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Introduction

Cancer remains a major cause of mortality throughout 
the world despite extraordinary efforts over numerous 
decades to develop effective therapeutic interventions. 
Importantly, however, our understanding of the impact of 
genetic, epigenetic, and Darwinian adaptive evolutionary 
processes that concurrently impact cellular adaptation 
and the development of malignancies has dramatically 
improved (1). Hanahan and Weinberg initially proposed 
six “hallmarks of cancer” that enable tumor growth 
and metastatic dissemination which have been updated 
to include additional hallmarks as our understanding 
of cancer has improved (2). These characteristics can 
be acquired longitudinally in different sequences and 
by different mechanisms including mutations in DNA 
during replication, in repair machinery, and by exposure 

to mutagens. Hence, malignancies are a heterogeneous 
group of aberrant cells with dysregulation of a set of core  
pathways (3). Non-small cell lung cancer (NSCLC) has 
been become a model for understanding the intricacy of 
how complex genomic alterations, pathway dysregulations 
and external selective pressures drive tumorigenesis, 
evolution, and provide targets for therapeutic intervention. 
Here, we review the basic principles of cancer evolution 
as has been demonstrated in NSCLC as well as our 
understanding of how epidermal growth factor (EGFR) 
oncogene driven NSCLC evolves. 

The genetic basis of lung cancer

Early studies in human cancer genomes were limited to 
evaluating the sequential somatic mutations in specific 
oncogenes and tumor-suppressor genes (4). Studies 
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analyzing lung cancer development, identified loss of 
heterozygosity at chromosomal regions that encode tumor-
suppressor genes at 3p21.3 (RASSF1A), 3p14.2 (FHIT), 
9p21 (p16), and 17p13 (p53) as early events during the 
development of NSCLC (5). Further, the mutational 
landscape in the kinomes of multiple cancers, including 
lung, colon, and breast tumors among others, was analyzed 
and demonstrated that the majority of somatic mutations 
in cancer are “passenger” mutations that do not contribute 
to oncogenesis (6-12). When expanded to genome-wide 
sequencing, studies similarly demonstrated that tumors 
harbor thousands of genetic and epigenetic alterations that 
are not present in germline DNA of which only a very 
small fraction are oncogenic “driver genes” (13). These 
oncogenic driver genes function through a limited number 
of routes that regulate growth and survival pathways critical 
for oncogenesis (14,15). This is true for multiple cancer 
subtypes; however, lung cancer has become a paradigm 
of the power of utilizing targeted therapy to block these 
oncogenic pathways with the identification of EGFR, and 
other, activating mutations. The targetability of activating 
mutations in EGFR with tyrosine kinase inhibitor (TKI) was 
first demonstrated in 2004 (16-18). This was followed by the 
identification of rearrangements of the anaplastic lymphoma 
kinase (ALK) gene, which are uniquely sensitive to ALK 
TKIs and affect approximately 6% of NSCLC (19,20). In 
short succession, multiple other oncogenic drivers have 
been identified, most of which have targeted therapies 
that are commercially available or in clinical trial. These 
include more immediately targetable activating mutations 
such as BRAF (21,22), ROS1 (23,24), neurotrophic receptor 
tyrosine kinase (NTRK) gene fusion (25,26), mesenchymal-
epithelial transition factor (MET) amplification (27), human 
epidermal growth factor receptor 2 (HER2/ERBB2) (28-30), 
and translocations in RET (31-35); as well as those for which 
targeted therapy development has been more challenging 
such as Kirsten rat sarcoma virus oncogene homolog (KRAS) 
(36-38), and phosphatidylinositol-4,5-bisphosphate 3-kinase 
catalytic subunit alpha (PIK3CA) (39). 

Previously, lung cancer had been thought to develop 
primarily due to carcinogen exposure from tobacco smoking (40). 
However, 25% of all lung cancer cases worldwide occur in 
never-smokers, representing 15% of lung cancers in men 
and 53% in women (40). Studies comparing the genomic 
landscape of NSCLC in never-smokers versus smokers  
have found several significant differences among these:  
(I) 10-fold higher mutation frequencies observed in 
smokers; (II) different mutation spectrum between smokers 

(C:G → A:T) and never-smokers (C:G → T:A); and (III) 
distinctive sets of mutations identified in never-smokers 
(EGFR mutations and ROS1 and ALK fusions) and smokers 
(KRAS, TP53, BRAF, JAK2, and JAK3 and mismatch 
repair gene mutations) (41). Among these mutations, 
oncogenic mutations in the EGFR kinase domain occur 
early in the development of NSCLC in never-smokers, 
and KRAS mutations occur early in the development of 
smoking-related NSCLC (42,43). The discovery of these 
genomic alterations, pathway dysregulations, and external 
selective pressures that drive NSCLC tumorigenesis and 
evolution have become a model for understanding cancer 
development and the development of therapeutic targets. 

