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Introduction

Due to the wide range of types involved in anterior 
mediastinal lesions, a differential diagnosis and risk 
evaluation bring continuous challenges to clinicians (1). 
Thymic epithelial tumors are the most primary neoplasms 
in the anterior mediastinum (2), and are histologically 

divided by the World Health Organization (WHO) into 
type A, type AB, type B1, type B2, type B3, and type C 
(heterogeneous thymic carcinomas), based on the ratios 
of lymphocytes to epithelial cells and the morphology of 
epithelial cells (3-5). Also, there is a simplified classification 
that defines type A, AB, and B1 thymomas as low-risk 
and type B2 and B3 thymomas and type C as high-risk 
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lesions. This simplified risk classification is closely related 
to the patients’ outcome and the prognosis according 
to the WHO classification. It is reported that high-risk 
thymic epithelial tumors have a much poorer prognosis 
and a higher recurrence rate when compared with low-risk 
thymic epithelial tumors (6). In addition to thymic epithelial 
tumors, some benign masses with good prognosis, such as 
hemangiomas and cysts, were classified as being low-risk or 
high-risk malignant masses like lymphoma, which are also 
commonly found in the anterior mediastinum. Accurate 
pre-treatment evaluation of risks on anterior mediastinal 
lesions has become crucial because of its impact on surgical 
planning and prognosis assessment (7). Hence, an effective 
and objective approach is urgently needed to estimate the 
clinical risk of anterior mediastinal masses before treatment. 

Chest CT scans are the routine examination in 
delineating anterior mediastinal masses (8). However, 
there are no specific characteristics concerning the 
differential diagnosis of anterior mediastinal lesions (9). 
Recently, radiomics has aroused increasing attention, 
mainly due to its ability to extract large quantities of high-
throughput imaging features, and transform medical images 
into mineable high-dimensional data. The subsequent 
quantitative analysis of these data can offer help in assessing 
the risk of lesions in the anterior mediastinum based on 
CT (10-12). Radiomics has been applied in the grading 
and staging of tumors, including those of lung cancers (13),  
renal carcinomas, breast carcinomas, and colorectal 
adenocarcinomas. It has also found use in assessing 
anterior mediastinal lesions, including in estimating thymic 
epithelial tumors’ grading and staging (14), distinguishing 
solid and cyst masses (15), and identifying histological 
subtypes of thymic epithelial tumors (16). Nevertheless, 
only quantitative texture analysis (QTA), one branch of 
radiomics analyses, has been adopted.

This study aimed to build a CT-based radiomics model 
and validate its predictive ability on high-risk lesions from 
low-risk ones in the anterior mediastinum.

Methods

Patients

This retrospective study received the approval from 
the Institutional Review Board, and informed consent 
was obtained from all patients. A total of 298 patients 
from February 2013 to March 2018, including 130 for 
the unenhanced computed tomography (UECT) scan  

(59 males and 71 females; age range, 17–86 years old; mean, 
52.26±11.08 years old) and 168 for the contrast-enhanced 
CT (CECT) scan (72 males and 96 females; age range  
18–86 years old; mean, 52±11.29 years old ) affected by 
anterior mediastinal masses were retrospectively retrieved 
from the China-Japan Union Hospital and the Second 
Hospital of Jilin University. Patients were selected 
according to the following inclusion principles: 

(I) Histopathological diagnosis of anterior mediastinal 
lesions obtained by biopsy, mediastinoscopy, or 
surgery (Table 1); 

(II) Good quality UECT and CECT images with the 
same scan parameters for radiomics analysis; 

(III) No previous chemotherapy, radiation therapy, or 
biopsy.

Because teratomas have quite a specific performance 
on CT scan and can be easily distinguished by visual 
observation, we excluded teratomas from this analysis.

CT images

UECT and CECT images were scanned by Toshiba Medical 
Systems CT scanners (Tochigi, Japan) and GE Healthcare 
CT scanner (Waukesha, WI). Automatic tube current 
modulation techniques were adopted with the tube voltage 
set at 120 kVp. The noise index of the SD was set as 11.6 and 
13.0 for the GE and the Toshiba scanner respectively (80–100 
mL) was injected at the speed of 2–3 mL/s, and the venous-
phase CECT scan was then performed for 60 s. The UECT 
and CECT images were all reconstructed with a section 
thickness of 5 mm and an image slice matrix of 512×512.

