
© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(3):394-402 | http://dx.doi.org/10.21037/jtd.2020.01.24

Introduction

Chronic obstructive pulmonary disease (COPD) is a chronic 
lung disease characterized by progressive, incompletely 
reversible airflow limitation and pulmonary inflammatory 
responses with recurrent and progressive development. 

The acute exacerbation of COPD (AECOPD), an acute 
worsening of COPD, is characterized by worsening of 
respiratory symptoms, exceeding normal daily variability, 
and requires changes in medication therapy. The morbidity 
and mortality of COPD remain high to date. It is projected 
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to be the third leading cause of death in the future (1). 
COPD not only significantly affects the quality of life but 
also results in a substantial economic burden (2). Despite 
numerous achievements, no effective drugs are available for 
managing COPD. Thus, effective medications for treating 
COPD are urgently needed.

The etiology and pathogenesis of AECOPD are not 
yet fully understood. The nuclear factor kappa B (NF-κB)  
signaling pathway has been implicated in COPD (3,4). 
NF-κB has a central role in the pathogenesis of chronic 
airway inflammatory diseases such as COPD. It is crucial in 
regulating inflammation and oxidative stress. It can regulate 
the activity of many cytokines, including interleukin (IL)-1β,  
IL-6, IL-8, IL-12, tumor necrosis factor (TNF)-α, 
monocyte chemotactic protein (MCP)-1, and adhesion 
molecules (5). Considering the previous findings on the 
NF-κB signaling pathway and the role of NF-κB in the 
pathogenesis of COPD, this study was performed to explore 
the mechanism underlying the role of NF-κB signaling 
pathway in the oxidative stress induced by the combination 
of cigarette smoke extract (CSE) and lipopolysaccharide 
(LPS) in lung epithelial cells.

Schisandrin A (Sch A), a natural lignan isolated from the 
herb Schisandra chinensis (Turcz.) Baill, has been reported 
to have diverse pharmacological activities, including 
anti-inflammatory, antioxidant, antibacterial, antiviral, 
and antitumor. It also improves immunity (6,7). It has 
been shown to inhibit excessive proliferation and induce 
apoptosis in multiple cells. Wang et al. (8) showed that 
Sch A significantly reduced cell apoptosis and necrosis and 
increased cell survival in a primary culture of rat cortical 
neurons. Kong et al. (9) showed that Sch A increased cell 
viability and sensitized 5-fluorouracil (5-FU)-resistant 
HCT116 and SW480 cells to 5-FU. However, the 
protective effect of Sch A against lung oxidative stress 
induced by the combination of CSE and LPS remains 
unclear.

This study was performed to assess the protective effects 
of Sch A against oxidative stress induced by the combination 
of CSE and LPS in pulmonary epithelial cells and elucidate 
the potential mechanisms.

Methods

Materials

Sch A (purity >98%) was purchased from Chengdu Must 
Bio-Technology Co Ltd. (Sichuan, China). Antibodies 

specific for IL-8, heme oxygenase-1 (HO-1),  and 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
were purchased from Shanghai Shenggong Biological 
Engineering Co, Ltd (Shanghai, China). A nuclear factor 
(NF)-κB Pathway Sampler Kit was purchased from Cell 
Signaling Technology Inc. (Shanghai, China).

Cell culture

Human lung epithelial cell line A549 was obtained with 
the courtesy of State Key Laboratory, Guangzhou Medical 
University. The cells were cultured in Dulbecco’s modified 
Eagle’s medium (DMEM), supplemented with 10% fetal 
bovine serum, 100 IU/mL penicillin, and 100 µg/mL 
streptomycin. They were incubated at 37 ℃ in a humidified 
atmosphere of 5% CO2. After reaching 70–80% confluence, 
the cells were subcultured for subsequent experiments.

