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Introduction

Prediction models are designed to assist healthcare 
professionals and patients with decisions about the use 
of diagnostic testing, starting or stopping treatments, or 
making lifestyle changes (1). While not a substitute for 
clinical experience, they can provide objective data about 
an individual’s disease risk and avoid some common biases 
observed in clinical decision making (1). Conversely, 
biases in the way the data are collected or filtered for use 
by the model can introduce other types of biases, and so 
the choice of underlying data and cohort selection are 
paramount. In addition, information generation in health 
care is growing very quickly and outstripping the capacity 
of human cognition to adequately manage. Support of 
human cognition by allowing models to inform decision-
making is a scalable way to manage growing data volumes 

and information complexity (2).
Risk prediction models use patient characteristics to 

estimate the probability that a certain outcome is present 
or will occur within a defined time period (3). For example, 
the TREAT model (Thoracic Research Evaluation And 
Treatment model) estimates the risk of a lung nodule being 
cancer using information most likely available to evaluating 
surgeons (4). A prognostic model such as the ACS NSQIP 
Surgical Risk Calculator predicts the likelihood of early 
mortality or significant complications after surgery (5) 
[see Table 1 for further examples of risk prediction models 
that will be used throughout this review (6-9)]. This 
article intends to provide an overview of prediction model 
development using logistic regression, including identifying 
and selecting classifying variables, assessing model 
performance, performing internal and external validation, 
recalibrating the model, and assessing the clinical impact of 
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the model.

Goal of the model

The most crucial step of developing a prediction model is 
determining the overall goal of the model: what specific 
outcome in which specific patient population will the model 
be predicting, and for what purpose? Carefully choosing 
the cohort from the population of interest, as well as the 
outcome and how it is ascertained, not only directs the 
identification of applicable source data, predictor selection, 
and model development but helps define the generalizability 
of the final product. Defining the purpose of the model (and 
its intended use and audience) would link the information 
it generates to a clinical action that will presumably benefit 

the patient. In Steyerberg’s Clinical Prediction Models (2), 
this is the first of seven steps in developing a risk prediction 
model (see Table 2).

For example, in the TREAT model the goal was 
to predict lung cancer in patients with indeterminate 
pulmonary nodules who presented to a thoracic surgery 
clinic, a population with a high prevalence of lung cancer (4). 
The Mayo Clinic model has the same goal, predicting lung 
cancer in pulmonary nodules; however, it was developed 
in patients presenting to any outpatient clinic with a 
pulmonary nodule (8), a population with a lower prevalence 
of lung cancer (40%) compared to that being evaluated 
by surgeons (66%). Both models have merit as predictive 
models, but they are generalizable to different clinical 
settings and contexts. One can see that effort must be spent 
at the beginning of the development process to define these 
goals.

Data

Source of data

Ideally, model development arises from a prospectively 
collected cohort so that subjects are well defined, all 
variables of interest are collected, and missing data are 
minimized (1-3,10). However, primary data collection 
is expensive. Therefore, pre-existing datasets (e.g., 
retrospective and/or large database studies, secondary 
analyses of randomized trial data, etc.) are commonly used 

Table 1 Prediction model examples (listed in order of appearance) 

Model Outcome Type of model Study design Population

TREAT model  
(Deppen et al.) (4)

Lung cancer in indeterminate 
pulmonary nodules

Logistic 
regression

Retrospective 
cohort

Patients with indeterminate pulmonary nodules 
presenting to thoracic surgery clinics (high 
prevalence of lung cancer)

ACS NSQIP  
Mortality (5)

Mortality after surgery Logistic 
regression

Retrospective 
cohort

Low-risk patients referred for general surgery 
procedures

Mayo Clinic model 
(Swensen et al.) (6)

Lung cancer in solitary lung 
nodules

Logistic 
regression

Retrospective 
cohort

Pulmonary clinic patients with solitary pulmonary 
nodules (low prevalence of lung cancer)

Farjah et al. (7) Presence of N2 nodal disease 
in lung cancer 

Logistic 
regression

Retrospective 
cohort

Patients with suspected or confirmed non-small cell 
lung cancer and negative mediastinum by PET

Liverpool Lung  
Project (LLP) model  
(Cassidy et al.) (8)

Lung cancer development Logistic 
regression

Retrospective 
case control

Patients at high risk of developing lung cancer

Tammemagi model (9) Lung cancer screening-
detected pulmonary nodules

Logistic 
regression 

Prospective 
cohort

High-risk patients undergoing screening CT scan

TREAT, Thoracic Research Evaluation And Treatment; PET, positron emission tomography.