Oncogenic EGFR mutations in lung cancer

Based on two large comprehensive analyses of lung cancer, 
the Lung Cancer Mutation Consortium (LCMC) and the 
Cancer Genome Atlas (TCGA), it is known that almost 
62% of patients with NSCLC harbor an oncogenic driver 
mutation (LCMC: 622/1,007; TCGA: 143/230) (44-46). 
Among those with oncogenic alterations, only approximately 
half have a therapeutically targetable lesion (44-46). 
These showed that KRAS is the most common oncogenic 
mutation occurring in 25–32% of patients (44-46).  
Somatic activating mutations in EGFR are the second 
most common driver mutation, occurring in 11–15% of all 
lung cancer patients (44-47). EGFR mutations occur with 
increased frequency in women, never smokers, and those 
of East Asian ethnicity, affecting 30–50% of patients with 
NSCLC in East Asia (48). 

EGFR mutations can occur anywhere within the tyrosine 
kinase domain, however those associated with responses to 
TKI therapy are observed in exons 18–21. In vitro studies have 
identified 21 EGFR activating mutations, among 7,216 possible 
randomly mutated EGFR single-nucleotide variants (49). 
Clinically, the most common EGFR alterations are exon 
19 deletions and the exon 21 L858R substitutions, which 
account for approximately 90% of EGFR mutations (50). 
Less common EGFR activating mutations include exon  
20 insertions and exon 18-point mutations, which represent 
1–17% and 3–4% of all EGFR mutations, respectively  
(50-58). These alterations lead to activation of the EGFR 
receptor and subsequent downstream activation of Ras/
Raf/MAPK, PI3K-AKT-mTOR, and JAK-STAT signaling 
pathways, which induce cellular proliferation, apoptosis, 
angiogenesis, invasion, and metastasis (42,59-62). Patients 
with EGFR-mutant NSCLC often respond to first-
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generation non-covalent EGFR TKI drugs such as gefitinib 
and erlotinib (16-18), but usually develop drug resistance 
within 9–12 months (63,64). Third generation TKIs 
such as osimertinib have a response rate of ~80% with an 
18.9-month progression free survival (65). Importantly, the 
efficacy of EGFR TKIs varies among specific alterations, 
EGFR exon 19 deletions and EGFR L858R mutations in 
exon 21 show high rates of EGFR TKIs response versus 
EGFR exon 20 insertions which are associated with poor 
response to EGFR TKIs (53,66-68). Hence, comprehensive 
molecular genetic testing has become vital to the 
management of advanced NSCLC since the recognition 
of the predictive benefit of specific targeted agents varies 
among different oncogenic-driven tumors.

Lung cancer heterogeneity and evolution

One of the crit ical  components to understanding 
tumor evolution is to recognize the impact of tumor 
heterogeneity. Several large-scale data monitoring projects 
in different tumor subtypes have characterized and tracked 
intra-tumoral heterogeneity. A landmark study which 
demonstrated the importance of tumor heterogeneity was 
Gerlinger and colleagues’ work with metastatic renal cell 
cancer in which they analyzed tumor tissue from primary 
and metastatic disease sites within the same patient (69). 
They found that 63% to 69% of all somatic mutations 
identified in one sample, were not found in geographically 
separate samples from the same patient, this demonstrated 
branched evolutionary tumor growth. In addition, and 
conversely, they specifically analyzed tumor-suppressor 
genes, which showed distinct inactivating mutations  
within a single tumor, revealing convergent phenotypic 
evolution (69). Their work also revealed that heterogeneity 
was present in all levels of analysis: genome, transcriptome, 
and proteome. In lung cancer, multiple groups have 
attempted to characterize heterogeneity and evolution. 
Among these, Imielinski and colleagues performed exome 
and genome sequencing of 183 lung adenocarcinoma 
tumors and identified novel oncogenic mutations in U2AF1, 
RBM10 and ARID1A as well novel activating in-frame 
fusions of EGFR (70). Similarly, the Cancer Genome Atlas 
molecularly profiled 230 resected lung adenocarcinomas. 
They identified alterations in NF1, MET, ERBB2 and RIT1 
in 13% of cases and showed these alterations were enriched 
in samples that otherwise lacked an activated oncogene (45).  
These findings suggested previously unrecognized driver 
roles for these genetic alterations, highlighting the diversity 

among tumors and expanding the range of possible 
targetable alterations. 

