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Original Article

A subset of esophageal squamous cell carcinoma patient-derived 
xenografts respond to cetuximab, which is predicted by high 
EGFR expression and amplification 
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Background: Epidermal growth factor receptor (EGFR) is reportedly overexpressed in most esophageal 
tumors, but most targeted therapies showed no efficacy in non-selected patients. This study aims at 
investigating the adaptive cetuximab subset in a cohort of esophageal squamous cell carcinoma (ESCC) 
patient-derived xenografts (PDXs).
Methods: A large panel of ESCC PDXs has been established. The copy number, mRNA expression and 
immunohistochemistry (IHC) of key EGFR pathways have been examined along with cetuximab response. 
A preclinical trial on a randomly selected cohort of 16 ESCC PDXs was conducted, and the genomic 
annotations of these models were compared against the efficacy readout of the mouse trial.
Results: The trial identified that 7 of 16 (43.8%) responded to cetuximab (ΔT/ΔC <0 as responders). The 
gene amplification and expression analysis indicated that EGFR copy number ≥5 (P=0.035), high EGFR 
mRNA expression (P=0.001) and IHC score of 2–3 (P=0.034) are associated with tumor growth inhibition by 
cetuximab, suggesting EGFR may function as a single predictive biomarker for cetuximab response in ESCC. 
Conclusions: Overall, our results suggest that an ESCC subtype with EGFR amplification and 
overexpression benefits from cetuximab treatment, which warrants further clinical confirmation.
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Introduction

Esophageal cancer (EC) is the sixth leading cause of cancer 
death in the world (1). The prognosis of EC remains 
poor even with significant advancements in new surgical 
techniques and other treatment approaches (2). Due to 
the high recurrence post esophagectomy or definitive 
chemoradiotherapy (3), additional strategies are thus 
needed to increase systemic treatment options. Over the 
past decades, drugs targeting specific oncogenic alterations 
have been developed to treat cancers, with much success 
particularly for lung, breast and colorectal cancers. However, 
adaptive targeted treatment has not yet been approved for 
treating EC, which is an unmet and urgent need.

Epidermal growth factor receptor (EGFR) (ERBB1) is 
a member of the ERBB receptor tyrosine kinase family, 
also including ERBB2, ERBB3 and ERBB4 (4). EGFR 
is reported to be overexpressed in many types of tumors 
including head and neck (90%), colorectal (72%), lung 
(50%), bladder (65%) and esophageal (92%) (5-7), which 
correlates with poor prognosis. Cetuximab, a mouse-
human chimeric antibody, binds to EGFR blocking 
phosphorylation and activation of EGFR (8). Over the past 
years, cetuximab has been approved in treating head and 
neck squamous carcinoma and KRAS-mutation metastatic 
colorectal cancer (9,10). For esophageal squamous cell 
carcinoma (ESCC), the EGFR inhibitor down regulates 
the level of EGFR and correlated downstream genes 
to inhibit the growth of EGFR overexpressed cells and 
increase cell sensitivity to chemo-/radiotherapy in some in 
vitro studies (11,12). For EGFR tyrosine kinase inhibitors 
(TKIs), five small clinical phase 2 trials reported the 
objective response rate in unselected patients with advanced 
EC was 2.8% to 16.7% (13-17). In the COG trial, the 
only randomized phase 3 study of second line therapy in 
EC, the progression free survival and patient reported 
outcome were improved in the gefitinib group (18).  
Moreover, in biomarker analysis, EGFR copy number and 
overexpression might potentially be used in predicting 
the efficacy in patients treated with EGFR TKIs (19,20). 
However, the randomized phase 2/3 and 3 clinical trials 
of SCOPE1 and RTOG 0436 showed that the addition 
of cetuximab to concurrent chemoradiotherapy did not 
improve overall survival for non-selected ESCC (21,22). 
As for the other EGFR monoclonal antibody, the EORTC 
power trial also revealed that the addition of panitumumab 
to chemotherapy provided no additional benefit and the 
biomarker analysis is on going (23). So far, most studies 
investigated the efficacy of cetuximab in combination 

with chemo-/radiotherapy, no suitable ESCC subtype 
was confirmed to cetuximab treatment and no established 
biomarkers were reported to predict tumor response to 
cetuximab.