Table 2 Seven steps for developing valid prediction models

(I) Determine the prediction problem: defining predictors and 
outcome of interest

(II) Code predictors 

(III) Specify a model

(IV) Estimate model parameters

(V) Model evaluation

(VI) Model validation

(VII) Presentation of the model

From Steyerberg’s Clinical Prediction Models (2).
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for model development, but these may have multiple issues 
as the data were not collected with model development 
or a specific clinical question in mind (1). For example, 
important predictors may not have been collected or could 
be missing from a large number of subjects. Relevant 
predictive variables must be reproducible in practice, which 
is not always true of data derived from randomized trials. 
Additionally, the subjects in the sample may not be well 
defined or not representative of the underlying population 
in which inferences are to be made [see above discussion 
of TREAT and Mayo Clinic models (4,8)]. Such data 
inherently have selection biases in their collection, and 
model development must consider such issues.

Outcome definitions

When defining an outcome it is best to choose one that 
is clinically relevant and meaningful to patients (1,10). 
For logistic regression prediction models, these include 
binary outcomes such as death, lung cancer diagnosis, or 
disease recurrence. The method of outcome determination, 
like that of predictor collection, should be accurate and 
reproducible across the relevant spectrum of disease and 
clinical expertise (10).

Missing data

Missing values in a dataset is a commonly encountered 
problem in applied clinical research (1,2). Missing data 
may be missing at random, but the reason the data are 
missing is more often related, either directly or indirectly, 
to predictors and/or the outcome under investigation (3,11). 
Therefore, simply excluding subjects with missing values 
can insert unforeseen biases into the modeling process 
whose impact on the model’s accuracy or validity is difficult 
to assess. However, if a particular variable is frequently 
missing one must consider that it may also frequently 
be unobtainable in the general population for which the 
model is intended and thus may not be an ideal predictor 
to include in the model (3,10). For example, excluding 
patients who did not have a pre-operative positron emission 
tomography (PET) scan from the population during the 
development of the TREAT model would have biased the 
model toward higher risk patients, as they were more likely 
to have undergone PET for pre-operative staging (4).

Imputation techniques are commonly used to estimate 
missing values using existing data to predict what the 
missing value most likely would be. This avoids the biases 

inherent with simply removing subjects with missing data 
(3,10,12). Mean imputation, a historically popular method, 
simply inserts the mean value of the observed data for a 
missing continuous variable (for example, body mass index). 
Unfortunately, adding these mean values incorrectly reduces 
the variance within the population (11). Additionally, 
ordinary formulas to calculate standard errors and other 
statistics on the predictive performance of the model are 
invalid unless they account for imputation techniques, 
irrespective of the imputation method (3).

In multiple imputation, a multivariable imputation model 
using the observed data is developed for any independent 
variable with a missing value (3,10). Statistically, a multiply-
imputed value uses random draws from the conditional 
distribution of the missing variable (given the other 
variables observed both in the individual and in the overall 
model). These sets of draws are repeated multiple (≥10) 
times to account for variability due to unknown values and 
predictive strength of the underlying imputation model 
(1,12). The resulting complete datasets with imputed data 
can then be used for model development as well as for 
variance and covariance estimates adjusted for imputation. 
Multiple imputation using a predictive mean matching 
method was used in the TREAT model to account for 
both missing pulmonary function tests and PET scans (4). 
Further information on multiple imputation techniques can 
be found through the following references (3,11,13,14).