The Lung Tracking Cancer Evolution through Therapy 
(TRACERx) program is a translational longitudinal 
study aimed at understanding the mechanisms of cancer 
evolution by analyzing intratumoral heterogeneity and 
tracking its evolution from time of diagnosis to relapse. 
In their initial analysis with multi-region whole-exome 
sequencing of 100 early-stage NSCLC patients, they found 
that a median of 30% of somatic mutations and 48% of 
copy-number alterations are subclonal, highlighting that 
genomic-instability processes are ongoing during tumor 
development (71,72). Also, they observed substantial 
variation in intratumoral heterogeneity, reporting a wide 
range of number of subclonal mutations and percentage of 
the genome (0.06% to 81%) affected by subclonal copy-
number alterations (72). When comparing histologic 
subtypes, squamous-cell carcinomas carried significantly 
more clonal mutations than adenocarcinomas (P=0.003), 
potentially reflecting differences in smoking history (72).  
In adenocarcinomas, higher clonal and subclonal mutational 
burden was also observed in smokers. Tumor stage also 
correlated with the proportion of subclonal copy-number 
alterations in this group. Within this group, high copy-
number heterogeneity was associated with an increased risk 
of recurrence or death (HR =4.9; P=4.4×10−4), suggesting 
those patients represent a high-risk group which may 
require closer monitoring (72). The timeline of genetic 
alterations was also evaluated, leading to demonstration 
of early genome doubling and ongoing chromosomal 
instability as drivers of parallel evolution (72). Driver 
alterations as EGFR, MET, and BRAF were almost 
exclusively clonal and occurred early in evolution, compared 
to heterogeneous subclonal driver alterations in genes as 
PIK3CA and NF1 which occurred later and were found in 
more than 75% of the tumors (72). These findings highlight 
the limitations of single diagnostic biopsies in accurately 
capturing intratumor heterogeneity and evolution. 

In a follow-up analysis of Lung TRACERx, the authors 
explored allele-specific HLA loss and immune escape in 
the same cohort of patients, HLA loss was present in 40% 
of early-stage NSCLCs (73). HLA loss is an evolutionarily 
selected immune escape mechanism that is subject to strong 
microenvironmental selection pressures later in tumor 
evolution. It is associated with higher subclonal neoantigen 
burden, increased nonsynonymous mutations, APOBEC-
mediated mutagenesis, upregulation of cytolytic activity, 
and PD-L1 positivity. Among those with stage IV disease, 
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HLA loss occurred preferentially at metastatic sites (73). 

Heterogeneity, evolution, and resistance of 
EGFR-mutant lung cancer

EGFR-mutant NSCLC has become a paradigm for 
understanding the complexity of how genetic alterations 
evolve over time and under treatment pressures leading 
to therapeutic resistance. Resistance to targeted therapies 
such as EGFR TKIs can develop by multiple mechanisms 
including: intrinsic resistance, adaptive resistance, and 
acquired resistance (74). Some tumors exhibit intrinsic 
resistance to treatment, such as those with EGFR exon  
20 insertions, germline BIM deletion, and other baseline 
co-mutations (53,75,76). In contrast, adaptive resistance is 
observed when tumor cells undergo changes during therapy 
that permit their survival, an example is NF-κB signaling 
activation which is rapidly activated on initial EGFR  
TKI exposure to promote tumor cell survival and residual 
disease (77). Acquired mechanisms of resistance can arise 
from selection of clones with pre-existing genetic alterations 
within a heterogeneous tumor and from the acquisition 
of new alterations under the selective pressures imposed 
by therapy (74). Among these, EGFR T790M mutation 
has become a canonical EGFR mutation typically found 
in tumors with acquired resistance to first- and second-
generation EGFR TKIs (78). The EGFR T790M mutation 
increases the affinity of EGFR for adenosine triphosphate 
(ATP), reducing the potency of ATP-competitive TKIs. 
This mechanism of resistance has been identified in around 
50–70% of EGFR-mutant cases after treatment with a first- 
and second-generation TKIs, leading to the development 
of third-generation TKIs such as osimertinib (63,78-81). 
Similarly, the C797S mutation has emerged as a common 
resistance mechanism to osimertinib (82,83).

