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Immuno-oncology drugs that inhibit immunosuppressive 
receptors (CTLA4, LAG3, PD-1, TIGIT and TIM3) or 
activate immunostimulatory receptors (4-1BB, GITR, ICOS 
and OX40) are emerging as promising therapeutics for 
cancer patients (1-3). PD-1 (CD279 or PDCD1), consisting 
of the extracellular N-terminal loop and immunoglobulin 
variable (IgV) domain, a single transmembrane domain and 
intracellular ITIM and ITSM motifs, is a representative 
target of immuno-oncology therapy (4-6). PD-L1 and 
PD-L2 ligands on tumor cells or tissue macrophages 
bind to the PD-1 receptor on T cells to induce the 
phosphorylation of ITIM (Y223) and ITSM (Y248) 
motifs of PD-1 and the subsequent repression of PI3K 
and PLCγ1 signaling cascades (Figure 1). Because ligand-
dependent PD-1 signaling activation leads to immune 
evasion through the suppression of anti-tumor immunity 
in the tumor microenvironment, anti-PD-1 monoclonal 
antibodies  (mAbs)  [camrel izumab/SHR-1210 (7) ,  
cemiplimab/REGN2810 (8), MEDI0680/AMP-514 (9), 
nivolumab (10), pembrolizumab (11), sintilimab/IBI308 (12) 
and tislelizumab/BGB-A317 (13)] and anti-PD-L1 mAbs 
[atezolizumab (14), avelumab (15), BMS-936559 (16) and 
durvalumab (17)] have been developed as investigational 
drugs targeting immune evasion, also known as immune 
checkpoint blockers. 

Among these ant i-PD-1 mAbs,  nivolumab and 
pembrolizumab have been approved by the US Food and 
Drug Administration (FDA) for the treatment of cancer 
patients: nivolumab for classical Hodgkin lymphoma, 

colorectal cancer, hepatocellular carcinoma, head and neck 
squamous cell carcinoma (HNSCC), melanoma, non-
small cell lung cancer (NSCLC), renal cell carcinoma 
and urothelial carcinoma; whereas pembrolizumab for a 
relatively wider range of cancers, including cervical cancer, 
gastric cancer, HNSCC, Hodgkin lymphoma, melanoma, 
NSCLC, primary mediastinal large B-cell lymphoma, 
urothelial carcinoma and microsatellite instability-high 
(MSI-H) or mismatch repair deficient (dMMR) cancers 
(https://www.cancer.gov/about-cancer/treatment/drugs). 
Nivolumab interacting with the N-terminal loop of PD-1 (6) 
failed to show benefits in a phase 3 clinical trial (CheckMate 
026) for the treatment of stage IV NSCLC patients 
with PD-L1 tumor expression ≥1% (10). In contrast, 
pembrolizumab interacting with the PD-L1-binding IgV 
domain of PD-1 (5) successfully showed benefits in a phase 
3 clinical trial (KEYNOTE-024) for the treatment of 
advanced NSCLC patients with PD-L1 tumor expression 
≥50% (11). Although nivolumab and pembrolizumab exert 
anti-tumor effects through a common mechanism of the PD-1 
signaling blockade, there are some functional divergences 
between nivolumab and pembrolizumab (Figure 1). 

Lung cancers are classified into small cell lung cancer 
(SCLC), lung adenocarcinoma, lung squamous cell 
carcinoma (SCC) and other subtypes. Lung cancers 
other than SCLC have been traditionally categorized as 
NSCLC because of their relative unresponsiveness to 
combination chemotherapy; however, recent progress in 
genomic sequencing technology revealed subtype-specific 
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genetic alterations in lung cancers. Gene amplification of 
the FGFR1 gene preferentially occurs in lung SCC and 
SCLC, whereas driver mutations in the ALK, EGFR, HER2, 
NTRK1, RET and ROS1 genes preferentially occur in lung 
adenocarcinoma (18-20). The standard therapy for patients 
with advanced lung SCC is platinum-based combination 
chemotherapy because FGFR inhibitors are not yet 
approved for the treatment of cancer patients, whereas 
initial therapy for advanced lung adenocarcinoma patients 
with the driver mutations mentioned above are receptor 
tyrosine kinase (RTK)-targeted therapies (20-22). Due to 
the distinct genomic landscapes of and therapeutic options 
for lung SCC and lung adenocarcinoma, NSCLC are 
further divided into squamous NSCLC and non-squamous 
NSCLC. 