Patient-derived tumor xenografts (PDXs) are used 
in predicting clinical activity of drugs and exploring  
biomarkers (24-27). We previously reported the discovery 
of a predictive biomarker for cetuximab response in CRC 
(28,29) and gastric (30) carcinoma via mouse clinical trial 
(MCT) using cohorts of PDXs. In this present study, we set 
out to investigate the activity of cetuximab in ESCC PDXs. 
We established 16 ESCC-PDXs by transplanting untreated 
tumor tissues from patients into immunocompromised 
BALB/c nude mice via subcutaneous inoculation, followed 
by extensive characterization and tests for response to 
cetuximab in an MCT. After therapeutic responders and 
non-responders were identified, candidate biomarkers were 
then assessed by genomic/phenotypical properties.

Methods

PDX establishment

The engraftment of transplant patient tumor fragments to 
mice was previously reported (31). In brief, freshly surgically 
resected ESCC tumor samples that are in excess of surgical 
pathologic diagnosis were obtained from the patients in 
Shanghai Cancer Hospital with the Institutional Review 
Boards of the hospital and the informed consents from 
patients. Tumor tissues were cut into 3×3×3 mm3 fragments 
mixed with 10% Matrigel at 4 ℃ and subcutaneously 
implanted into immune deficient mice (BALB/c nude, 6 to 
8 weeks old female mice,), followed by expansion, banking, 
histopathology and molecular characterizations, and 
pharmacology characterization as previously described (31). 
Most procedures for genomic and histopathology analysis 
have been thoroughly described before (30,31). All animal 
procedures were conducted at Crown Bioscience SPF 
facility and in strict accordance with the Guide for the Care 
and Use of Laboratory Animals of the National Institutes 
of Health. The protocol was approved by the Committee 
of the Ethics of Animal Experiments of Crown Bioscience 
(Crown Bioscience IACUC Committee).

PDX therapeutic treatment

MCTs using cohorts of PDXs have also been described 
previously (28,30). When tumors reached on average 100–
150 mm3, mice were grouped equally by tumor volume into 



5330

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2018;10(9):5328-5338jtd.amegroups.com

Zhu et al. EGFR expression predictive of ESCC response to cetuximab

treatment and control groups, each group comprising 5 mice. 
Vehicle controls received PBS intraperitoneal injection weekly, 
while the treatment group received weekly intraperitoneal 
injection with cetuximab (50 mg/kg, Merck KGaA). Both 
groups received the treatment for 3 weeks. Tumor volume 
was measured twice weekly, the mice were sacrificed when the 
volume reached 2,000 mm3 or after 30 days-post treatment. 
ΔT/ΔC value was calculated for assessing tumor response to 
the treatment (ΔT = tumor volume change in the treatment 
group and ΔC = tumor volume change in the control 
group). At the end point, tumors were fixed in formalin for 
pathological examination, and snap-frozen banking in liquid 
nitrogen for gene analysis occurred. 

Gene copy number and mutation analysis

For copy number assay using Affymetrix SNP 6.0 chips, 
genomic DNA was isolated and purified using the 

Genomic DNA Tissue and Blood Isolation Kit (Qiagen) 
following manufacturer’s instruction. DNA processing 
was performed following a standard Affymetrix protocol 
(http://media.affymetrix.com/support/down-loads/manuals/
genomewidesnp6_manual.pdf). Gene copy number analysis 
was performed by PICNIC and/or PennCNV methods and 
a copy number ≥5 is considered positive. The confirmation 
of hotspot mutations was conducted for some mutation 
alleles as previously described (31).

IHC analysis

For all of the samples, the relative EGFR protein expression 
level was determined by immunohistochemistry (IHC), 
anti-human antibodies including EGFR (CST, Beverly, 
MA, USA), P-EGFR (Abcam, Cambridge, MA, USA), 
HER3 (CST, Beverly, MA, USA), P-HER3 (CST, Beverly, 
MA, USA), MET (CST, Beverly, MA, USA), P-MET 
(CST, Beverly, MA, USA), Akt (CST, Beverly, MA, USA), 
P-Akt (CST, Beverly, MA, USA), ERK (CST, Beverly, MA, 
USA), P-ERK (CST, Beverly, MA, USA) were applied to 
stain the positive sections. The test specimens were then 
scored independently by three investigators in a blinded 
fashion per the following criteria: score 0 representing no 
specific section staining within the tumor while 1+, 2+, 
3+ represent different staining intensity of the nucleus or 
membrane. 

Statistical analysis

Pearson correlation tests and linear regression were applied 
for comparing the data of the two groups. All data analyzes 
were completed using SPSS (version 19.0, SPSS Inc., 
Chicago, IL, USA), P<0.05 was considered statistically 
significant.