CSE preparation

CSE derived from two cigarettes (Shuang X, Guangdong 
Zhong Yan Co. Ltd, Guangdong, China; 1.2 mg nicotine, 
11 mg tar per cigarette) was filled slowly into a 50-mL 
syringe and bubbled through 10 mL of DMEM. One 
cigarette yielded five draws of 50 mL with the syringe, with 
individual draws requiring approximately 10 s to complete. 
This preparation (100% CSE) was titrated to pH 7.4 
and sterilized with a 0.22-mm syringe filter. Serum-free 
cell culture medium was used to dilute 100% CSE to the 
working CSE concentrations. The final concentration was 
4% for CSE (10) and 0.1 µg/mL for LPS (11).

Evaluation of cell viability

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) assay was used to examine cell viability. 
Lung epithelial cells (5×103 cells/well) were cultured for 24 h  
in 96-well plates before treatment with the combination of 
4% CSE and 0.1 µg/mL LPS or different concentrations 
of Sch A (0, 1, 5, 10, 20, 40, and 60 µM). They were then 
incubated for 24 h at 37 ℃ in a humidified atmosphere 
containing 5% CO2. Each well with MTT solution  
(5 mg/mL, pH 7.4) was further subjected to cultivation for 
another 4 h. Following the culture, the supernatant was 
carefully discarded, and 150 µL of dimethyl sulfoxide was 
added to each well. The suspension was shaken for 10 min,  
and the crystals were fully dissolved. A wavelength of 
570 nm was selected, and the optical density (OD) was 
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determined using a PE X5 microplate reader. The survival 
rate was calculated as OD for the treatment group/OD for 
the control group.

Colorimetry for measuring the changes in antioxidant 
markers

After culture, the cell supernatant was harvested. It 
was centrifuged at 1,000 rpm for 10 min at 4 ℃ and 
stored at −80 ℃. The levels of oxidative stress marker 
malondialdehyde (MDA) and anti-oxidant markers 
including superoxide dismutase (SOD), glutathione (GSH) 
were detected by colorimetry according to the instructions 
of the manufacturer(Jiancheng Company, Nanjing, China).

Real-time-polymerase chain reaction

Each group of cells was cultured for a certain time. 
The wells were then washed three times with pre-
cooled phosphate-buffered saline (PBS) (1×), followed 
by the addition of 1 mL of Trizol.  An ultraviolet 
spectrophotometer was used to determine the concentration 
and purity of nucleic acids. cDNA was synthesized 
according to the instructions on the Prime Script RTreagent 
kit (Japan). Then, 2 µg of total RNA was sampled for 
reverse transcription of full-length mRNA. Target mRNA 
quantification was performed by high productivity RT-
PCR in ViiATM 7 using a SYBR® Premix Ex Taq™ II Kit 
(Takara Biotechnology, Dalian, Liaoning, China) as per 
the manufacturer’s protocol. The following primers were 
used: IL-8 sense: 5'-CCACCGGAGCACTCCATAAG-3'; 
antisense: 5'-GATGGTTCCTTCCGGTGGTT-3', HO-1 
sense: 5'-AGTCTTCGCCCCTGTCTACT-3'; antisense: 
5'-CTTCACATAGCGCTGCATGG-3', GAPDH sense: 
5'-GAAAGCCTGCCGGTGACTAA-3';  antisense: 
5'-AGGAAAAGCATCACCCGGAG-3'. The relative 
mRNA levels were determined using the 2-ΔΔCt method 
following normalization with the housekeeping gene 
GAPDH.

Enzyme-linked immunosorbent assay

The cell supernatant was harvested, centrifuged at 
1,000 rpm for 10 min at 4 ℃, and stored at −80 ℃. The 
concentration of IL-8 and HO-1 in the supernatant was 
detected using the enzyme-linked immunosorbent assay 
(ELISA) kit (Huamei Company, Wuhan, Hubei, China) 
following the manufacturer’s protocols.