Pembrolizumab is a representative immuno-oncology 
drug for NSCLC patients (23-26). The phase 3 clinical 
trial KEYNOTE-024 demonstrated the superiority of 
pembrolizumab monotherapy over platinum-based standard 
chemotherapy as the first-line treatment for PD-L1-
positive NSCLC patients without EGFR or ALK driver 
mutations (11). Both the pembrolizumab monotherapy 
group and platinum-based chemotherapy group included 
approximately 20% squamous NSCLC and 80% non-
squamous NSCLC patients and showed almost similar 
safety profiles. The median progression-free survival 
(PFS) of the pembrolizumab monotherapy group and 
chemotherapy group was 10.3 and 6.0 months, respectively 
(hazard ratio, 0.50; 95% confidence interval, 0.37–0.68; 
P<0.001). In addition, the overall response rate (ORR) of 
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Figure 1 PD-1 signaling and functional divergences of anti-PD-1 monoclonal antibodies (mAbs). (A) In the presence of the PD-L1 ligand 
on tumor cells, macrophages or exosomes, the PD-1 receptor on T cells is activated to induce immune evasion through the repression of 
PI3K and PLCγ1 signaling cascades; (B) in the presence of antagonistic anti-PD-1 mAb, the PD-1 receptor is inactivated to restore anti-
tumor immunity through de-repression of the PI3K and PLCγ1 signaling cascades in T cells. Pembrolizumab interacting with the ligand-
binding IgV domain of PD-1 showed benefits as a first-line monotherapy for advanced non-small cell lung cancer (NSCLC) patients with 

PD-L1 tumor expression ≥50%, whereas nivolumab interacting with the N-terminal loop of PD-1 did not show benefits as a first-line 
monotherapy for stage IV NSCLC patients with PD-L1 tumor expression ≥1%. Pembrolizumab is approved for the treatment of a relatively 
wider range of cancer patients, including NSCLC, cervical cancer, gastric cancer, head and neck squamous cell carcinoma (HNSCC), 
Hodgkin lymphoma, melanoma, primary mediastinal large B-cell lymphoma, urothelial carcinoma and microsatellite instability-high (MSI-H) 
or mismatch repair deficient (dMMR) cancers. 
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the pembrolizumab monotherapy group and chemotherapy 
group was 44.8% and 27.8%, respectively. Pembrolizumab 
established its role as the first-line therapy for NSCLC 
patients based on the results of the KEYNOTE-024 clinical 
trial (11). However because the benefits of pembrolizumab 
monotherapy are limited to approximately 15% of NSCLC 
patients irrespective of the PD-L1 status, it was conceived 
that a combination strategy using pembrolizumab and 
platinum-based standard chemotherapy might enhance the 
benefits of pembrolizumab treatment for NSCLC patients. 

Recently, Dr. Paz-Ares and colleagues reported the 
promising results of a phase 3 clinical trial of combination 
immune-oncology therapy with pembrolizumab and 
standard chemotherapy for the first-line treatment 
o f  p a t i e n t s  w i t h  m e t a s t a t i c  s q u a m o u s  N S C L C 
(KEYNOTE-407, NCT02775435) (27). The incidence of 
grade ≥3 adverse events for the chemotherapy (carboplatin 
and paclitaxel/nab-paclitaxel) plus pembrolizumab group 
and chemotherapy alone group was 69.8% and 68.2%, 
respectively, whereas the ORR of chemotherapy plus 
pembrolizumab group and chemotherapy alone group 
were 58.4% and 35.0%, respectively (P=0.0004), and the 
median PFS of the chemotherapy plus pembrolizumab 
group and chemotherapy alone group was 6.4 months 
and 4.8 months, respectively (hazard ratio, 0.56; 95% 
confidence interval, 0.45–0.70; P<0.0001). In contrast, Dr. 
Gandhi and colleagues reported the promising results of 
a phase 3 clinical trial of combination immune-oncology 
therapy with pembrolizumab and standard chemotherapy 
for the first-line treatment of patients with metastatic non-
squamous NSCLC without EGFR or ALK driver mutations 
(KEYNOTE-189, NCT02578680) (28). The incidence of 
grade ≥3 adverse events for the chemotherapy (pemetrexed 
and a platinum-based drug) plus pembrolizumab group 
and chemotherapy alone group was 67.2% and 65.8%, 
respectively, whereas the median PFS of the chemotherapy 
plus pembrolizumab group and chemotherapy alone group 
was 8.8 and 4.9 months, respectively (hazard ratio, 0.52; 
95% confidence interval, 0.43–0.64; P<0.001). Together, 
these facts clearly indicate that combination with standard 
chemotherapy significantly enhances the benefits of 
pembrolizumab for squamous as well as non-squamous 
NSCLC patients. Synergy between pembrolizumab and 
chemotherapy is a hot issue in the field of clinical oncology (29).