Lesion delineation and segmentation

All the UECT and CECT images were loaded into the 
RadCloud platform (Huiying Medical Technology Co., 
Ltd., Beijing, China). Volume of interests (VOIs) generally 
considered to be lesions were delineated on both UECT 
and venous-phase CECT images by a radiologist who had  
3 years’ clinical experience but was blinded to the clinical 
and histological information. Afterward, the VOIs were 
checked by a senior radiologist with more than 5 years of 
clinical experience, who decided on the lesions’ borders 
when a discrepancy occurred (10) (Figure 1).

Feature extraction

In total, 1,029 quantitative imaging features were extracted 
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Table 1 Characteristics of patients in UECT and CECT scan

Diagnoses Number
Gender

Age (years, mean ± SD) Lesion volume (cm3)
Male Female

UECT

High-risk 23 33 54.29±13.17 132.21±229.18 (range: 1.00–1,111.44)

Thymic carcinoma 9

Lymphoma 2

WHO type B2 thymoma 14

WHO type B3 thymoma 8

Small cell carcinoma 1

Seminoma 2

Metastatic lymphoma node 3

Adenocarcinoma 1

Low-risk 36 38 51.42±9.97 52.57±96.08 (range: 0.42–558.76)

Thymic cyst 40

Hemangioma 2

Thymic hyperplasia 7

Bronchogenic cyst 8

Tuberculosis 1

WHO type A thymoma 8

WHO type AB thymoma 16

WHO type B1 thymoma 8

P 0.691 0.199 0.006

CECT

High-risk 50 38 50.86±12.93 128.85±227.17 (range: 1.41–4,100.18)

Thymic carcinoma 8

Lymphoma 8

WHO type B2 thymoma 25

WHO type B3 thymoma 16

Small cell carcinoma 16

Seminoma 2

Metastatic lymphoma node 3

Low-risk 32 58 53.11±9.52 53.14±96.45 (range: 1.55–5,388.80)

Thymic cyst 33

Hemangioma 2

Thymic hyperplasia 7

Bronchogenic cyst 5

Tuberculosis 1

WHO type A thymoma 13

WHO type AB thymoma 21

WHO type B1 thymoma 8

P 0.082 0.199 0.009

UECT, unenhanced computed tomography; CECT, contrast-enhanced computed tomography.
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from UECT and venous-phase CECT images with the 
RadCloud platform. They were classified into four groups. 
Group 1 covered the intensity features (including 19 
descriptors) that quantitatively delineated the distribution 
of voxel intensities within the CT image through the 
basic metrics found in common. Group 2 (shape features) 
consisted of 15 three-dimensional (3D) features reflecting 
the shape and size of the target region. Texture features 
were divided into three types based on the calculations 
obtained from the grey level co-occurrence matrix, gray 
level size zone matrix, and grey level run length matrix. A 
total of 69 features were able to be quantified as regions 
with heterogeneity differences and were classified into 
Group 3 (texture features). The above three groups all 
extracted features from the VOIs of the original image.

Group 4 (higher-order features), with 966 features, 
included the intensity and texture features that were derived 
from the wavelet transformation and the filters of the 
original image. Furthermore, exponential, square, square 
root, logarithm, and wavelet (wavelet-LLL, wavelet-HHH, 
wavelet-HLL, wavelet-HHL, wavelet-LLH, wavelet-
HLH, wavelet-LHL, wavelet-LHH) were derived from the 
original images that were used as filters.

Radiomics features selection and machine learning

All statistical analyses were performed in Python (Version 
2.7). We used Least absolute shrinkage and selection 
operator (Lasso) algorithm methods for the feature 
selection, in order to single out the optimal features. In this 

process, we used 5- and 6-fold validation to find the best 
parameters with 3,000 iteration. 

The cost function of LASSO method is:
2

2 1

1L= min
2nw

Xw y a w− +

X: the matrix of radiomic features; y: the vector of the 
sample labels; n: the number of samples; w: the coefficient 

vector of the LASSO model; 1
a w : the LASSO penalty 

with the constant α and the 1 -norm of coefficient  
vector 1

w .
We used Logistic regression (LR) classifier with 8-fold 

validation on UECT selected features and 3-fold validation 
LR classifier on CECT selected features. 

