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CO2 measurement carries significant physiologic and clinical information when analyzing hemodynamic status and ventilation 
of patients. While much focus is on O2 based data, CO2 derived parameters can provide a wealth of additional information. 
This is becoming more readily available as technological advances are making headways in CO2 measurements. 

The classic targets clinicians follow in patients in shock have shortcomings. The central venous oxygen saturation (ScVO2) 
was once hailed as the ideal target to guide resuscitation of patients in shock (1). More recent data challenged its role and 
reduced its value, although it remains a helpful physiologic parameter to follow (2,3). A normal ScVO2 does not exclude tissue 
hypoperfusion and could misguide the clinician. Lactic acid is another closely monitored parameter which reflects tissue 
perfusion. It is also advocated for in multiple guidelines, but also has its own shortcomings: it can be elevated for reasons 
other than tissue perfusion such as adrenergic stimulation, increased glycolytic activity or reduced clearance from liver 
dysfunction (4-6). The venous-to-arterial CO2 partial pressure difference (ΔPCO2) and tissue CO2 could help alleviate some 
of these limitations. 

According to the Fick equation, and similar to O2 metabolism, CO2 production (VCO2) is directly proportional to the 
cardiac output (CO) and the venous-to-arterial CO2 content difference. The CO2 content is linearly related to the partial 
pressure of CO2 over the general physiological range of CO2 content (7). Moreover, the mixed venous values correlate with 
the central venous values (8). Hence the Fick equation can be rewritten as follows: ΔPCO2 = k × VCO2/CO, where the k is a 
pseudo-linear coefficient supposed to be linear in physiological states. 

Based on this modified Fick equation, and for patients in a steady state, ΔPCO2 is inversely proportional to CO. ΔPCO2 
and its relation to the CO has been studied in a number of situations, including patients in shock on vasopressors, and found 
to be an appropriate target to titrate such agents (9,10).

ΔPCO2 has similar value in the operating room, where optimizing tissue perfusion and O2 delivery is essential to reduce 
post-operative complications. For high risk non cardiac surgical patients, ΔPCO2 can be used to reflect CO, identify patients 
that are not adequately resuscitated and along with ΔPCO2/C(a-v)O2 ratio predict post-operative complications (11). This 
might not be true with cardiac surgical patients, who have different macro and micro hemodynamic changes (12). 

Tissue hypercarbia is a common observation in patients in circulatory failure. Tissue CO2 values are a reflection of the 
adequacy of tissue perfusion, as reduced blood flow leads to blood stagnation and failure of CO2 washout from the tissues. 
This stagnant hypercapnia phenomenon reflects tissue hypoperfusion, even earlier than systemic parameters (13). This is 
especially relevant in sepsis where the impaired microcirculation, arteriovenous shunting and reduction in capillary density 
culminate in heterogeneous tissue perfusion. Direct optical videoscopy permits to assess these microcirculatory changes, but is 
yet to reach the bedside for mainstream use. Tissue capnometry, on the other hand, might offer similar data and is becoming 
more readily available.

Gastric, sublingual, bladder and transcutaneous PCO2 values have been assessed in critically ill patients. The stomach 
is easy to access, can be used to detect gastric hypoperfusion and splanchnic ischemia. The gastric PCO2 correlates with 
outcomes in the critical care and operating room settings (14). The sublingual vasculature has drawn significant interest as it 
reflects pathologic changes seen during septic shock. Measuring sublingual CO2 offers a way to assess the microcirculation in 
such patients (15). Overall, the tissue CO2 gap seems to perform better than systemic parameters, paving the way to use it as a 
resuscitation target for septic shock. 

Transcutaneous CO2 (tcPCO2) offers another non-invasive method to estimate PaCO2 with many studies establishing a 
good correlation between the 2 values (16). Some restrictions persist including the optimal site for tcPCO2 measurement 
(earlobe with its high vascularity seems to perform better than other sites), technological delays (time is needed to sensor 
equilibration) and a gap between PaCO2 variations and reflection in the tcPCO2 value. Nonetheless, when the appropriate 
conditions are met and the skin perfusion is normal, tcPCO2 reflects PcCO2. Similar to other tissues, and as was discussed in 
the prior section, for patients in shock, the transcutaneous CO2 gap is a good reflection of tissue perfusion and as such can be 
used for hemodynamic measurements. 
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Based on the Fick equation as it applies to O2 and CO2, the ΔPCO2/C(a-v)O2 ratio equals VCO2/VO2 and hence the 
respiratory quotient (RQ). While under aerobic conditions, RQ values ranges between 0.6 to less than 1, RQ changes with 
anaerobic metabolism. This is due to VCO2 increases to a larger extent than VO2 under anaerobic conditions. While this is of 
paramount importance diagnostically, it was also found to be valuable parameter to target during resuscitation (17,18).

The following review articles summarize the available literature on CO2 physiology and clinical value, as it pertains to the 
critical care setting as well as the operating room.
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