Prior efforts describing the complexity of lung cancer 
genetics were largely limited to resectable early-stage 
NSCLC leaving knowledge gaps in understanding the 
complexity of heterogeneity and evolution of oncogene-
driven advanced-stage NSCLC, the role of co-occurring 
genetic alterations, and how these change with therapy, 
ultimately leading to the acquisition of drug resistance 
mechanisms. Among several recent studies to address these 
questions, Blakely and colleagues performed genomic 
analysis of 1,122 ctDNA samples from patients with 
advanced-stage EGFR-mutant NSCLC at different time 
points during treatment, compared to 1,008 EGFR-negative 
advanced-stage NSCLC samples (84). Canonical EGFR 

mutations commonly co-occurred with subclonal oncogenic 
driver alterations in PIK3CA, BRAF, MET, MYC, CDK6, 
AR, and CTNNB1 (84). To further understand the evolution 
of resistance in EGFR-mutant tumors they analyzed 
changes in ctDNA under EGFR TKI therapy. Those with 
progressive disease on first- and second-line TKI had an 
increased number of detectable somatic alterations which 
increased with each subsequent line of therapy, regardless of 
age, sex, or tobacco exposure (84). EGFR T790M and EGFR 
C797S cases were further analyzed, and demonstrated 
increased co-occurring genetic alterations and more 
frequent alterations in cell-cycle and WNT-pathway  
genes (84). Furthermore, cell-cycle-gene aberrations in 
CDK4 or CDK6 were associated with shorter progression-
free survival (PFS) and overall survival (OS) to EGFR 
TKIs (84). In summary, they demonstrated that the 
number of somatic mutations increases during treatment 
and co-occurring genetic alterations may function as  
co-drivers of tumor progression and drug resistance 
leading to increased tumor genomic complexity and genetic 
diversity that facilitates further tumor evolution, adaptation, 
and resistance to therapy (84). 

Piotrowska and colleagues analyzed tumor samples and 
circulating tumor DNA (ctDNA) in 12 EGFR T790M 
positive NSCLC patients who developed resistance to 
rociletinib (a 3rd generation EGFR TKI). By examining the 
heterogeneity of tumors and mechanisms of resistance, they 
observed small cell lung cancer transformation, acquired 
EGFR amplifications, and, half of tumors acquired T790-
wild-type clones as mechanisms of rociletinib resistance (85).  
One biopsy showed coexisting T790-wild-type and 
T790M-positive clones prior to initiation of therapy. These 
and other findings demonstrated that tumors are composed 
of a mixture of cancer clones with different mechanisms 
of survival, some of which emerge under selective  
pressures (85). Separately, this group described the 
longitudinal molecular changes that occurred in a single 
tumor with an EGFR exon 19 deletion and TP53 V173L 
metastatic lung adenocarcinoma from diagnosis and 
through therapy (86). This patient developed small 
cell transformation during erlotinib therapy, acquiring 
additional mutations in PIK3CA, ERBB3, and FBXW7. 
ctDNA profiling after progression on EGFR TKI revealed 
emergence of EGFR T790M for which osimertinib was 
initiated. Subsequent ctDNA analysis revealed that the 
EGFR T790M mutation became undetectable, but there 
were increases in PIK3CA and EGFR del19 mutations, 
and development of new ERBB2, PIK3CA, c-MYC, and 
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FGFR1 amplifications (86). These cases highlighted the 
role of ctDNA in understanding the complexities of clonal 
evolution in acquired resistance, and illustrate how resistant 
subclones fluctuate in response to therapy.