The cost function of LR as following:

, 1

1Y= min log(exp( ( )) 1)
2

n
T T

i iw c i
w w C y X w c

=

+ − + +∑
X: the matrix of radiomic features; y: the vector of the 

sample labels; w: the coefficient vector of the LR model; C: 
inverse of regularization strength. 

Predictive performance of machine learning

The receiver operating characteristics (ROC) curve 
analysis was employed to evaluate the prediction ability 
of the selected radiomics features. The optimal cutoff 
value was selected as the point when both the sensitivity 
and specificity were maximal. In the area under the curve 
(AUC), sensitivity and specificity were calculated in both 
the training and validation sets of UECT and CECT.

The workflow is shown in Figure 2.

Figure 1 Examples of anterior mediastinal lesion segmentation. (A) Venous-phase CECT images. A 56-year-old woman with thymic cyst; 
(B) UECT images. A 67-year-old woman with WHO type AB thymoma. UECT, unenhanced computed tomography; CECT, contrast-
enhanced computed tomography.  

A B
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Figure 2 Radiomics analysis workflow. First, the clinical UECT (A) and CECT (B) images of high- and low-risk anterior mediastinal lesions 
were collected. Second, image segmentation was used to delineate the anterior mediastinal lesions. Next, the image features were extracted 
by the automated high-throughput feature analysis algorithm. Finally, the statistical analysis was applied, and the sequential forward search 
was used for feature selection for the classification of anterior mediastinal lesions. UECT, unenhanced computed tomography; CECT, 
contrast-enhanced computed tomography.

A 168 CECT anterior mediastinal masses (date from Feb.2013-Mar.2018) 

 Images loaded into Radcloud platform. Lesions were delineated for radiomics feature extracted.

12-feature radiomics signature (Including 4 first-order features,  

1 shape-based feature, 7 higher-order texture features) 

Use ROC curve analysis to illustrate the prediction performance of the radiomics signature. 

training data set: 70% of the VOIs validation data set: 30% of the VOIs

6-fold cross-validation LASSO algorithm method 

Train with 8-fold cross-validation LR classifier verify

B
130 UECT anterior mediastinal masses (date from Feb.2013-Mar.2018) 

 Images loaded into Radcloud platform. Lesions were delineated for radiomics feature extracted.

12-feature radiomics signature (Including 2 first-order features,  

10 higher-order texture features) 

Use ROC curve analysis to illustrate the prediction performance of the radiomics signature. 

training data set: 70% of the VOIs validation data set: 30% of the VOIs

5-fold cross-validation LASSO algorithm method 

Train with 3-fold cross-validation LR classifier verify
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Table 2 Features of 12-radiomics models of UECT and CECT

Filters Features

UECT

Exponential First order: mean

Gray level non-uniformity

Wavelet First order: 90 percentiles

Cluster Prominence

Gray level non-uniformity normalized

Short run low gray level emphasis

Cluster shade

Small area low gray level emphasis

Large area emphasis

Square root Long run low gray level emphasis

Long run high gray level emphasis

Square Zone variance

CECT

Shape Spherical disproportion (shape)

Wavelet First order: median

First order: skewness

Idn

Size zone non-uniformity normalized

Idmn

Gray level non-uniformity normalized

Square First order: kurtosis

Small area low gray level emphasis 

Small area emphasis

Exponential First order: total energy

Zone variance

UECT, unenhanced computed tomography; CECT, contrast-
enhanced computed tomography; Idn, inverse difference 
normalized; Idmn, inverse difference moment normalized.

Results

Clinical characteristics

A total of 298 patients (collected from February 2013 to 
March 2018) included 130 for UECT scan (28 high-risk 
lesions, 102 low-risk lesions; lesion volume, 132.21±229.18 
and 52.57±96.08 cm3, respectively) and 168 for CECT scan 
(88 high-risk lesions, 90 low-risk lesions; lesion volume, 

128.85±227.17 and 53.14±96.45 cm3, respectively). 
The differences in lesion volume between the high-
risk and low-risk sets in UECT and CECT exhibited 
statistical significance (P=0.006; P=0.009, respectively). 
Among the 130 patients of the UECT scan (59 males 
and 71 females; age range, 17–86 years old; mean,  
52.26±11.08 years old) and the 168 patients for the CECT 
scan (72 men and 96 women; age range, 18–86 years 
old; mean, 52±11.29 years old), there was found to be no 
significant differences in age and gender between the high-
risk and low-risk datasets (P=0.691; P=0.082 respectively).