Results

Characterization of patients and PDXs

One hundred and ten surgically removed ESCC patient 
tumor tissues were implanted into immunocompromised 
mice, and 61 of 110 were found to grow: take-rate of 55.5%. 
None of the patients received neoadjuvant treatment 
before surgery. The summary of patient information for 
the randomly selected 16 patients with PDX established/
enrolled in this study is shown in Table 1. Among them, 
10 (62.5%) were stages I–II, 6 (37.5%) were stages III–IV, 

Table 1 Summary of the patient information of the enrolled cohort 
of ESCC-PDXs in the present study

Characteristic Numbers, n (%)

Age, median [range] years 59 [53–76]

Gender

Male 8 [50]

Female 8 [50]

Stage*

I–II 10 (62.5)

III–IV 6 (37.5)

Differentiation

Low-middle 1 (6.3)

Middle 7 (43.8)

Middle-high 4 (25.0)

High 4 (25.0)

Tumor location

Cervical + upper thoracic 1 (6.3)

Middle + lower thoracic 14 (87.5)

Double/multiple primary tumor 1 (6.3)

Tumor length, median (range) cm 5 (3–7.5)

Neoadjuvant treatment

Yes 0 (0)

No 16 [100]

*, UICC 6th. ESCC, esophageal squamous cell carcinoma; 
PDXs, patient-derived xenografts.
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there were no material bias in patients’ stage. As 1 (6.3%) 
was low-middle differentiation, 7 (43.8%) were middle 
differentiation, 4 (25%) were middle-high differentiation 
and 4 (25%) were high differentiation, the distributions of 
differentiation were basically equal. 

Many of these PDX tumors were then extensively 
characterized, including the 16 PDXs enrolled in the study, 
e.g., histopathology confirmed, transcriptome sequenced, 
SNP 6.0 analyzed (gene copy number), IHC analyzed 
(protein expression), etc. In particular, the activated 
oncogenic pathways commonly seen in cancers were 
carefully examined using these profiling data. Specifically, 
only a few oncogenic mutation alleles were identified 
by transcriptome sequencing (RNAseq) (also confirmed 
by hotspot mutation analyses), with a few oncogene 
amplifications also revealed by SNP 6.0 GeneChip analysis 
(Figure 1), among the commonly activated pathways in 
cancers (e.g., EGFR, HRAS, AKT, KRAS, NRAS, PI3KC). 
The expression or overexpression of the relevant genes have 
also been examined per RNAseq and IHC, as summarized 
in Table 2. 

A subset of ESCC-PDXs responded to cetuximab

An MCT on the cohort of 16 ESCC-PDXs, randomly 
enrolled from 61 PDXs, was conducted (“n=10 format”: 
10 mice per arm, two arms: vehicle and cetuximab 

treatment; 1 mg per mouse, once weekly for 3 weeks, 
initiated when tumor volume reached 150–200 mm3) 
to assess cetuximab efficacy. The tumor response to 
cetuximab was quantified by ΔT/ΔC, as summarized in 
Figure 2. The tested ESCC-PDXs fell into two distinct 
categories according to the drug activities: 7 of 16 (43.8%) 
responded to cetuximab treatment (ΔT/ΔC <0); 9 of  
16 (56.3%) did not, with ΔT/ΔC >0. Among the responders, 
2 of 7 (28.6%) reached nearly complete response (ΔT/
ΔC =−64.11%/−54.05%) while the other 5 showed partial 
response (ΔT/ΔC ranged from −22 to 0). Representative 
tumor response curves are shown in Figure 3. ES0191 
and ES0195 are examples of cetuximab sensitive models, 
while ES0172 and ES0219 are resistant models. Our data 
clearly suggests that a subset of patients might potentially 
benefit from cetuximab treatment in EC, or in other words, 
EGFR is an oncogenic driver for these patients, at least for 
maintaining their disease state. 

EGFR expression seems to positively predict cetuximab 
response in ESCC-PDXs

Cetuximab targets surface expressed EGFR, therefore 
it is reasonable to first suspect that the status of EGFR 
could be related to drug response. We previously reported 
similar studies of cetuximab treatment on cohorts of CRC 
(28) and gastric (30) cancers, where the status of EGFR 

Figure 1 The copy number and mRNA levels of EGFR pathway genes (AKT, HRAS, KRAS, NRAS and PIK3CA) were not significant 
related with cetuximab response. EGFR, epidermal growth factor receptor.
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played completely different roles. While little role was seen 
in CRC, EGFR amplification and/or overexpression clearly 
demonstrates positive correlation to drug response in gastric 
cancer (30). It would be interesting to determine whether 
the status of EGFR in ESCC plays a role in response to 
cetuximab.