Western blot analysis

The cells in each group were cultured for a certain time and 
washed three times with ice-cooled PBS (1×). The RIPA 
(Radio Immunoprecipitation Assay) lysis buffer was added 
for treatment on ice, centrifuged at 12,000 rpm for 30 min, 
and incubated at 4 ℃ for 20 min. The supernatant was 
collected, and the concentration of protein was determined 
by the bicinchoninic acid method. Subsequently, 30 µg of 
protein from each sample was separated using 10% sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis, 
transferred onto polyvinylidene difluoride membranes 
(Millipore, Billerica, MA, USA), and then blocked with 5% 
skim milk in a Tris-buffered saline-0.1% Tween 20 buffer 
(TBST) for 1 h. The membranes were then incubated with 
the corresponding primary antibodies against GAPDH(Cell 
Signaling Technology), Nuclear factor kappa beta (NF-κB)  
(Cell Signaling Technology), phosphorylated Nuclear 
factor kappa beta (pNF-κB) (Cell Signaling Technology), 
Inhibitor of NF-κBα (IκBα) (Cell Signaling Technology) 
and phosphorylated Inhibitor of NF-κBα (p-IκBα) (Cell 
Signaling Technology) antibody (1:2,000) at 4 ℃ overnight. 
Subsequently, the membranes were washed thrice with 
TBST (5 min each time) and incubated with a secondary 
antibody, at room temperature for 1 h. An enhanced 
chemiluminescence detection system was used to detect the 
antibody-bound proteins on the membranes.

Statistical analysis

At least three samples were required for experiments. The 
data were presented as mean ± standard error of mean. 
Data were statistically compared using one-way analysis of 
variance and statistically analyzed with GraphPad Prism 
5.0. P values less than 0.05 were considered statistically 
significant.

Results

Effect of Sch A on the growth of lung epithelial cells 
induced by the combination of CSE and LPS

Lung epithel ial  cel ls  were treated with dif ferent 
concentrations of Sch A (1–60 µmol/L) for 48 h to 
investigate the inhibitory effect of Sch A on lung epithelial 
cells. Different concentrations of Sch A could inhibit the 
proliferation of lung epithelial cells in a dose-dependent 
manner (Figure 1A). The cells were treated with a 
combination of 4% CSE and 0.1 µg/mL LPS for 24 h 



397Journal of Thoracic Disease, Vol 12, No 3 March 2020

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(3):394-402 | http://dx.doi.org/10.21037/jtd.2020.01.24

to establish an acute exacerbation model of COPD. The 
results showed that the combination of CSE and LPS could 
significantly promote the proliferation of lung epithelial 
cells compared with the control group. The addition of 
5 and 20 µM Sch A reverted the abnormal proliferation 
of lung epithelial cells conferred by the combination of 
4% CSE and 0.1 µg/mL LPS (P<0.05 compared with the 
control group, Figure 1B). These results suggested that Sch 
A ameliorated the abnormal proliferation of lung epithelial 
cells induced by the combination of CSE and LPS.

Effects of Sch A on the levels of antioxidant markers in 
lung epithelial cells induced by the combination of CSE 
and LPS

Sch A could significantly inhibit the proliferation of lung 
epithelial cells in an in vitro model of AECOPD. Next, the 
levels of MDA, SOD, and GSH were examined in the cell 
supernatant of lung epithelial cells. As shown in Figure 2, 
the combination of CSE and LPS induced high levels of 
MDA and low levels of SOD and GSH. The changes were 
statistically significant compared with the control group 
(P<0.05). Treatment of lung epithelial cells with 5 or 20 µM  
Sch A significantly decreased the level of MDA and 

increased the levels of SOD and GSH compared with the 
model group (all P<0.05).