Radiomics features selection

Through the Lasso algorithm method, each of the UECT 
and CECT scans extracted 12 features, which displayed 
significant differences in distinguishing high-risk lesions 
from the low-risk ones in the anterior mediastinum, as 
shown in Table 2. Then, LR classifier was built using 12 
features selected from Lasso process (Figures 3,4).

Diagnostic performance of the radiomics model

The 12-feature model was trained with 8-fold and 3-fold 
cross-validation LR classifier in UECT and CECT 
respectively, with the ROC curve analysis results shown in 
Figure 5 for UECT and in Figure 6 for CECT. The AUC 
of the UECT training set was obtained as 0.842 (95% CI: 
0.763–0.922; sensitivity 71.43%; specificity 74.07%); and 
the AUC of the UECT validation set was 0.774 (95% CI: 
0.632–0.916; sensitivity 74.36%; specificity 72.73%). The 
AUC of the CECT training set and validation set were 
0.741 (95% CI: 0.628–0.814; sensitivity 66.67%; specificity 
64.81%), and 0.734 (95% CI: 0.597–0.872; sensitivity 
62.96%; specificity 66.67%) respectively. This showed 
excellent predictive ability (Table 3).
Discussion

This study built predicted models for UECT and CECT 
scans using LASSO with LR as the feature selection and 
classifier over the normalized radiomics features. The two 
12-feature radiomics models showed good performances 
in distinguishing high-risk lesions from the low-risks in 
the anterior mediastinum, and the UECT scan was proven 
to outperform CECT regarding the prediction for risk 
evaluation.

There are a variety of tumors in the anterior mediastinum 
(thymomas, thymic carcinomas, thymic carcinoids, 
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lymphomas, germ cell tumors, lung metastases, etc.) or tumor-
like lesions (intrathoracic goiter, thymic or bronchogenic 
cysts, lymphangiomas, aortic aneurysms, etc.) (3,17). 
Since surgical management differs for these conditions, 
it is essential to differentiate high-risk masses (including 
lymphomas, thymic carcinomas, WHO type B2, 3 
thymomas and so on) from the low-risk ones (such as 
WHO types A, AB, B1 thymoma, thymic cysts, etc.) before 
treatment.

The invasive methods including biopsy, mediastinoscopy, 
and surgery are used in determining anterior mediastinum 
lesions routinely. Clinical follow-up is also a diagnostic way 
of determining anterior mediastinal lesions, but uncertain 
follow-up intervals may cause the widespread treatment 

delay of high-risk lesions. The radiomics method introduced 
in this study was found to be helpful for diagnosing high-
risk lesions in a timely manner without follow-ups and in 
avoiding invasive examinations. Characteristics of routine 
CT scans, such as lesion margin, enhancement, and 
surrounding tissue invasion, can help evaluate the risks in 
anterior mediastinum lesions. This method is limited by 
the professional aptitude of radiologists and suffers from 
inter-reader variability. Based on the recent investigation by 
Kong et al., the value of the apparent diffusion coefficients 
(ADCs) is conducive to assessing the classification of thymic 
epithelial tumors (18). Although it eliminates subjective 
elements and acquires good diagnostic effects, MR is still 
not a routine examination and is not widely used in CT for 
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Figure 3 Radiomics features selection of UECT using the LASSO regression. (A) Mean square error path diagram. The abscissa is log (alpha), 
and the dashed lines of different colors indicate that different features correspond to different alphas with different mean square errors;  
(B) LASSO path map, features corresponding to different alpha features. UECT, unenhanced computed tomography.

