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Introduction

Adverse health effects of exposures to regulated air 
pollutants have been widely studied (1-6). Other pollutants 
including volatile organic compounds and ultrafine 
particles may also have adverse health effects (7), but these 
pollutants have not been as extensively studied. There is 
growing evidence for adverse respiratory health effects 
from ambient air pollutants and near-source local air 
pollutants such as automobile tailpipe emissions, a major 
source of air pollution in Southern California and many 
regions in the world. Recent studies have shown that both 

ambient air pollutants and near source exposure to traffic-
related pollutants are associated with increased incidence 
of asthma (8-11), lung function deficits (12-14), and airway 
inflammation (15,16). Traffic-related combustion tailpipe 
emissions contain high concentrations of reactive gases 
and high concentrations of ultrafine particles among other 
toxic compounds. It should be noted that levels of the most 
toxic of these combustion products are not regulated in the 
current criteria framework, although the regulated ambient 
air pollutant levels decreased over the last decades (17).

Because children are more sensitive to the effects of 
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air pollution than adults, due to rapidly growing and 
developing lungs and immune systems, research about the 
long-term impact of air pollution on the growth of lung 
function and respiratory illnesses is important to guide air 
pollution regulation and early prevention of respiratory 
diseases in the future. The Children’s Health Study (CHS) 
is one of the largest and most comprehensive investigations 
of the long-term consequences of air pollution on the 
respiratory health of children. The CHS has also studied the 
effects of air pollution on genetic and epigenetic variations 
in genes in oxidative/nitrosative stress pathway, and how the 
genetic and epigenetic variations in this pathway influence 
respiratory health outcomes. Results from the CHS have 
shown that both ambient air pollution (8,14,16,18-22) and 
traffic-related pollution (3,9,13,15) have adverse health 
effects. Additionally, children’s vulnerability to air pollution 
may be increased by higher level of parental stress (23),  
inadequate antioxidant defenses including low levels of 
vitamins A and C (24), and variations in the expression or 
function of antioxidant and inflammatory genes, such as 
glutathione-S-transferases (GSTs) (25-27), arginases (ARG1 
and ARG2) (28), and tumor necrosis factor-α (TNF-α) (29). 
In addition to the findings reviewed in 2003 (30), we will 
summarize more recent findings from the CHS to highlight 
the heavy burden to children’s respiratory health of current 
air pollution levels, even though these levels are often below 
national air quality standard.

The Children’s Health Study (CHS)

The CHS study design has been described in detail in 
previous publications (13,30-33). Briefly, more than 
11,000 school children were selected from classrooms in 

16 communities in multiple waves of subject recruitment 
starting in 1993 to maximize the differences in regional air 
pollution concentrations and mixtures (Table 1). Beginning 
from study entry and continuing until high school 
graduation, yearly questionnaires assessed the development 
of respiratory symptoms and current activity patterns. 
Lung function was measured annually through spirometry. 
School absences were actively ascertained to evaluate the 
effects of pollution on acute respiratory illnesses. Outdoor 
concentrations of ozone (O3), particulate matter (PM) of 
less than 2.5 µm and less than 10 µm aerodynamic diameter 
(PM2.5 and PM10, respectively), and nitrogen dioxide (NO2) 
were measured continuously at central monitoring stations 
within each community. Several metrics of traffic-related 
pollution have been used, including (I) proximity of the 
residence to the nearest freeway or roadway; (II) average 
number of vehicles traveling within 150 m of the residence 
each day; (III) model-based estimates of traffic-related air 
pollution at the residence or school derived from dispersion 
models (CALINE) (8,12,34) and land-use regression 
exposures models (13). 

For the cohort of kindergarten and first grade student 
recruited in 2003 to study the relationship between air 
pollution and airway inflammation (Cohort E, Table 1), 
exhaled nitric oxide (FeNO) was collected using both an offline 
breath collection technique according to American Thoracic 
Society (ATS) guidelines [ATS 1999; ATS/European 
Respiratory Society (ATS/ERS) 2005] in the initial years of 
the study, and an online FeNO collection in subsequent study 
years (32). 