Model development

Identification of predictors

Once the dataset has been cleaned and imputed data 
generated (when necessary), formal model development 
begins. Inherent model development begins at the point of 
data collection, as a well-performing risk prediction model 
requires some number of strong predictors being present 
(2,15). Candidate predictors are variables that are studied 
for their potential performance. Predictors can include any 
information that precedes the outcome of interest in time 
and information that is believed to predict the outcome of 
interest. Examples include demographic variables, clinical 
history, physical examination findings, type and severity of 
disease, comorbid conditions, and laboratory or imaging 
results. For example, in the TREAT model demographics 
such as age and sex, clinical data such as BMI and history 
of COPD, evidence of symptomatic disease (hemoptysis 
or unplanned weight loss), and imaging findings such as 
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nodule characteristics and FDG-PET avidity are some of 
the predictors included in the final model (4).

Predictors must be clearly defined and measured in a 
standardized and reproducible way or the risk prediction 
model will not be generalizable (2,3). For example, a variable 
such as smoking history has a variety of definitions. The 
TREAT model includes smoking history using pack-years 
as a non-linear continuous variable (4), the Mayo model 
includes smoking history as a binary value (yes/no) (8),  
and the Tammemagi model uses a combination of pack-
years and years since quitting (9).

Predictors that are strongly correlated to the outcome, 
explain observed variation in the outcome, or interact in 
combination with other variables become candidates for 
inclusion in the model (2,3). As the word candidate implies, 
not all variables may be considered as having utility in a 
multivariable clinical prediction model. For example, two 
variables that are highly correlated with one another, like 
predicted flow expiratory volume in one second (FEV1) 
and a diagnosis of emphysema when looking at lung cancer, 
may be individually correlated to the outcome of interest. 
However, when combined in a multivariable model each 
becomes a weaker predictor. In essence, the variables under 
investigation contain very similar information regarding 
the outcome and only one is needed to capture that 
information. Under circumstances of extreme correlation 
(termed multi-collinearity) including both may be 
detrimental to the model’s specification (1,2).

There are two main strategies for identifying predictors: 
clinically-driven and data-driven. In clinically-driven 
predictor identification, candidate predictors are selected 
either by clinical experts in the research group or by 
literature review (1,2). In data-driven identification, all 
predictors are initially included and predictor selection  
(see below) occurs during the machine-learning based 
model development phase (11).

Predictor selection methods

When building a model, often the predictors to be included 
in the model are pre-specified by clinical experts in the field 
(1,3). The reduction of candidate predictors to simplify the 
model is often referred to as parsimony. Having a limited 
number of predictors is beneficial both statistically by 
decreasing computational time and resources and clinically 
by improving interpretability. Having fewer inputs improves 
user experience and therefore the likelihood of routine use 
in clinical practice (11,16).

Theoretically every variable collected in the study could 
be a candidate predictor. However, to reduce the risk of 
false positive findings and improve model performance, 
the events per variable (EVP) rule of thumb is commonly 
applied and at a minimum set to 10 (2,3). This rule of 
thumb recommends that at least 10 individuals need to 
have developed the outcome of interest for every predictor 
variable included in the model. Candidate predictors are 
reduced in relation to the frequency of the outcome (1). 
For example, a model developed to predict mortality after 
surgery, a rare outcome, should only include a few predictors. 
However, this method has largely been replaced as models 
with higher and lower EVP are all susceptible to bias (17).

There are multiple methods used for eliminating 
candidate predictors and choosing the variables to be 
included in the final model without introducing bias into 
the analysis. In the full model approach, all a priori selected 
candidate predictors are included in the multivariable 
analyses and thus in the final prediction model; no candidate 
predictors are eliminated (1,3). This avoids predictor 
selection bias and overfitting of the model. However, this 
requires prior knowledge of which candidate predictors are 
the most likely to create a meaningful risk prediction model 
and use of a limited number of predictors (1).