Figure 4 Radiomics features selection of CECT using the LASSO regression. (A) Mean square error path diagram. The abscissa is log (alpha), 
and the dashed lines of different colors indicate that different features correspond to different alphas with different mean square errors;  
(B) LASSO path map, features corresponding to different alpha features. CECT, contrast-enhanced computed tomography.
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Figure 5 Receiver operating characteristic curve on UECT. (A) The 12-feature model was trained in training set with 8-fold cross-validation 
LR classifier in UECT. The AUC was 0.842 (95% CI: 0.763–0.922; sensitivity 71.43%; specificity 74.07%); (B) the 12-feature model of The 
UECT validation set with the AUC of 0.774 (95% CI: 0.632–0.916; sensitivity 74.36%; specificity 72.73%). UECT, unenhanced computed 
tomography.
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Figure 6 Receiver operating characteristic curve on CECT. (A) The 12-feature model was trained in training set with 3-fold cross-validation 
LR classifier in UECT. The AUC was 0.741 (95% CI: 0.628–0.814; sensitivity 66.67%; specificity 64.81%); (B) the 12-feature model of The 
UECT validation set with the AUC of 0.734 (95% CI: 0.597–0.872; sensitivity 62.96%; specificity 66.67%). UECT, unenhanced computed 
tomography; CECT, contrast-enhanced computed tomography.

Table 3 The risk classification performance of the radiomics models

Group AUC 95%CI Sensitivity (%) Specificity (%)

UECT

Training set 0.842 0.763–0.922 71.43 74.07

Validation set 0.774 0.632–0.916 74.36 72.73

CECT

Training set 0.741 0.628–0.814 66.67 64.81

Validation set 0.734 0.597–0.872 62.96 66.67

UECT, unenhanced computed tomography; CECT, contrast-enhanced computed tomography; AUC, area under the curve. 
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anterior mediastinal lesions in clinical practice.
Some analyses have confirmed the distinguishing 

capability of the radiomic features for molecular subtypes 
and histologic grade in tumors, including gliomas (19), 
lung cancers (13), colorectal adenocarcinomas (20), bladder 
carcinomas (21), gastric cancer (22), prostate cancers (23), 
etc. In the glioma research (19), the AUC was between 0.922 
and 0.975, and had an accuracy between 87.7% and 96.1% 
which was used to determine the histology and gradings of 
gliomas, providing a reliable alternative. Previous studies on 
anterior mediastinal masses are all based on QTA, which is 
a branch of radiomics category. In this study, both texture 
features and other categories of features were analyzed. In 
the two 12-feature radiomics models on UECT and CECT 
scans we obtained, 10 and 7 radiomics features, respectively, 
were from the texture feature group. When features of 
other categories were added, the predictions became more 
comprehensive. To increase the information content of 
extracted radiomics features, we delineated ROI along the 
lesion outline of every image, turning the ROIs into VOIs. 
Chaddad et al. (24) found that a 3D-wavelet transform 
could discriminate between colorectal cancer grades with 
the entropy feature, with higher accuracy and sensitivity 
than the two-dimensional (2D)-wavelet transform. The 3D 
analysis of whole lesions could be more representative of 
heterogeneity in tumors and offer a more complementary 
set of diagnostic information.

With no shape features in the 12-feature radiomics of 
UECT, one shape feature, shape-Spherical Disproportion, 
was selected from CECT, which might have been due to the 
enhancement scan highlighting the outline of the lesions. 
Since more texture features were selected from UECT than 
from CECT, the tumor heterogeneity was better detected 
in UECT, and the texture features from plain CT scan 
were found to be more significant in discriminating risk 
levels in anterior mediastinal lesions. In this study, high-
risk lesions showed a larger size than low-risk ones, which 
was in line with the findings of Yanagawa et al.’s (25). Also, 
compared with CECT, UECT images showed higher 
accuracy, sensitivity, and specificity in distinguishing high-
risk anterior mediastinal lesions. Since a large number of 
anterior mediastinal lesions were incidentally found on 
routine UECT, and hypersensitivity to iodinated contrast 
media was considered, it may be not necessary for CECT to 
perform further diagnosis. 

Several limitations of this study are discussed as follows. 
First, two medical centers were enrolled, but the number of 
cases was still small. A multi-center collaboration is needed 

to enlarge the sample size for reducing sample selection bias 
and regional differences. Second, it is hard to control the 
sampling errors produced among different CT machines. 
In addition, the manual sketching method for the image 
was laborious, time-consuming, and subjective; thus, a more 
effective and precise way to outline the image should be 
explored in further investigation.

Conclusions

In conclusion, the CT radiomics model exhibited a strong 
correlation in differentiating high-risk lesions from low-
risk lesions. This non-invasive method would be an 
economical way to perform early discrimination of high-
risk anterior mediastinal lesions with an excellent diagnostic 
performance.
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