Combination with therapeutics targeting the tumor 
microenvironment is another strategy to enhance the 
benefits of immune checkpoint blockers for cancer 
patients (Figure 2). Aberrant VEGF signaling in the 

tumor microenvironment leads to a leaky and hypoxic 
condition that promotes the survival of cancer stem cells, 
the epithelial-to-mesenchymal transition of tumor cells, 
and immune evasion through the recruitment of myeloid-
derived suppressor cells (MDSCs) and regulatory T (Treg) 
cells and the functional suppression of CD8+ T cells 
and natural killer (NK) cells (30-33). Anti-VEGF mAb 
(bevacizumab), anti-VEGFR2 mAb (ramucirumab) and 
VEGFR inhibitors (axitinib, cabozantinib, lenvatinib, 
pazopanib, regorafenib, sorafenib and sunitinib) are VEGF 
signaling targeted therapeutics (34-37) that are approved by 
the US FDA for the treatment of cancer patients, whereas 
apatinib (38) is a small-molecule VEGFR2 inhibitor 
that is approved by the Chinese FDA for the treatment 
of gastric cancer patients. Synergistic effects of immune 
checkpoint blockers and VEGF signaling blockers (Figure 2)  
have been investigated in the following clinical trials 
for the treatment of cancer patients: pembrolizumab 
p lu s  apa t in ib  (NCT03407976) ;  pembro l i zumab 
plus axitinib (NCT02853331); pembrolizumab plus 
bevacizumab (NCT02681549); pembrolizumab plus 
cabozantinib (NCT03149822); pembrolizumab plus 
lenvat inib (NCT02501096);  pembrol izumab plus 
pazopanib (NCT02014636);  pembrolizumab plus 
ramucirumab (NCT02443324); pembrolizumab plus 
regorafenib (NCT03347292); pembrolizumab plus 
sorafenib (NCT03211416) and pembrolizumab plus 
sunitinib (NCT03463460). Among these clinical trials, 
pembrolizumab-based combination therapies with 
bevacizumab or lenvatinib are in progress for the treatment 
of NSCLC patients. 

The exploration and establishment of predictive 
biomarkers for patient selection are also necessary to 
enhance the benefits of immuno-oncology therapies. 
The immunohistochemistry-based detection of PD-L1 
protein upregulation on tumor cells or tumor-associated 
macrophages (11) (Reck et al., 2016), reverse phase 
protein array (RPPA)-based detection of exosomal PD-L1 
protein upregulation after immuno-oncology therapy (39), 
CD14+CD16-HLA-DRhigh monocytes in peripheral blood 
mononuclear cells (40), mismatch-repair deficiency (41) 
and higher tumor mutational burden (42) are biomarkers to 
predict responders to PD-1 signaling blockade therapy. In 
contrast, loss-of-function alterations in the JAK1/2 and beta-
2-microglobulin (B2M) genes (43) and loss of neoantigens (44)  
are detected in cases with resistance to the immune 
checkpoint blockers. Among these predictive biomarkers 
to stratify or monitor cancer patients, liquid biopsy tests 
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detecting exosomal PD-L1 protein and CD14+CD16−HLA-
DRhigh monocytes are both promising technologies that 
might drastically improve the benefit-cost ratio of PD-1 
blockade therapy. 

In conclusion, the combinatorial optimization of 
immune checkpoint blockers, VEGF signaling blockers 
and cytotoxic chemotherapies as well as the development 
of biomarkers for the positive and negative selection of 
patients are necessary for the beneficial maximization of 
immuno-oncology drugs for the treatment of NSCLC 
patients and other types of cancer patients.
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