To simply reduce the number of candidate predictors, 
one may consider combining similar predictors to a single 
one (for example, combining coronary artery disease, 
peripheral vascular disease and hypercholesterolemia into 
“cardiovascular disease history”) or exclude predictors that 
are highly correlated with others (for example, not including 
both total cholesterol and LDL cholesterol). Additionally, 
one could exclude predictors that are frequently missing in 
the dataset and therefore may not be commonly available in 
clinical practice (1). Or if candidate predictors have limited 
variability among the study population (for example, narrow 
range of BMI 22–25), they can be eliminated.

Alternatively,  candidate predictors that do not 
significantly correlate with the outcome can be removed 
from the model. This is commonly done with a univariate 
analysis; predictors that do not have a significant p-value 
are discarded. However, this is likely to significantly reduce 
the performance of the model and does not account for 
interaction between different variables (11). Furthermore, 
models created using this method are often unable to be 
validated in new populations, and the use of this method is 
discouraged.

Predictor selection can also be performed by analyzing 
the multivariate model and removing predictors that do 
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not significantly impact the final outcome. Backward 
elimination starts with all candidate predictors in the 
multivariate model and sequentially removes or keeps 
variables based on a predefined significance parameter (for 
example, using the log likelihood ratio test for comparing 
two models) (3).

In forward elimination, the model is built up sequentially 
from an initial few predictors using similar significance 
testing. However, unlike backwards elimination forward 
elimination does not provide for simultaneous assessment of 
the effects of all candidate variables, and correlated variables 
may not remain in the model (3). Thus, forward selection is 
discouraged in prediction model development as it results in 
models that are difficult to reproduce, that may not account 
for predictor interactions, and where important predictors 
may be erroneously eliminated.

There are also numerous machine learning techniques 
for predictor selection, also termed feature reduction 
techniques. These commonly utilize univariate analysis 
techniques and either produce a single output for each 
predictor (e.g., “significant” or “not significant”) or rank 
the predictors according to a certain statistic, leaving the 
ultimate choice of how many of the top ranked predictors 
to include up to the analyst (11). There are also feature 
subset selection techniques that can further break down the 
predictors and outcome variables (for example, splitting 
“disease recurrence” into “loco-regional recurrence”, 
“distant metastases”, etc.). Finally, tree-based models 
and random forests inherently utilize predictor selection 
as a part of the model building process. However, these 
techniques are “black box” approaches where not all of the 
relationships may have been anticipated and may not be 
easily interpretable.

Regardless of the predictor selection technique 
employed, the choice of significance level for inclusion will 
affect the final model. A smaller significance value (such 
as P<0.05) will result in a model with fewer predictors but 
could exclude potentially important predictors. A larger 
significance value (such as P<0.020) increases the risk for 
selecting less important predictors (2,10). Overfitting 
models can occur in both cases, especially if using a smaller 
dataset. Overfitting occurs when the model fits the data “too 
well” in that the fit includes the noise from the dataset as 
well as the true signal. The overfitting model will likely not 
perform well on predictions with new data, thus failing in 
external validation (1,2).

Another parameter gained from the multivariate 
analysis is the baseline risk or hazard. This is the risk to an 

individual with all predictor values being zero. In logistic 
regression this is indicated by the model’s intercept; in Cox 
survival models the baseline event risk can be estimated 
separately (3).

Variable types (continuous vs. categorical)

Relationships among variables are rarely linear. However, 
the presence of non-linearity should not be dealt with by 
simply partitioning continuous variables into intervals 
(dichotomization or categorization) (1). Estimated values 
will have reduced precision and associated tests will have 
reduced power, and adding multiple categories spends more 
degrees of freedom. Categorization also assumes that the 
relationship between the predictor and the outcome is flat 
within each interval. Additionally, if the cut points between 
categories are not determined in a blinded fashion to the 
outcome, it can lead to overfitting of the model (1,3,10).

Predictor interactions

Interaction occurs when the effect of two predictor variables 
cannot be separated, in that the effect of one variable on the 
outcome is dependent on the value of another variable (1). 
Common interactions that have been found to be important 
in predicting outcomes (and thus may be pre-specified) 
include interactions between treatment and the severity of 
disease being treated, between increasing age and other risk 
factors (older subjects less affected by certain risk factors), 
between age and type of disease, between a measurement 
and the state of a subject during that measurement 
(respiratory rate during sleep vs. during activity), between 
menopausal status and treatment or risk factors, between 
race and disease, between month of the year and other 
predictions, between the quality and quantity of a symptom, 
and between study center and treatment (1).