The mechanisms of resistance to third-generation 
TKIs, such as nazartinib and osimertinib, among tumors 
harboring EGFR T790M were also described by Piotrowska 
and colleagues in a report analyzing the molecular profile of 
2 patients with EGFR T790M treated with nazartinib (87).  
In one case, they observed the emergence of a new 
BRAF V600E subclone with concurrent decline of the 
EGFR T790M mutant allele fraction suggesting effective 
inhibition of the dominant EGFR T790M subclone and 
development of a new mechanism of resistance (87). At 
disease progression, they observed the emergence of a 
new EGFR T790M/C797S subclone in addition to the 
previously identified BRAF V600E-EGFR T790-wild-type 
subclone (87). This highlights the heterogeneity of EGFR-
dependent mechanisms of resistance and coexistence of 
multiple subclones which emerge at different points under 
treatment pressure. Similar findings were reported by Le 
and colleagues who analyzed a cohort of 118 patients with 
EGFR T790M mutations, 95% had progressed on at least 
one prior TKI and subsequently developed resistance 
to osimertinib (82). Molecular profiling showed that 
acquisition of EGFR C797S and L792 mutations were the 
most common EGFR-dependent resistance mechanisms 
and were observed exclusively in those who preserved an 
EGFR T790M mutation (82). 

Other groups also evaluated how tumors evolve under 
the selective pressures of osimertinib. They identified 
known mechanisms of acquired resistance previously 
associated with resistance to first-generation EGFR TKIs 
such as small cell transformation, MET amplifications, 
PIK3CA mutations, and BRAF mutations, as well as novel 
mechanisms specific to third-generation EGFR TKIs such 
as new mutations, fusions, and/ or loss of EGFR T790M 
(83,88). Third-generation TKIs bind the EGFR C797 
location, mutations in this locus within the EGFR gene, 
confer acquired resistance in 7–20% of patients (88,89-91).  
Further preclinical and clinical studies have identified that 
the allelic configuration (cis versus trans) of co-occurring 
EGFR C797S and EGFR T790M mutations may have 
therapeutic implications, with those in trans configuration 
having responses to combination of first- and third-
generation EGFR TKIs (92,93). Other mechanisms of 
osimertinib resistance include RET, FGFR3, and BRAF 
fusions, as well as mutations in KRAS Q61K and EGFR 

G796D and MET amplifications (83,94). As previously 
shown by Blakely and colleagues, alterations of cell-cycle 
genes had prognostic implications and were associated with 
shorter PFS. Ultimately, these studies illustrate the critical 
role of heterogeneity in cancer growth and resistance, as 
well as, the therapeutic challenges of the available targeted-
therapies in controlling tumor growth while tumor cells 
undergo dynamic evolution under treatment pressure 
leading to the survival of selected oncogenic subclones that 
drive resistance.

As noted above, alternate resistance mechanisms include 
activation of complementary signaling pathways, concurrent 
alterations to other oncogenic genes (as described above), 
transformation to small cell histology (95), and epithelial 
to mesenchymal transition (EMT). An elegant example 
of the activation of alternative signaling pathways was 
demonstrated in recent work by Shah and colleagues 
who identified Aurora kinase A (AURKA) as a mediator 
of non-genetic acquired resistance to third-generation 
TKIs (96). Persistent EGFR inhibition leads to activation 
of AURKA by its co-activator TPX2, this activation is 
maintained in drug-tolerant cells and those with acquired 
resistance (96). AURKA mitigates drug-induced apoptosis 
and contributes to pathways associated with resistance to 
EGFR inhibition, including NF-κB, extracellular-signal-
regulated kinase (ERK), and EMT (96). In addition, based 
on preclinical studies the combination of EGFR TKIs and 
Aurora kinase inhibitors suppresses this adaptive resistance 
mechanism, and enhance the initial response to EGFR 
inhibitor thus, forestall acquired resistance (96). Our 
evolving understanding of heterogeneity and evolution of 
resistance in advanced NSCLC highlights the importance 
of developing strategies to prevent and identify earlier 
mechanisms of resistance as well as clinical trial strategies 
that can overcome multiple concomitant resistance 
mechanisms.

