS group; survival: 3-year: 76% (RAD) 
vs. 84% (MPS), P=0.19; freedom from BOS at 3 years: 71% (RAD) 
vs. 70% (MPS), P=0.95; mean number of AR episodes per patient 
higher in MPS group, P=0.04

Strueber et al.,
2016 (88)

190 Prospective, randomized, single-
center; comparing EVE/CsA/CS vs. 
MMF/CsA/CS; enrolled 28 days after 
transplant with follow-up 24 months

Results below are for ITT analysis, no difference in survival, BOS 
incidence; high rates of cross-over and different results in per 
protocol analysis; survival: 2-year: 89% (EVE) vs. 87% (MMF), 
P=0.664; BOS incidence: 14% (EVE) vs. 21% (MMF), P=0.250

EF, efficacy failure; AR, acute rejection; CsA, cyclosporine; TAC, tacrolimus; MMF, mycophenolate mofetil; AZA, azathioprine; NS, non-
significant and not reported in article; CS, corticosteroids; AE, adverse events; ITT, intention to treat; MPS, mycophenolate sodium; RAD, 
delayed-onset everolimus; mTOR, mammalian target of rapamycin.
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ATG and MPA. Unsensitized patients were treated with 
the standard cyclosporine, azathioprine and prednisone 
regimen without ATG. One-year graft survival was nearly 
identical comparing sensitized patients who have DSA 
with unsensitized patients who did not have DSA (89% vs. 
86%, P=0.47). This study demonstrates excellent outcomes 
with a perioperative desensitization approach that does not 
diminish the available donor pool for patients (108).

The future of immunosuppression

Survival in lung transplantation remains quite poor compared 
to other solid organ transplants with a median survival of 
5.8 years compared to 11.9 years for heart transplantation 
(18,109). Early mortality is largely attributable to infection 
and graft failure while later mortality is due to chronic lung 
allograft dysfunction generally resulting from allograft 
rejection (18). Further complicating immunosuppression 
in lung transplantation, is the fact that the mechanisms of 
immune responses in lungs vary from those observed in 
other organs (110,111). With the exception of the small 
bowel, the lung is the only transplanted organ that is 
constantly exposed to the surrounding environment. Thus 
the immunosuppression required to avoid lung allograft 
rejection remains especially complicated. There are, 
however, promising avenues of active research to address 
these challenges. 

Transplant immune tolerance 

The major goal of post-transplant immunomodulation is 
to achieve transplant immune tolerance; a state in which 
the recipient’s immune system no longer responds to the 
allograft as foreign. Transplant immune tolerance would 
obviate the need for immunosuppression while maintaining 
an intact immune system capable of fighting infection and 
surveilling for malignancy thus removing significant causes 
of morbidity and mortality after transplantation. Could this 
be possible? 

Mixed chimerism is a state in which the donor and 
recipient hematopoietic cells co-exist creating donor-specific 
tolerance in the recipient. The first solid organ transplants 
to utilize mixed chimerism were performed in subjects who 
had undergone hematopoietic stem cell transplantation 
(HSCT) and subsequently developed renal failure requiring 
renal transplantation. These renal transplants were 
performed from the same HLA-identical donor, and subjects 

did not require subsequent immunosuppression (112,113). 
Following the identification of this unique state of donor-
specific tolerance, combined bone marrow and renal 
transplantation was successfully performed in subjects with 
multiple myeloma and associated renal failure (114,115). 
One of the major challenges in these approaches, has been 
determining the least toxic conditioning regimen possible 
to allow for bone marrow engraftment and to achieve mixed 
chimerism. Such transplants were initially performed with 
myeloablative chemotherapy (114) but subsequently with 
non-myeloablative regimens (115). Regimens used for 
primary renal transplantation in the absence of myeloma 
or other malignancy, have consisted of total lymphoid 
irradiation and ATG (116-118), or cyclophosphamide, anti-
CD2 antibody, cyclosporine and thymic irradiation (119). 
Many subjects in these studies were able to completely stop 
all immunosuppressive therapy.

Applying this approach to lung transplantation is 
challenging as the conditioning regimens used in combined 
HSCT-renal transplantation must begin many days 
prior to solid organ transplantation thus complicating 
the unpredictable deceased donor availability and 
transplantation process that accounts for the vast majority 
of lung transplant surgeries. Studies performing HSCT 
after solid organ transplantation have been successful 
in non-human primates (120,121). A single case report 
in a patient with advanced lung disease from a primary 
immune deficiency who underwent deceased donor lung 
transplantation, reports successful mixed chimerism 
and long-term immunosuppression withdrawal with 
donor-derived HSCT performed 3 months after lung 
transplantation (122). 

While work in renal transplantation has produced 
remarkable advances in transplant immunology, it remains 
prudent to consider whether renal transplantation 
techniques will be easily translated to lung transplantation. 
Studies performed in swine models of combined heart 
and kidney transplantation have demonstrated that co-
transplantation of a kidney is protective, and removal of 
the renal allograft results in acute rejection of the heart 
(123,124). Similarly, there are numerous cases of sustained 
immune tolerance after withdrawal of immunosuppression 
in both renal and liver transplantation (125-127), while this 
has not been seen in lung transplantation. Additionally, the 
lung remains an immunologically distinct organ (110,111), 
and in contrast to the kidney, is constantly exposed to the 
surrounding environment. Unfortunately, this suggests 
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that the renal transplantation techniques may not be easily 
translated to lung transplantation. 

While establishing immune tolerance is likely to be the 
best long-term goal for solid organ transplantation, it is 
likely to be many years away. 

Existing medications, new applications

Bortezomib and carfilzomib are two proteasome inhibitors 
initially developed for the treatment of multiple myeloma. 
Plasma cells typically express large numbers of proteasomes 
which serve to ubiquinate and destroy dysfunctional or 
misfolded proteins. Proteasome inhibitors allow these 
ubiquitinated proteins to accumulate, resulting in cell death. 
Studies of these medications in the treatment of antibody-
mediated rejection are small, but suggest they may result in 
significant decreases in antibody levels (128,129), clinical 
improvement (130) and return of pulmonary function to 
pre-AMR levels (100). One major area of controversy is 
the definitive diagnosis of AMR. Since its burden in lung 
transplant rejection is not well known, it is difficult to 
measure treatment efficacy (98).

Belatacept is a protein that binds the CD80 and CD86 
receptors on antigen presenting cells (APC); these receptors 
are necessary for APC-mediated stimulation of T-cells. 
Belatacept blocks T-cell co-stimulation, cytokine production 
and T-cell proliferation. Belatacept was originally approved 
for use in renal transplantation but has been used as an 
adjunct in lung transplant recipients with acute and chronic 
renal failure or recipients otherwise intolerant of calcineurin 
inhibitors (131). Concomitant belatacept therapy has 
allowed for decreased dosing of calcineurin inhibitors and 
stabilization or improvement in renal function (132), and 
has been shown to maintain sufficient immunosuppression 
after withdrawal of CNIs (131).

Conclusions

The challenges of lung transplantation are unique, however 
the advances made in renal transplantation, bone marrow 
transplantation and transplant immunology research 
provide promising insights that are likely to revolutionize 
the way we manage lung transplantation in the future. 
In the meantime, ongoing investigations of available 
medications may help elucidate how to best prevent and 
treat acute and chronic allograft rejection while minimizing 
the risk of infection, malignancy and other toxicities of 
immunosuppression. 
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