To test for interaction, a new term must be added to 
the model for each two predictors for which interaction is 
being assessed. The coefficient of this term is then analyzed 
to see if the combination of the predictors has an effect 
on the outcome. This can quickly become complicated 
with a higher number of predictors and with continuous 
predictors. For further information on modeling with and 
testing for interactions, see the following references (1,2).

Choice of the model

While this article focuses on logistic regression models, 
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many other options for model choices exist. Unfortunately, 
consensus methods for choosing the type of statistical model 
do not exist. However, several guidelines should be followed 
during model selection (1). First, the model must use the 
data efficiently. The model should fit the overall structures 
likely to be present in the data and whose mathematical 
forms are appropriate for the response being modeled 
(linear, quadratic, etc.). This should minimize the need for 
interaction terms that are included only to address a lack 
of fit. Finally, the process of developing the model should 
be transparent and detailed enough to be reproducible by 
another analyst (16). Models are either chosen out of a 
statistical model (such as regression analysis and survival 
analysis) or via machine learning techniques (such as 
artificial neural networks, support vector machine models, 
and tree-based models). Machine learning techniques for 
model development are beyond the scope of this overview 
but are well described elsewhere (11).

Logistic regression is a widely used statistical model that 
allows for multivariate analysis and modeling of a binary 
dependent variable; linear regression is a similar model for 
a continuous dependent variable. The multivariate analysis 
estimates coefficients (for example, log odds or hazard 
ratios) for each predictor included in the final model and 
adjusts them with respect to the other predictors in the 
model. The coefficients quantify the contribution of each 

predictor to the outcome risk estimation (3,11). Table 1 
contains multiple examples of predictive models developed 
using logistic regression, such as the TREAT model which 
predicts the likelihood of indeterminate lung nodules being 
lung cancer, a binary outcome (4).

Model performance

In general, the overall model performance is evaluated 
by the difference between the predicted outcome and 
the actual outcome. These differences are related to the 
concept of “goodness of fit” of a model, with better models 
having smaller distances between predicted and observed 
outcomes (1,18). However, this commonly evaluates the fit 
of the model using the original data while performance of 
the model should be evaluated on a new dataset.

The Brier score is commonly used to assess performance 
for models that predict a binary outcome. For example, a 
model may predict a 10% risk of dying after an intervention, 
but the actual outcome is either death or survival. The Brier 
score compares the squared differences between actual 
and predicted binary outcomes, with scores ranging from 
0 for a perfect model to 0.25 for a non-informative model 
with a 50% incidence of the outcome (18). The Brier score 
can also be adapted for application to survival outcomes. 
When evaluating the TREAT model, a boxplot was used to 
illustrate differences between the Mayo Clinic model and 
the TREAT model both on the initial data and the external 
validation data (see Figure 1) (4).

Overal l  performance can be broken down into 
two characteristics of performance, calibration and 
discrimination, which can be assessed separately as well.

Calibration

Calibration can also be assessed visually by plotting the 
observed outcomes (x-axis) against the predicted outcomes 
(y-axis), with perfect predictions falling along a 45° line. For 
a linear regression, this would be shown as a scatter plot; 
for a binary outcome, smoothing techniques may be used 
to create a slope. This can also be done within subgroups 
of participants that are ranked by increasing estimated 
probability, i.e., different risk groups (3,18). Visually 
assessing calibration can be useful as a predictive model may 
not perform equally across all risk groups.