Epigenetics of NSCLC and EGFR resistance

Epigenetic dysregulation has been identified as a critical 
factor in tumorigenicity and heterogeneity, and understanding 
mechanisms of resistance (97-99). Commonly recognized 
epigenetic mechanisms that can promote or inhibit tumor 
cell growth include DNA methylation, histone or chromatin 
modifications, and dysregulation of miRNAs. In NSCLC, 
resistant cancer cells have been shown to develop after 
aberrant promoter methylation of CDKN2A (100), MLH1 
and MSH2 (101), APC (102), RARB (103), and MGMT (104) 
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under therapy. Resistance acquired by drug exposure may be 
reversed after prolonged drug withdrawal or with epigenetic 
therapy, as histone deacetylase (HDAC) inhibitors and 
DNA methyltransferase inhibitors (DNMTi), which may  
re-sensit ize NSCLC cel ls  to targeted therapy or 
chemotherapy (99). HDAC inhibitors have been shown to 
upregulate tumor suppressor genes involved in apoptotic 
pathways, as TRAIL and DR5, and inhibit the expression 
of pro-survival genes as BCL2 (105-110). In pre-clinical 
models and early clinical trials, HDAC inhibitors, such 
as panobinostat, in combination with EGFR TKIs have 
shown some signal for overcoming resistance to EGFR 
TKI resistance (111-116). Interestingly, HDAC inhibitors 
can also increase immune activation by upregulating MHC 
I and II expression (105). This has led to multiple trials 
assessing the safety of HDAC inhibitors in combination with 
immune checkpoint inhibitors [ClinicalTrials.gov identifier: 
NCT02437136 (117), NCT02954991 (118), NCT03233 
724 (119), NCT02638090 (120), NCT03590054 (121), 
NCT02635061 (122), NCT02805660 (123)].

The epithelial-to-mesenchymal transition (EMT) is 
another example of a complex adaptive, epigenetic process 
in which transcription factors such as TGF-β induce the 
conversion of cells from epithelial to mesenchymal state, 
resulting in increased capacity for cell invasion, migration 
and drug resistance (124-129). In NSCLC, this is a well-
explored mechanism of resistance to apoptotic signaling 
triggered by cisplatin and acquired resistance to EGFR, 
ALK and PI3K inhibitors (130-135). Resistant EGFR-
mutant NSCLC cells have shown loss of epithelial cell 
junction proteins such as E-cadherin and TTF-1 and 
elevation in mesenchymal markers as vimentin, ZEB1, and 
CD44 (136-141). EMT and reduction in E-cadherin has 
been described in 20–25% of EGFR TKI resistant cases 
that lack secondary mutations (95,131,142-144). 

miRNAs are another type of epigenetic alterations that 
can regulate EMT, response and resistance to chemotherapy, 
radiotherapy, and targeted therapies as EGFR TKIs (145-148). 
Among these, miR-21 has been shown to induce gefitinib 
resistance by suppressing PTEN and activating ALK and 
ERK (149,150). In contrast, upregulation of miR-133b has 
shown improved outcomes in NSCLC patients treated 
with erlotinib in the second- or third-line setting (151). 
Preclinical studies have suggested a therapeutic potential 
of miRNAs by synergistically sensitizing both EGFR wild-
type and mutant NSCLC cells to TKIs (152,153). Few 
phase I clinical trials have aimed to evaluate miRNAs with 
varying degrees of tolerability (ClinicalTrials.gov Identifier: 

NCT02369198; NCT01829971) (154-156). Ultimately, the 
role of epigenetically directed treatments in constraining 
NSCLC tumor evolution and development of resistance 
must be further studied to identify the best therapeutic 
strategies for clinical implementation.

Immunotherapy and EGFR-mutant NSCLC 
treatment response and evolution

Immunotherapy (IO) has radically changed the treatment 
paradigm for patients with stage III and IV NSCLC, 
providing significant therapeutic benefit to many patients 
when compared with classical chemotherapy regimens 
(157-162). However, clinical studies in patients with EGFR-
mutant tumors and other targetable oncogenic activating 
alterations have shown limited benefit with IO and lower 
response rates when compared to those without oncogenic 
activating alterations (163). For example, a meta-analysis 
assessing the role of IO in second line treatment included 
a subgroup of 186 EGFR-mutant patients with advanced 
NSCLC and showed no improvement in overall survival 
with single agent IO when compared chemotherapy, 
docetaxel (HR =1.05, 95% CI: 0.70–1.55) (164). Similar 
results were observed in TKI-naïve EGFR-mutant 
NSCLC patients, in which a phase II trial of single agent 
pembrolizumab was closed early due to futility (165). 
Notably, in the majority (70%) of these EGFR-mutant 
patients, tumor PD-L1 expression was high (PD-L1 ≥50%), 
suggesting that PD-L1 is not a predictive biomarker in 
patients with EGFR activating mutations (165). 