Participants provided DNA beginning in 1998 using 
standard buccal cell collection procedures (35). Genomic 
DNA was isolated using a Puregene DNA isolation kit 

Table 1 Data collection variations among different cohorts in the Children’s Health Study

Variables Cohort A Cohort B Cohort C Cohort D Cohort E

Year start 1993 1993 1993 1996 2002

Year end 1995 1998 2001 2004 2016

No. of subjects 938 937 1,806 2,081 5,603

School grade 10 7 4 4 K

Communities* town code: 1-12 town code: 1-3, 6-9, 11-16

Lung function All years All years All years All years Starting from 2007

FeNO N/A N/A N/A N/A Starting from 2005

*Town names represented by the town code: 1, Alpine; 2, Lake Elsinore; 3, Lake Gregory; 4, Lancaster; 5, Lompoc; 6, Long Beach; 7, 

Mira Loma; 8, Riverside; 9, San Dimas; 10, Atascadero; 11, Santa Maria; 12, Upland; 13, Glendora; 14, Anaheim; 15, San Bernardino; 

16, Santa Barbara.
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(Gentra Systems, Minneapolis, MN). Each genotype 
was validated by using PCR/restriction fragment length 
polymorphism methods (36). A nested case-control sample 
of 769 asthmatics and 1007 controls, who were either 
Hispanic white (n=817) or non-Hispanic white (n=959), 
were selected into CHS genome-wide association study. The 
genotyping was performed at the USC Epigenome Center 
using the Illumina HumanHap550, HunmanHap550-Duo 
or Human610-Quad BeadChip microarrays.

Main findings

Air pollution associations with asthma occurrence 

Ambient air pollution has been associated with asthma 
prevalence and incidence in the CHS. In Cohort C,D, 
higher local NO2 concentrations were associated with 
higher asthma prevalence [odds ratio (OR), 1.83; 95% 
confidence interval (CI): 1.04-3.22; per interquartile 
range (IQR) =5.7 ppb NO2] after adjusting for sex, race, 
Hispanic ethnicity, cohort, and community (8) and higher 
risk of new-onset asthma [hazard ratio (HR), 1.29; 95% 
CI: 1.07-1.56; per IQR of 6.2 ppb NO2] after adjusting for 
Hispanic ethnicity, medical insurance, cohort, community, 
and relative humidity (9). In Cohort A-D, Regional O3 
was associated with asthma incidence, but this association 
was modified by exercise (11). Specifically, the relative risk 
of asthma incidence associated with high regional O3 was 
three times higher among children playing three or more 
team sports, compared to children playing no sports after 
adjusting for ethnicity and community with baseline strata 
for age and sex (OR, 3.3; 95% CI: 1.9-5.8). A statistically 
significant positive association between number of team 
sports played and asthma incidence was observed only in 
communities with high O3 (means of O3 concentrations in 
high and low pollution communities =59.6 ppb and 40.0 ppb,  
respectively) (OR, 1.4; 95% CI: 1.0-2.1). However, in the 
subsequent Cohort E, regional NO2 and O3 did not appear 
to be associated with asthma incidence after additionally 
adjusting for non-freeway traffic-related pollution at home 
and school (HR, 1.37; 95% CI: 0.69-2.71; and HR, 1.01; 
95% CI: 0.49-2.11, respectively) (10).

Across CHS cohorts, several metrics of traffic-related 
pollution have shown adverse effects on asthma prevalence 
and incidence, independent of regional ambient air 
pollution. In Cohort C and D, the risk of life-time asthma 
was 1.9-fold among children with closer residential distance 
to a freeway (below 25th percentile) compared to children 