Effects of Sch A on oxidative stress-related gene expression 
in lung epithelial cells induced by the combination of CSE 
and LPS

Sch A could significantly affect the antioxidant index of 
AECOPD in in vitro models. Next, the effects of Sch A on 
oxidative stress-related gene expression were examined. 
As shown in Figure 3, the combination of CSE and LPS 
significantly upregulated the expression of IL-8 and HO-1 
mRNA in lung epithelial cells compared with the control 
group (both P<0.05). The expression of IL-8 and HO-1 
was also detected in the supernatant of lung epithelial cells 
by performing ELISA. Consistent with the PCR results, 
the combination of CSE and LPS significantly upregulated 
the expression of IL-8 and HO-1 in lung epithelial cells 
compared with the control group (both P<0.05). Treatment 
of lung epithelial cells with 5 or 20 µM Sch A markedly 
decreased the expression and secretion of IL-8 compared 
with the model group (both P<0.05). Compared with the 
model group, there was no statistical difference in the 5 µM  
dose of Sch A group, only 20 µM dose of Sch A had 

Figure 1 Effect of SchA on the growth of lung epithelial cells induced by CSE combined with LPS. (A) Lung epithelial cells were exposed 
to different concentrations of Sch A (1–60 µmol/L) for 48 h. (B) The cells were exposed to 4% CSE combined with 0.1 µg/mL LPS for 
24 h, followed by exposure to 5 or 20 µM Sch A for 48 h. Cell viability was detected using the MTT assay. Data were presented as the 
mean ± standard error of mean (SEM) of three independent experiments (ratio of treated samples to control samples). ns, no statistical 
difference. *,**P<0.05; ***P<0.01; #P<0.01. CSE, cigarette smoke extract; LPS, lipopolysaccharide; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide.
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significant up-regulation of HO-1 expression (P<0.05).
The results of PCR and ELISA indicated that Sch A could 
inhibit the expression of oxidative stress-related genes.

Effects of Sch A on the oxidative stress-related signaling 
pathway in lung epithelial cells induced by the combination 
of CSE and LPS

This study further explored the intracellular signaling 
pathways involved in the inhibitory effect of Sch A on the 
production of oxidative stress-related genes. As shown in 
Figure 4, the combination of CSE and LPS upregulated 
the expression of NF-κB signaling-related protein in lung 
epithelial cells, suggesting that the combination might 
induce AECOPD by activating the NF-κB signaling 
pathway. In contrast, in AECOPD induced by the 
combination, Sch A inhibited the expression of NF-κB  
signaling-related proteins. Hence, Sch A exerted the 
protective effect against AECOPD possibly via the NF-κB 
signaling pathway.

Discussion

The in vitro AECOPD model was established in this study 
by administering the combination of CSE and LPS (12). 
Cigarette smoke contains a toxic mixture of nicotine, nitric 
oxide, and formaldehyde, which accumulates in the alveolar 
cells, leading to the release of a variety of inflammatory 
mediators and cytokines that cause injury to the airways 
and further promote the development of inflammatory 
responses. LPS is one of the main components of Gram-
negative bacterial endotoxin. It can stimulate neutrophils 
and macrophages to release a large number of cytokines 
and inflammatory mediators. Tatiana et al. (13) showed that 
the combination of CSE and LPS enhanced the release 
and expression of chemokines, such as IL-8, MCP-1,  
and Gro-α, in A549 cells, which might be related to the 
activation of ERK1/2 and JAK/STAT signaling pathways. 
In this study, a well-recognized in vitro model was used. 
The study confirmed that the combination of CSE and LPS 
could interfere with the proliferation of lung epithelial cells, 
indicating that the establishment of the AECOPD model 
was successful.

