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Cancer control depends on early detection, a discipline 
formalized in the 1950s by widespread use of the 
Papanicolaou test for detecting pre-invasive squamous 
epithelial neoplasia of the uterine cervix (1-3). Studies 
growing out of that public health initiative have revealed a 
long latency between the earliest cellular abnormalities and 
invasive cancer. Pre-invasive or intraepithelial neoplasia 
arises in predisposed benign tissue, often influenced by 
metaplasia or inflammation (4,5). These precursor lesions 
can be reliably diagnosed by the microscopic appearance, 
but the biological behavior of these lesions is difficult to 
predict by histology alone. In situ carcinoma of the cervix 
or breast has only a 50% probability of eventually becoming 
invasive cancer (1-3).

Lung cancer is the leading cause of cancer-related death 
worldwide. Due to the late stage of diagnosis, patients 
with lung cancer often face poor prognosis with limited 
treatment options despite recent advances in cancer 
therapeutics (6,7). Early detection is therefore of critical 
importance, and a National Lung Screening Trial revealed 
that low-dose computerized tomography screening of 
54,454 high risk individuals reduced lung cancer mortality 
by 20% (8).

Squamous cell carcinoma accounts for 30% of all lung 
cancers and is strongly associated with bronchial injury 
from smoking (9-11). Ongoing repair and regeneration 
of the airway epithelia results in squamous metaplasia 
with subsequent dysplasia, carcinoma in situ, and eventual 

transformation to squamous cell carcinoma (12,13). 
Although advances in immunotherapy and the development 
of multimodal therapies have augmented and improved 
treatment outcomes for patients with non-small cell lung 
cancer (NSCLC) (14,15), there remains no consensus on 
the management of precancerous lesions (1-3).

Squamous cell carcinoma of the lung begins as carcinoma 
in situ (CIS) in metaplastic epithelium of the bronchus, and 
has about 50% probability of becoming invasive squamous 
cell carcinoma within 2 years (16). Longitudinal studies 
using autofluorescence bronchoscopy to identify and biopsy 
areas of CIS have found that 30% of CIS lesions regress to 
benign or low-grade epithelial change, while 20% remain 
non-invasive for years under active surveillance (1,16). The 
ability to predict progression of CIS lesions therefore has 
the potential to significantly impact lung cancer prevention 
and treatment.

The recent Nature Medicine study by Teixeria and 
colleagues [2019] represents the first reported systematic 
whole genome sequencing analysis of lung CIS. This 
study aims to use molecular profiling to predict which CIS 
lesions will regress or progress to carcinoma (17). Whole 
genome sequencing, epigenetic profiling, and chromosomal 
instability analysis were applied to 129 CIS biopsy samples 
obtained from 85 patients who were followed for 5 years 
post-biopsy (17). All CIS samples that progressed to 
carcinoma possessed tumor suppressor TP53 mutations and 
chromosomal amplifications and deletions characteristic 
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of squamous cell carcinoma (17). Although five of ten 
CIS lesions with TP53 mutation appeared to regress, 
three of these subsequently developed recurrent CIS or 
cancer. Moreover, five genes associated with chromosomal 
instability (ACTL6A, ELAVL1, MAD2L1, NEK2, OIP5) 
were upregulated in progressive lesions compared to 
regressive samples. Progressive lesions had accrued 
significantly more mutations and copy number alterations 
than regressive CIS specimens. Principal component 
analysis of gene expression and methylation also revealed 
significant differences between progressive and regressive 
samples (17).