Pre-clinical studies have suggested that high PD-
L1 expression in this population is driven by the EGFR 
activating mutation and inhibition of EGFR activation by 
EGFR TKIs reduces PD-L1 expression (166,167). Based 
on these observations clinical studies aimed to assess the 
potential synergistic effects of combination of IO and 
EGFR TKIs in NSCLC therapy. However, multiple clinical 
trials demonstrated significant increase in grade ≥3 toxicities 
with combination of IO and EGFR- or ALK-directed 
TKIs, as well as decreased efficacy when compared to TKI 
monotherapy (168-174). 

Interestingly, a subgroup analysis of the IMPOWER 
150 trial including patients with advanced EGFR- or ALK-
altered NSCLC who had progressed on TKI therapy 
showed improved overall survival with combination of 
chemotherapy, bevacizumab (anti-VEGF), and atezolizumab 
(anti-PD-L1) when compared to chemotherapy and 
bevacizumab alone (HR =0.59; 95% CI: 0.37–0.94) (175). 
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This observation is provocative, given the lack of clinical 
benefit observed on prior trials assessing the role of IO 
as 1st line and 2nd line therapy of advanced-stage EGFR-
mutant NSCLC (163,165). Further studies are warranted 
to identify the subgroup of patients who are most likely to 
benefit from this quadruple combination therapy. 

There are multiple ongoing efforts to further define the 
population of NSCLC patients who benefit from IO, these 
studies aim to characterize the immune compartment of patient 
tumors and its interactions with the tumor microenvironment. 
In a study evaluating EGFR-mutant NSCLC patients who 
progressed during EGFR TKI therapy and who were T790M 
negative, PD-L1 expression ≥1% and high density of tumor 
infiltrating lymphocytes were associated with longer 
progression free survival with subsequent IO (176). Further 
studies, have identified that TMB is lower among those 
with EGFR, ROS-1, or ALK oncogene when compared to 
wild-type tumors, possibly explaining the lack of benefit 
observed with IO in oncogene-driven tumors (177-179). 
In addition, existing or de novo somatic alterations acquired 
during EGFR TKI exposure can improve response to IO, 
such as those impacting MHC functionality and neoantigen 
presentation, but have not been reported in the existing 
data (73,180). 

Studies analyzing the interactions between tumors and 
the immune system aim to find factors and pathways that 
promote immune-escape and tumor growth, as well as 
identify alternate targets with potential clinical impact. 
An example of a gene with this potential is the Human 
Endogenous Retrovirus-H Long Terminal Repeat-
Associating Protein 2 gene (HHLA2), which encodes for 
protein ligand HHLA2 found on the surface of monocytes 
and is a member of the B7 ligand family that demonstrates 
T-cell co-inhibitory properties (181). HHLA2 was found 
to be widely expressed in lung cancer and, importantly, it is 
highly expressed in EGFR-mutant NSCLC when compared 
to other lung cancer subtypes (182). Further efforts to 
identify the role of IO and novel checkpoint inhibitor 
targets in EGFR-mutant as well as another oncogene-driven 
NSCLC are needed.

Conclusions

Significant discoveries on our understanding of cancer cell 
growth, progression, and acquisition of drug-resistance 
highlight the complexity of the genetic, metabolic, 
environmental, and evolutionary processes that concurrently 
shape lung cancer evolution. While these discoveries 

have allowed for the development of targeted therapeutic 
interventions, they have also highlighted the existence 
of dynamic evolutionary changes leading to cellular 
adaptation, and activation of bypass signaling pathways 
that fuel cancer progression. In NSCLC, understanding of 
the clonality of EGFR-mutant tumors with co-occurring 
mutations impacts responses to treatments and how these 
evolve in response to different therapeutic agents is vital to 
guide treatment selection and their sequence. Multifaceted 
analysis of the changing molecular features of the pathways 
driving NSCLC growth at baseline and throughout the 
course of therapy is required to take into account tumor 
evolution and development of drug resistance. As additional 
therapeutic targets are identified and novel therapies are 
developed, reliable and accessible tools are needed to 
monitor and capture tumor heterogeneity and its evolution 
over time. 
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