Oxidative stress is caused by the excessive production 
of oxidants and/or reduction in anti-oxidants, resulting in 
oxidative–anti-oxidative imbalance. Excess oxidants can lead 
to tissue or organ injury. Oxidative stress not only directly 
damages lung tissues but also results in the persistence of 

Figure 2 Effects of Sch A on the levels of anti-oxidant markers in 
lung epithelial cells induced by CSE combined with LPS. The cells 
were pretreated with CSE combined with LPS for 24 h, followed 
by exposure to 5 or 20 µM Sch A for 48 h. Next, the supernatant 
was used to detect the levels of MDA (A), SOD (B) and GSH (C). 
Data were represented as the mean ± SEM of three independent 
experiments. *P<0.05; ***P<0.01; #P<0.05. CSE, cigarette smoke 
extract; LPS, lipopolysaccharide; MDA, malondialdehyde; SOD, 
superoxide dismutase; GSH, glutathione.
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oxidative stress. This further promotes the chemotaxis of 
inflammatory cells, increases the expression of inflammatory 
mediators, and inactivates the protease-oxidation processes, 
thereby promoting the development of COPD (14). MDA 
is one of the representative products of lipid peroxidation 
that can reflect the severity of oxidative stress. The level of 
MDA indirectly reflects the severity of cell injury by free 
radicals (15). SOD is a ubiquitous enzyme that can scavenge 
oxygen free radicals and prevent cells from nuclear oxidative 
cleavage. SOD is an important antioxidant whose activity 
represents the total antioxidant capacity (16). GSH is a 
nonprotein tripeptide containing sulfhydryl groups, which 

can resist endogenous and exogenous oxidation, remove 
excess reactive oxygen free radicals in the body, and prevent 
cells from further oxidative reactions (17). In this study, the 
level of MDA significantly increased in the model group, 
whereas SOD and GSH levels were significantly lower 
than those in the control group, suggesting an imbalance 
of oxidation/antioxidation in AECOPD. The levels of 
MDA markedly decreased and the levels of SOD and 
GSH significantly increased after administering different 
concentrations of Sch A. The results showed that the 
therapeutic effect of Sch A on the AECOPD cell model  
in vitro might be related to the improvement in antioxidant 

Figure 3 Effects of SchA on oxidative stress-related gene expression in lung epithelial cells induced by CSE combined with LPS. The cells 
were pretreated with CSE combined with LPS for 24 h, followed by exposure to 5 or 20 µM Sch A for 48 h. Expressions levels of IL-8 (A) 
and HO-1 (B) mRNA were measured using qRT-PCR. Expression levels of IL-8 (C) and HO-1 (D) were measured using ELISA. Data 
were presented as the mean ± SEM of three independent experiments. *,**P<0.05; ***P<0.01; #P<0.05. CSE, cigarette smoke extract; LPS, 
lipopolysaccharide; ELISA, enzyme-linked immunosorbent assay.
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activity.
Wang et al. (18) found Resveratrol can treat experimental 

COPD in rats by down regulating MDA, up regulating 
SOD expression, and decreased serum levels of IL-6 and 
IL-8. Li et al. (19) also found that the protective effect 
of methylallyl sulfonate (AMSO2) on experimental lung 
injury induced by CSE was related to reducing of MDA, 
enhancing activities of SOD, and inhibiting NF-κB  
pathway. And these are basically consistent with our 
research results.

COPD is a chronic inflammation of bronchi, lung 
parenchyma, and pulmonary vasculature.  Several 
inflammatory cells and mediators are involved in the 
pathogenesis of COPD. The main cytokines associated 
with the pathogenesis of COPD include IL-1β, IL-6, IL-8,  
and TNF-α (20). Of these, IL-8 is considered as an 
important cytokine involved in the development of airway 
inflammation in COPD (21). IL-8 is a chemokine that 
recruits and activates neutrophils and T lymphocytes, 
induces morphological changes in neutrophils, and causes 
a transient increase in intracellular calcium concentrations. 
High levels of TNF-α lead to degranulation, release of 
lysosomal enzymes, upregulation of adhesion proteins, 
formation of bioactive lipids, and a respiratory burst of 
superoxide and lysosomal enzymes, thereby promoting 
chronic airway inflammation. HO-1 is an enzyme that 
can be induced under stress conditions, such as ischemia, 
hypoxia, and shock, to counteract oxidative stress and 
protect cells from damage (22). This study showed that the 
level of HO-1 significantly increased after administering the 
combination of CSE and LPS. The level of HO-1 markedly 
improved after Sch A treatment. Vanella et al. (23) results 
also showed that a new antioxidants formulation can also 
play a protective role in COPD cell model in vitro by up 
regulating the expression of HO-1, which is consistent with 
our results of Sch A.