A common summary measure of calibration is the 
Hosmer and Lemeshow test or the “goodness of fit”  
test (18). This test evaluates calibration (agreement between 

TREAT Mayo MayoTREAT
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Figure 1 Comparing performance of TREAT model to Mayo 
Clinic model using Brier scores. From ref (4). TREAT, Thoracic 
Research Evaluation And Treatment.
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observed and expected event rates) across each decile of risk 
values (e.g., <10%, 10–20%, etc.) and compares them for 
significant differences. A significant P value on the Hosmer-
Lemeshow test implies that the model is not well calibrated 
as it performs differently for different risk categories (3). 
However, having a non-significant P value does not imply 
that the prediction model is well calibrated, but rather that 
there is no evidence that the model is uncalibrated. These 
“goodness of fit” tests provide a summary statistic, and 
while it may appear that a model is well calibrated, more 
information can often be found by examining the calibration 
plot. For example, there may be certain risk categories for 
which the model significantly over- or under-estimates risk 
that are not elucidated by the summary statistic.

Discrimination

Discrimination is the ability of a model to distinguish 
individuals who developed the outcome from those who 
remained event free. Discrimination can be evaluated 
through several methods, the most common of which is 
the concordance index (c-index or c-statistic) (11,18). The 
c-index is the chance that given two individuals, one of 
whom will develop the outcome and one who will not, 

the model will correctly assign a higher probability to 
the individual who develops the outcome. For regression 
models, the c-index is equal to the area under the receiver 
operating characteristic curve (AUC), and ranges between 
0.5–1. A c-index of 1 indicates a model that is perfectly 
discriminating, and a value of 0.5 would indicate the model 
is unable to discriminate between these two groups.

The receiver operating characteristic curve (ROC) plots 
the true positive rate (sensitivity) over the false positive 
rate (1-specificity). A 95% confidence interval typically 
accompanies this graph, with wide confidence intervals 
indicating a less discriminating model. The TREAT model 
uses AUC to illustrate improvement in discrimination from 
the Mayo Clinic model both in its original dataset and in 
the external validation data (see Figure 2) (4).

In addition to the c-index, the discrimination slope is a 
useful and simple measure for how well the individuals who 
develop the outcome are separated from those who remain 
event-free (18). Visualization of the amount of overlap 
between the two groups is easily accomplished with a box 
plot or histogram; less overlap between the two groups 
illustrates a better discriminating model.

Model validation

Internal validation

Internal validation of a prediction model estimates the 
potential for overfitting the model and optimism in the 
model’s performance, using no other data than the original 
study sample. The prediction model can be expected 
to perform optimistically when the data are from the 
population used to create the model compared to its 
performance in a different but similar population (1).

In its simplest form, internal validation could be 
performed by randomly splitting the sample data into two 
subsets and using half as the development or training subset 
and half as the validation subset. However, this method is 
inefficient as not all data collected are used to develop the 
prediction model. Additionally, this method has replication 
instability in that different random splits of the data will 
lead to different prediction models. Internal validation does 
not address selection bias with recruitment, missing data, or 
measurement errors as validation is performed within the 
study population (1).

To avoid these issues, other methods of internal 
validation are typically employed. In k-fold cross-
validation the sample is divided into k subsets or folds 

False positive rate

VUMC: TREAT 0.87 (0.83, 0.92)
VUMC: Mayo   0.80 (0.75, 0.85)
VA:       TREAT 0.89 (0.79, 0.98)
VA:        Mayo  0.73 (0.60, 0.85)

AUC (95% CI)

S
en

si
tiv

ity

0.0              0.2               0.4              0.6              0.8              1.0

1.0

0.8

0.6

0.4

0.2
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Figure 2 Comparing discrimination of TREAT model to Mayo 
Clinic model using AUC. From ref (4). TREAT, Thoracic 
Research Evaluation And Treatment; AUC, area under the receiver 
operating characteristic curve.
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(most commonly 5 or 10 folds). One subset is chosen as the 
validation subset, and the remainder of the k-1 subsets are 
used for model development or “training”. The validation 
subset is then used to calculate the prediction error of the 
model. Once completed, the process restarts holding out 
a different subset as the validation subset and using the 
remaining subsets to calculate a new model. This is repeated 
k times and the model’s performance is calculated by 
averaging the errors calculated in each step. The advantage 
of this method is that each observation is used for both 
training and validation, and each observation is only used 
once for validation (16).