We first tested the copy number of EGFR by Affymetrix 
SNP 6.0, demonstrating amplification rate of 37.5%  
(or 6/16), similar to those previously reported (19,20,32). 
More importantly, the EGFR amplification was significantly 
correlated with the ESCC-PDXs response to cetuximab  
(P value of 0.035, Figure 2).

We next examined whether there is a correlation between 

EGFR mRNA levels and ΔT/ΔC. As shown in Figure 2,  
the majority of ESCC (13/16) expressed some degree of 
EGFR mRNA (Log2 >3), as is known in ESCC patients. 
Interestingly, the higher expressors are all responders  
(P value of 0.00). Furthermore, EGFR mRNA levels had a 
negative correlation with ΔT/ΔC (correlation coefficient: 
−0.748; P=0.001) (Figure 4). The linear regression analysis 
showed the same results as R2=0.559 (P=0.001), indicating 
that a higher EGFR mRNA expression showed a better 
tumor response to cetuximab (Figure 4). 

We next examined protein levels of EGFR by IHC and 
their correlation with drug response. The tumor tissue 
microarray of these models was stained by either anti-
EGFR or anti-pEGFR antibodies. The signals were semi-
quantitatively determined using a score system. The results 
showed positive EGFR and pEGFR immunostaining in 
14/16 (87.5%) models. Among EGFR positive models, 3/16 
had staining intensity score of 1+, 5/16 of 2+, 6/16 of 3+, 
while 6/16 of 1+, 5/16 of 2+ and 3/16 of 3+ were observed 
for pEGFR staining. The typical EGFR staining of score 
0–3+ is shown in Figure 5. To further explore the correlation 
between tumor protein expression and cetuximab response, 
the IHC results of EGFR and pEGFR were divided into  
2 categories: high expression [2–3] and low expression [0–1]. 
By Chi-square test, the P value was 0.034 for EGFR and 0.041 
for pEGFR, indicating that the IHC scores for EGFR and 
pEGFR associated with tumor response. For EGFR protein 
expression, its predictive accuracy was 75% (12/16), high 
expression of EGFR predictive accuracy of 63.6% (7/11), 
low expression of EGFR predictive accuracy was 100% (5/5). 
These IHC observations are consistent with the mRNA data, 
although less significant and consistent, likely due to IHC 
providing poorer quantitation than mRNA. Overall, EGFR 
may function as a single predictive biomarker for cetuximab 
response in ESCC, with similarity to that seen in gastric 
carcinoma but not in CRC. In this study, we also explored the 
relationship between expression of different proteins. EGFR 
was associated with the expression of p-EGFR (P=0.004) and 
HER3 (P=0.036), but not of other molecules. The expression 
of p-EGFR was not only related to the expression of EGFR, 
but also related to the expression of HER3 (6/16, P=0.002) 
and MET (7/16, P=0.002). 

As EGFR copy number and protein expression were 
correlated with cetuximab response in ESCC, we further 
combined EGFR copy number and IHC data to see 
whether there was increased predictive value. We found it 
was significantly correlated with ESCC-PDXs response to 
cetuximab (P value =0.021, Table 3).

Table 2 Correlation between protein level and tumor response

Protein Expression level

Tumor response 
 (−ΔT/ΔC%) P value

Low High

EGFR
Low 5 0

0.034*
High 4 7

p-EGFR
Low 7 1

0.041*
High 2 6

HER3
Low 7 3

0.302
High 2 4

p-HER3
Low 6 6

0.585
High 3 1

MET
Low 7 2

0.126
High 2 5

p-MET
Low 4 4

1
High 4 4

Akt
Low 4 6

0.145
High 5 1

p-Akt
Low 5 6

0.308
High 4 1

Erk
Low 6 4

1
High 3 3

p-Erk
Low 3 4

0.615
High 6 3

*, P<0.05. IHC results of EGFR were divided into 2 categories: 
high expression (score 2–3) and low expression (score 0–1), 
the EGFR protein level associated with tumor response. IHC, 
immunohistochemistry; EGFR, epidermal growth factor receptor.
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Figure 2 ΔT/ΔC% of cetuximab in 16 ESCC-PDX models significantly correlated with EGFR amplification (copy number: P=0.035) and 
expression (mRNA: P=0.000, t-EGFR: P=0.030). EGFR, epidermal growth factor receptor.
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Figure 3 Growth curve of 4 representative mice. ES0172 and ES0219: 2 models did not respond to cetuximab; ES0191 and ES0195:  
2 models nearly reached complete response.
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Figure 5 Typical EGFR and Akt staining of score 0–3+. EGFR and Akt staining as determined by immunohistochemistry. Panels show 
representative examples of esophageal tumor specimens stained for total EGFR (A) and Akt (B). EGFR, epidermal growth factor receptor.