with farther residential distance from a freeway (above 75th 
percentile) after adjusting for sex, race, Hispanic ethnicity, 
cohort, and community (OR, 1.89; 95% CI: 1.19-3.02) (8).  
An IQR [2.3 ppb nitrogen oxide (NOx)] increase of 
CALINE estimated freeway-related NOx was associated 
with more than 2-fold increased risk of lifetime asthma 
(OR, 2.22; 95% CI: 1.36-3.63) (8). In Cohort A-D, children 
with residences within 75 m of a major roadway had a 
29% increased risk of lifetime asthma and a 50% increased 
risk of prevalent asthma after adjusting for age, sex, race 
community, and language of the questionnaire (English/
Spanish) (3). In Cohort E, after adjustment for race/
ethnicity and for baseline hazards strata of age at study 
entry and sex, and random effects of school and community, 
an IQR (8 ppb NOx) increase in CALINE estimated  
non-freeway traffic-related pollutions near home and 
school were both associated with a 1.5-fold increased risk of  
new-onset asthma, and these results were robust to 
adjustment for ambient NO2 (OR, 1.46; 95% CI: 1.16-1.84) 
for home; and OR, 1.45; 95% CI: 1.03-2.06 for school) (10).  
Recent results further suggested that the effect of traffic-
related pollution on the risk of new-onset asthma can 
be modified by parental stress levels. After adjusting for  
race/ethnicity and community with baseline strata for age 
and sex, an IQR increase of non-freeway traffic-related 
pollution (21 ppb of NOx) was associated with a 1.5 times (HR, 
1.51; 95% CI: 1.16-1.96) higher hazard of incident asthma 
for children with high parental stress versus a 1.1 times (HR, 
1.05; 95% CI: 0.74-1.49) higher hazard of incident asthma 
for children with low parental stress (23), where parental 
stress was assessed by perceived stress scale (PSS >4) (37). 
These results from the CHS are consistent with a growing 
body of evidence from international studies indicating that 
that exposure to vehicle emissions increases the risk of  
new-onset asthma (4,38,39).

Air pollution effects on children with asthma

Air pollution may play a role in the exacerbation of existing 
asthma. In the CHS, children with physician-diagnosed 
asthma had more chronic lower respiratory tract symptoms 
including bronchitis and phlegm production if they lived in 
communities with higher levels of NO2, PM10, and PM2.5 (40).  
Two pollutant models showed that within-community 
variations in organic carbon (OC) (OR, 1.41 per ppb; 
95% CI: 1.12-1.78) and NO2 (OR, 1.07 per ppb; 95% CI: 
1.02-1.13) had robust positive associations with the risk of 
bronchitis symptoms after adjusting for age, maternal and 
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child’s smoking history, sex, race, community and other 
pollutants including PM, O3, organic and inorganic acid, 
and elemental carbon (EC) (18). 

Air pollution was also associated with acute respiratory 
symptoms including wheezing and asthma medication use. 
Amongst fourth-grade school children, an IQR (13.39 μg/m3)  
increase in monthly average PM10 was associated with almost 
a 3-fold higher monthly prevalence of wheezing during 
the spring and summer months after adjusting for age, 
sex, race/ethnicity, community, home characteristics, and 
secondhand tobacco smoke (OR, 2.91; 95% CI: 1.46-5.80),  
but this association was not significant during the fall and 
winter months (19). Pollutants primarily produced by 
photochemistry were associated with asthma medication use. 
IQR increases in monthly average O3 (27.83 ppb), nitric acid 
(HNO3) (1.64 ppb), and acetic acid (2.66 ppb) levels were 
associated with 80% (OR, 1.80; 95% CI: 1.19-2.70), 80% 
(OR, 1.80; 95% CI: 1.23-2.65) and 60% (OR, 1.57; 95% CI: 
1.11-2.21) more monthly prevalence of asthma medication 
use (19). Associations between air pollutants and asthma 
medication use were stronger among children who spent 
more time outdoors (OR, 3.07; 95% CI: 1.61-5.86 for O3;  
OR, 1.93; 95% CI: 1.18-3.15 for HNO3; and OR, 2.38; 
95% CI: 1.37-4.14 for acetic acid, respectively), compared 
to children who spent less time outside. Recent findings 
suggest that traffic-related pollution was also associated 
with children’s wheezing (41). Among kindergarten and first 
grade (Cohort E) children aging 4.4- to 8.9-year-old who 
were diagnosed with asthma, per increase of 9 minutes in 
school commuting time was significantly associated with 
50% increase (OR, 1.54; 95% CI: 1.01-2.36) of prevalence 
of severe wheezing using the criteria from the International 
Study of Asthma and Allergies in Childhood (ISAAC) (42) 
after adjusting for age, sex, race, community, mode of travel 
to school, and modeled residential traffic-related pollution. 
This association was more striking among asthmatic 
children with commuting times 5 minutes or longer (OR, 
1.97; 95% CI: 1.02-3.77). Other effects of air pollution on 
asthmatic children include increased emergency department 
visits or hospitalizations (43), and higher school absence 
rates (44).