Bootstrapping is another method of internal validation 
and is an ideal method for smaller sample sizes or for 
larger numbers of candidate predictors (3). In general, 
study populations represent a random sample drawn from 
a larger target population. Repeated sampling would result 
in similar but different study populations and may lead 
to slightly different predictor-outcome associations and 
model performances. Bootstrapping aims to replicate this 
process by sampling with replacement within the study 
population to create multiple training subsets (11). In each 
bootstrap sample, the data are analyzed as in the original 
study sample, repeating each step of the model development 
including applied predictor selection strategies. This will 
likely yield a different model from each bootstrap sample 
with a corresponding c-index. Subsequently these bootstrap 
models are applied to the original study sample, yielding a 
difference in c-index. The bootstrap sample is then returned 
to the pool (sampling with replacement), a new random 
bootstrap sample is drawn, and the process is repeated 
often 100 or 500 times. The average of these differences 
in c-index calculated in each round indicates the optimism 
of the original prediction model. This method allows all of 
the original data to be used in model development while 
providing insight into the extent to which the original 
model is overfitting or too optimistic (1,2). The TREAT 
model used 500 bootstrap samples with replacements for 
internal validation, with each bootstrap plotted as a data 
point to create the boxplots in Figure 1 (4).

External validation

When applied to new individuals, a prediction model 
generally performs worse than with its original study 
population, even after internal validation procedures to 
correct for optimism and overfitting (1). Thus, before a 
new prediction model is accepted into practice it must also 

be externally validated to demonstrate its predictive value 
in a similar population with different individuals. In order 
to externally validate a predictive model, an independent 
sample from a comparable population (in terms of inclusion 
and exclusion criteria) with the same predictor and outcome 
data available is needed. The model is then applied to the 
data from external population to estimate their risk of the 
outcome, compared to the observed outcome, and the 
performance of the model calculated.

The external validation study can be done retrospectively, 
with an already existing dataset, or prospectively, by 
enrolling new individuals with the purpose of validating the 
model (19,20). In general, the likelihood of finding a lower 
predictive accuracy after external validation increases as 
more stringent forms of validation are used. The TREAT 
model used a retrospectively collected dataset from a 
different hospital (nearby Veterans Affairs Hospital) for 
external validation (4); this was a similar cohort to the 
original dataset but with a higher prevalence of lung cancer.

Temporal validation is one method of external validation 
in which individuals from the same institution are sampled 
from a different (usually later) time period (20). This is 
occasionally accomplished by non-random splitting of the 
original study sample so that individuals from a later time 
period are not included in model development. However, 
these patients have the same inclusion and exclusion criteria 
as the original study population and likely have the same 
measures of predictors and outcomes. Thus, they may not 
be a sufficiently different population for comparison and 
may not truly indicate the generalizability of the model.

Geographical validation studies involve testing the 
model at a different institution or in a different country. 
This can be accomplished in a similar method to temporal 
validation with non-random splitting of the original study 
dataset by study center if the original study was multicenter. 
Alternatively, the model can be tested in a study designed 
expressly for validation that would likely allow for greater 
variation of individuals, predictors, and outcomes due to 
different inclusion and exclusion criteria (20).

Domain or setting validation allows for model validation 
in populations of individuals that are very different than the 
original study population. For example, validating a model 
developed in healthy patients in patients with type 2 diabetes 
or validating a model developed in adults in children (1,20).

Generalizability

Generalizability is the degree to which the study sample 
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characteristics accurately reflect the new target population. 
A validated prediction model with excellent calibration 
and discrimination may not be generalizable to a clinician’s 
patient population. For example, the well-validated Mayo 
Clinic model for lung cancer prediction in single pulmonary 
nodules has been shown to have limited generalizability 
to a surgical population due to the higher prevalence of 
lung cancer seen in surgical clinics (8,21). The TREAT 
2.0 model was designed to address this issue and was 
developed in a population of thoracic surgery clinic patients 
being evaluated for pulmonary nodules (4,22,23). This is a 
population with a high prevalence of lung cancer and the 
majority of these patients underwent resection.