Evaluation of other common oncogenes as potential 
predictive biomarkers 

It is possible that other commonly seen oncogenes may also 
play roles in cetuximab response as in CRC (28), therefore the 
5 most reported genes (MET, HGF, ERBB2, ERBB3, IGF1R) 
and 4 main downstream effectors (AKT1, AKT2, MAPK1, 
MAPK3) were also analyzed. The oncogene mutation alleles 
were found to be less frequent (Figure 6) than in CRC, similar 
to those in gastric cancers (30). These mutations thus seem to 
playing minor roles in cetuximab response in ESCC, or also as 
likely as predictive biomarker. There also seems no apparent 
role of gene copy numbers or expression levels of these 
oncogenes as well (Figure 1), although there is differential 

Table 3 The cetuximab response was significantly correlated with both EGFR amplification and t-EGFR IHC 

Status of EGFR copy number and t-EGFR IHC Non-responder Responder P value

Both positive 1 5

0.021Only one positive 3 2

Both negative 5 0

IHC, immunohistochemistry; EGFR, epidermal growth factor receptor.
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expression of ERBB and MET mRNA among the 16 models 
with a standard deviation (SD) >1.

Whether mRNA level and gene amplification of the same 
gene had a relationship was detected by Pearson correlation 
test. Statistically, EGFR, ERBB2, ERBB3 and MET were 
considered correlated in mRNA and gene amplification, 
while the upstream genes (HGF, MAPK) and downstream 
(AKT1, AKT2, MAPK1, MAPK2) were not. The correlation 
between upstream and downstream gene expression was 
also tested. MET and MAPK1 were reported as positively 
correlated (correlation coefficient: 0.684; P=0.003) while 
IGF1R and MAPK3 had negative correlation (correlation 
coefficient: −0.628; P=0.009). No expression of other 
molecules was found to be correlated (ERBB2, ERBB3, 
HGF, IGFR, MET, MET, AKT1/2, MAPK1/3). 

Discussion

To our knowledge, this is the first study to use PDX 
models to investigate the effectiveness of cetuximab in EC, 
and to establish a subgroup of patients who are sensitive 
to cetuximab therapy. In this study, 16 PDX models of 
EC were established and 7 of 16 (43.8%) responded to 
cetuximab monotherapy.

Our data found that EGFR amplification was closely 
correlated to cetuximab response and EGFR expression, 
which was similar to the observation in the gastric MCT 
described previously (30). Moreover, our data clearly 
confirmed a strong positive correlation between cetuximab 

response in ESCC and EGFR mRNA expression levels, 
which is also confirmed for protein levels per IHC staining, 
albeit to a lesser degree. The fact that no low-EGFR 
expression models responded to cetuximab also confirmed 
the conclusion above. The certain degree of discrepancy 
in the correlation between protein and mRNA is likely 
due to the semi-quantitative nature of IHC. Furthermore, 
the combination of EGFR copy number and IHC analysis 
could predict cetuximab response more precisely. 

PDX closely mimic the original patient in both histology 
and molecular pathology (33), and also with demonstrated 
similar drug response (34,35). A cohort of ESCC-PDXs 
representing diversity of the disease could be potentially 
useful in assessing the activity of cetuximab on ESCC and 
in determining potential predictive biomarkers through 
an MCT in the preclinical setting. The PDX trial may 
also have actual advantages over a human trial for clearly 
demonstrating drug activity by defined experimental 
conditions and minimized individual differences, e.g., 
patients’ general conditions and different PK among 
individuals, etc. The present MCT study seems to 
confirm cetuximab activity in ESCC and identify EGFR 
as a predictive biomarker, which warrants further clinical 
confirmation. 