Molecular characterization of CIS lesions may clarify 
field cancerization mechanisms, elucidate the early processes 
of lung carcinogenesis, and guide the development of novel 
biomarkers for early detection and intervention (12,13). 
Previous studies have reported upregulation of chemokines 
including CXCL8-10 in preinvasive lung lesions, as well 
as dysregulated expression of stem cell associated genes 
such as SOX2, SSBP2, RASGRP3, and PTTG1 (18). The 
PI3K/AKT signaling pathway is associated with the early 
pathogenesis of squamous cell carcinoma, and homozygous 
inactivation of KEAP1 or TP53 promotes clonal expansion 
of mutant airway basal stem cells (18). While Teixeria and 
colleagues suggest a predictive role for TP53 mutations to 
identify progressive CIS lesions, the TP53 point mutation 
has been known for decades to have widespread presence 
in the bronchi of smokers due to “field cancerization” 
(9,19,20). This effect cannot be overlooked in a study of 
subjects with smoking histories ranging from 30 to 100 pack 
years. Exposure to smoking-related carcinogens induces 
mutations in TP53, KRAS, and EGFR genes in addition to 
epigenetic alterations to mRNA and miRNA expression; 
these aberrancies contribute to the initial stages of lung 
carcinogenesis by increasing susceptibility to dysplasia and 
subsequent transformation to carcinoma (9,19,20). Studies 
have shown that p16 methylation is consistently induced 
by tobacco-specific carcinogen 4-methylnitrosamino-1-(3-
pyridyl)-1-butanone in lung squamous cell carcinomas and 
75% of adjacent CIS lesions (21).

Cancer is an evolving disease that interacts with a 
dynamic and heterogeneous tumor microenvironment, 
complicating efforts of early detection, treatment, 
and monitoring (22). By uncovering the molecular 
underpinnings of precursor lesions, it becomes possible to 
elucidate the common origins of tumorigenesis and improve 
preventive therapies through early detection tailored 
to the probability of disease progression. Combining 

molecular signature knowledge with recent advances in 
medical imaging and minimally invasive biomarkers can 
further enhance our ability to detect early disease and 
deliver targeted therapy to patients in the era of precision  
medicine (22).

Liquid biopsies, which analyze circulating tumor DNA, 
represent one method which enable real time monitoring 
of disease progression or regression (23). Cell free DNA 
is utilized to capture novel targetable mutations for the 
development of new treatments. Another noninvasive, in 
vivo approach to characterizing the malignant potential 
of neoplasms is molecular imaging (24-27). Although 
conventional imaging techniques such as CT revolutionized 
the diagnosis, staging, and monitoring of tumor progression 
and response to therapy, it did so by focusing on features 
such as size, macroscopic morphology, density, and 
water content. As evermore biomarkers associated with 
malignancy are identified, molecular imaging offers the 
promise of higher degrees of precision and functional 
characterization of neoplasms (28,29). Such improvements 
may manifest as targeted MRI contrast agents, optical 
agents that rely on chemical traits such as fluorescence and 
bioluminescence, and single photon emission computer 
tomography imaging using radiopharmaceuticals. As these 
examples indicate, progress in the field will depend on the 
development of appropriate biological probes. Furthermore, 
radiomic image feature extraction and deep learning have 
the potential to augment clinical diagnostics through 
quantification of radiographic features (e.g., shape, size, 
texture) and assessment of intratumor heterogeneity. These 
capabilities can translate to radiometric biomarkers that 
inform and complement clinical expertise and screening 
tests.

Recent breakthroughs in immune checkpoint blockade, 
along with a deeper understanding of tumor immune 
biology, have further added to the repertoire of targeted 
cancer therapeutics, but only for a subset of patients (14,15). 
Radiomic biomarkers represent a minimally invasive method 
to characterize tumor hallmarks easily complemented by 
genomic data for early detection and treatment monitoring. 
Together with genomic data, radiomic biomarkers can help 
predict response to immunotherapy and guide patient selection 
for treatment (27,28). A recent study showed that radiomic 
features—region dissimilarity and entropy—significantly 
predict overall survival of patients with NSCLC who received 
anti-PD1 treatment (nivolumab) (26). These results reveal a 
heterogeneous tumor landscape that eludes traditional tissue 
biopsies, yet is captured by radiomic imaging data. Combining 
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radiomic analysis with molecular data enables the development 
of treatment tailored to the distinctive features of each tumor 
or pre-invasive lesion (27-29).

Together, these advancements spanning molecular, 
pathological, and image-derived radiomic and deep 
learning data greatly enrich the evolving landscape of 
cancer diagnostics and therapeutics in the era of precision 
medicine. 
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