Updating or recalibrating the model

When a low predictive accuracy is found after an external 
validation study, researchers are left with the decision 
to reject the model or to update the model to improve 
its predictive accuracy. The model can be adjusted 
or recalibrated for local circumstances by combining 
information captured in the original model with information 
from new individuals from the validation study. The 
updated model will then have improved transportability to 
other individuals in new settings (20).

Multiple methods have been proposed for updating 
models. A common reason for poor predictive performance 
in a new population is due to a difference in baseline 
risk or hazard. By adjusting the baseline risk of the 
original prediction model to that of the new population, 
calibration can be easily improved (20). Further methods 
of recalibration included adjusting all predictor weights 
simultaneously, adjusting only a single predictor weight, 
or adding a new predictor or marker to the existing model. 
Updating the model requires either access to individual 
level data in the validation sample or accurate information 
about the frequency of the outcome and mean levels of the 
predictor in the new population. Applying these methods 
lead to improvement of the predictive power in the 
validation sample; however, further testing and recalibration 
may be required before the model is more generalizable.

Adding new predictors to models

As new tests are developed, such as new imaging studies 
or biomarkers, one may want to include them in new or 
existing predictive models. However, a good predictive 
value of the new test itself is no guarantee that it will give 

added predictive value when in combination with the 
standard predictors (10). The performance of the model 
should be evaluated before and after adding in the new test 
and several methods have been proposed to accomplish this. 
Measures discussed above such as the AUC can be used to 
compare the discrimination of the model before and after 
the addition of the new test and are widely used (20,24). 
However, this can be insensitive to detecting small changes 
in model performance, especially if the AUC of the model 
is already large, and the information may not be clinically 
relevant (24,25).

Reclassification tables show the extent to which patients 
are correctly classified (diseased vs. non-diseased, high 
risk vs. low risk, etc.) before and after the addition to of 
the new test (10). The net reclassification index (NRI) is a 
method of quantifying the added value of the new test and 
has been widely reported along with its associated p-value. 
However, this is not a reliable measure of improvement 
as it can be artificially inflated with a high rate of false 
positive conclusions. Pepe et al. demonstrated that when 
a non-informative biomarker (one that does not improve 
prediction on its own) is added to a prediction model the 
NRI can still show statistically significant improvement, 
which is highly troubling (24,25). They recommend simply 
reporting the regression coefficients for the expanded 
prediction model along with standard tests of significance 
and presenting reclassification information in risk 
classification tables.

Assessing impact

Once a prediction model has been validated and is being 
implemented, the impact of the actual use of the model on 
the behavior and management of healthcare professionals 
and/or individual patients should be investigated through a 
model impact study (20). There are two main approaches to 
impact studies: assistive and directive. Assistive approaches 
provide estimated probabilities of the outcome without 
recommending a decision. In directive approaches, a 
decision is explicitly recommended or specific therapeutic 
management is prescribed for each probability category. 
The assistive approach provides more autonomy to 
healthcare professionals, while the directive approach may 
have greater clinical impact (20).

The study design of a model impact study is ideally a 
randomized control trial where individuals, providers, or 
centers are either randomly assigned to the intervention 
(risk-based management using the prediction model) or 
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to usual care (18). This may be done as a stepped-wedge 
cluster randomized trial where at some point in time each 
cluster switches between usual care to the intervention. 
Impact studies can be non-randomized as well, with 
before-after studies comparing patient outcomes before 
the intervention (those treated with usual care) to patient 
outcomes after the prediction model is implemented. Or, 
a health care provider’s decision making is documented 
for each individual before and after being exposed to the 
model’s predictions (20).

Conclusions

To be useful, a prediction model must provide accurate 
and validated estimates of the risks to the individual and 
ultimately improve an individual’s outcome or the cost-
effectiveness of care. This review outlines the process 
for development of a logistic regression risk prediction 
model, from choosing a data source and selecting predictor 
variables to assessing model performance, performing 
internal and external validation, and assessing the impact of 
the model on outcomes.
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