NF-κB is a nuclear protein factor that specifically binds 
to the immunoglobulin κB light chain gene enhancer. It has 
an important role in the development of COPD. It is central 
to multiple signaling pathways and essential in regulating 
inflammation and oxidative stress. After activation, NF-κB 
can regulate a variety of transcription factors associated with 
cell growth, survival, and apoptosis. It participates in the 
development of inflammatory response, immune response, 
proliferation, apoptosis, and other physiological activities of 
cells (3).

Normally, NF-κB is a dimeric structure that binds to 
one of the three typical NF-κB inhibitory proteins or 

Figure 4 Effects of SchA on oxidative stress-related signaling 
pathway in lung epithelial cells induced by CSE combined with 
LPS. The cells were pretreated with CSE combined with LPS 
for 24 h, followed by exposure to 5 or 20 µM Sch A for 48 h.  
Data were presented as mean ± SEM of three independent 
experiments. *P<0.05; #P<0.05. CSE, cigarette smoke extract; LPS, 
lipopolysaccharide.
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exists in the form of precursor proteins P105 and P100. 
Being inactive in the cytoplasm, IκB is a specific inhibitor 
protein inactive in the cytoplasm. It covers the nuclear 
translocation signal of NF-κB, thereby preventing the entry 
of NF-κB into the nucleus, DNA binding, transcription, 
and expression. Stress factors such as viruses, bacteria, 
cytokines, growth factors, and platelet-activating factors, 
and chemotherapeutic agents can cause the activation and 
phosphorylation of IKK complexes and ubiquitination and 
degradation of IκB under the action of proteolytic enzymes, 
releasing P50/P65. The released P50/P65 nuclear ectopic 
site exposes the nuclear localization signal region on NF-κB,  
which specifically binds to the gene’s κB site and is 
thus activated (24). Plasma NF-κB levels of the COPD 
patients were significantly higher than those of the control 
subjects (P<0.001) (25). The results showed that IκBα 
phosphorylation further decreased under the stimulation 
of the combination of CSE and LPS, while Sch A inhibited 
the phosphorylation and degradation of IκBα. The 
transcriptional activity of NF-κB significantly increased and 
the transcriptional activity of NF-κB gradually decreased 
after treatment with different concentrations of Sch A. 
Therefore, Sch A could inhibit the nuclear translocation 
of NF-κB induced by the combination of CSE and LPS in 
lung epithelial cells by inhibiting the phosphorylation and 
degradation of IκBα in the cytoplasm.

Sch A is one of the main active components of Schisandra 
chinensis. In addition to Sch A, other active components 
or active parts of Schisandra chinensis, including ethanol 
extract (EE) and ethanol-water extract (EWE) of S. 
chinensis, and Schisandrin B, were found to have protective 
effects on inflammatory lung injury (26-28). Our study has 
a certain significance to further clarify the mechanism of 
Schisandra in the treatment of “cough deficiency asthma” 
and to clarify the material basis of its effect.

In conclusion, Sch A exerted protective and therapeutic 
effects against oxidative stress induced by CSE combined 
with LPS, including SchA can significantly inhibit cell 
proliferation, improve the expression of antioxidant 
markers, inhibit the expression of IL-8, and significantly 
up regulate the expression of HO-1 in some doses, possibly 
through the NF-κB signaling pathway. The findings 
suggested that Sch A might be a potential therapeutic 
option for AECOPD.
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