Although many ESCC express EGFR, EGFR monoclonal 
antibodies, such as cetuximab, have yet to be confirmed 
effective in non-selective ESCC in the clinic (13-17). In 
ESCC, an EGFR inhibitor could downregulate the level of 
EGFR and correlated downstream genes, to inhibit high 

Figure 6 The oncogene mutation alleles of ESCC were not frequent. ESCC, esophageal squamous cell carcinoma.
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EGFR expressed cell growth, and to increase cell sensitivity 
to chemo-/radiotherapy in some in vitro studies (11,12). For 
clinical trials, a phase 2 study from Lorenzen et al. is the only 
randomized clinical trial to confirm the efficacy of cetuximab 
in high-EGFR expressed ESCC patients. 62 patients were 
enrolled in the study, 32 receiving cetuximab plus CF 
(cisplatin + 5-flurouracil) and 30 CF only. With a median 
follow up of 21.5 months, the median overall survival was 
9.5 and 5.5 months for cetuximab + CF and CF respectively 
(P=0.32). However, considering the poor prognosis of high 
EGFR expressed ESCC patients (PFS: 3.6 months, OS: 
5.5 months), the efficacy of group cetuximab + CF was 
encouraging (36). Several retrospective studies also suggested 
cetuximab-combined therapy increased overall survival of 
high EGFR ESCC patients, even better than EGFR negative 
patients who were supposed to have a better prognosis (37,38). 
However, none of these studies have definitely confirmed  
activity in the EGFR-high expressors with statistical 
significance, which could be due to small number of subjects 
involved in the trials, or the retrospective nature of study. 

For EGFR TKIs, in the phase 3 COG trial, gefitinib 
improved the PFS (median PFS, 1.57 vs. 1.17 months, 
P=0.020) both in adenocarcinomas and squamous cell 
carcinomas over placebo. In the gefitinib subgroup, the 
EGFR FISH-positive patients had longer PFS and OS, 
which was similar to other TKIs therapies in gastric 
or gastroesophageal carcinoma (18). Consistent with 
COG, a phase 2 trial showed that icotinib had favorable 
activity in ESCC patients with EGFR overexpression or  
amplification (16). In our study, we confirmed the predictive 
value of EGFR amplification (P=0.035) and overexpression 
(mRNA: P=0.001; IHC: P=0.034) in cetuximab treatment in 
ESCC patients, and also found the combination of EGFR 
copy number and IHC results could increase the predictive 
value (P=0.021), which was similar to the findings in ESCC 
EGFR TKIs therapy. 

Compared with a higher frequency of EGFR/KRAS 
mutations in CRC and non-small cell lung cancer, these 
commonly seen oncogene mutations are rarely detected 
in ESCC tumors (39,40). In the present study, no effective 
EGFR/KRAS/HRAS/NRAS mutations were detected in  
16 PDX models and the overexpression of EGFR also seemed 
to have little correlation with increased EGFR copy number. 
One of 16 (6.3%) patients had a PIK3CA mutation, whose 
frequency was similar to that previously reported 7.4% (41).

MET and HER3 activation have been reported to effect 
tumor resistance to EGFR inhibitors. During anti-EGFR 
therapy of CRC, MET amplification was significantly 
correlated with resistance to that EGFR blockade, which 

could be reversed by a MET inhibitor (42). In Engelman’s 
team, the same conclusion has been reached, and it has 
also been shown that MET amplification causes tumor 
resistance to EGFR inhibitors by activation of HER3 (43).  
In the present study, we investigated the relationship 
between EGFR, MET and HER3 by Spearman correlation 
test. The expression of p-EGFR correlated not only 
with EGFR (P=0.004), but also with HER3 (P=0.002) 
and MET (P=0.002). The results were similar to those 
previously reported. PI3K/Akt and MAPK/Erk are two 
main downstream pathways of EGFR and PI3K/Akt, which 
are closely related with cell apoptosis and tumor prognosis. 
In Li’s study, a higher level of p-Akt was observed in 5-FU 
resistant ESCC and the inhibition of the PI3K/Akt pathway 
could repress cell proliferation (44). This study also 
investigated copy number, mRNA and IHC levels of these 
common EGFR downstream oncogenes, however, none 
seemed to be a promising biomarker of cetuximab efficacy.

Of course, there are still many deficiencies in our study, 
such as the small sample size. We are expanding the number 
of PDXs to verify our results and improving the SNP 
method to measure gene copy number more accurately. 
At the same time, we are starting to conduct clinical trials 
based on this result and explore the favorable subtype of 
cetuximab treatment which is still on going. 

In conclusion, our results suggest that an ESCC subtype 
with overexpression of EGFR copy number, mRNA and 
protein levels benefits from cetuximab treatment, which 
warrants further clinical confirmation.
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