Taken together, these results from the CHS demonstrate 
that the effects of ambient air pollution and traffic-related 
air pollution on childhood asthma pose a large burden to 
public health and the economy. According to the CHS 
estimates, the successful improvement in O3 levels in 
Southern California during the year 1990 to 1999 reduced 
more than 2.8 million school absences, which saved more 

than $220 million (45). On the other hand, asthma burden 
attributable to air pollution in two California communities 
was $18 million yearly during 1996 to 2004, and half of this 
cost was due to traffic-related pollution (46).

Air pollution and lung function

The deficit in the growth of lung function is another 
chronic health effect of air pollution. Following children 
from age 10 to 18 years, deficits in the growth of forced 
expiratory volume in one second (FEV1) were associated 
with exposure to higher levels of NO2, PM2.5, EC, and 
acid vapor after adjusting for sex, Hispanic ethnicity,  
log-transformed height, BMI, BMI squared, present asthma 
status, child’s smoking history, secondhand tobacco smoke, 
community, exercise or respiratory tract illness on the 
day of the test, and indicator variables for field technician 
(P=0.005, 0.04, 0.007, and 0.004, respectively) (14). Deficits 
in the growth of forced vital capacity (FVC) were associated 
with exposure to NO2 and acid vapor (P=0.05 and 0.03, 
respectively), and deficits in the growth of maximal 
midexpiratory flow rate (MMEF) were associated with 
exposure to NO2 and EC (P=0.02 and 0.04, respectively). 
Similar associations were also observed for FEV1 attained 
at the age of 18 years (14). For example, the estimated 
proportion of 18-year-old subjects with a low FEV1 (defined 
as a ratio of observed to expected FEV1 of less than 80%) in 
the community with highest level of PM2.5 was 4 times more 
than the community with the lowest level of PM2.5 (7.9% vs. 
1.6%, P=0.002).

Exposures to traffic-related pollution were associated 
with lung development as well. After adjusting for height, 
height squared, BMI, BMI squared, present asthma status, 
community, exercise or respiratory illness on the day of 
the test, any tobacco smoking by the child in the last year 
and field technician, children who lived within 500 m of a 
freeway had significant deficits in FEV1 and MMEF growth 
from age 10 to 18 compared to children who lived more than 
1,500 m from a freeway (P=0.01 and 0.03, respectively) (12).  
Joint models revealed that adverse effects of traffic 
exposures on the growth of FEV1 were independent of 
regional air pollutions (NO2, Acid vapor, PM10, PM2.5, and 
EC). In another cross-sectional analysis of children with 
mean age of 11.2 years, residential proximity to a freeway 
was shown to be inversely associated with the reduction in 
FVC after adjusting for log-transformed height and height 
squared, BMI and BMI squared, age, sex, race/ethnicity, 
community, respiratory illness on the day of the test and 
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field technician (13). Living within 500 m of a freeway was 
associated with 2% deficit in FVC (P=0.009). Additionally, 
higher model-based estimate of near-roadway (freeways, 
highways and large surface streets) NOx was associated 
with deficits in FEV1 and FVC (P=0.005 and 0.048, 
respectively) (13). Consistent with our previous findings, 
near-roadway NOx and regional air pollutants (O3, PM2.5, 
PM10 and NO2) had independent inverse association with 
deficits in FEV1 and FVC. There was an evidence that 
associations between residential near-roadway NOx and 
deficits in FEV1 and FVC might be modified by parental 
stress (both interaction P<0.01) (47). Significant inverse 
associations were only observed among children from  
high-stress households (parental PSS >4) after adjusting for 
log height and log height squared, BMI and BMI squared, 
age, sex, race/ethnicity, community, respiratory illness on 
the day of the test and field technician, but not among 
children from low-stress households (parental PSS ≤4). 
However, no interactions were found for air pollution with 
sex and asthma status.

Air pollution and airway inflammation

Airway inflammation is a potential mechanism underlying 
the effects of air pollution on asthma exacerbations (48). 
The exhaled nitric oxide fraction (FeNO) is a noninvasive 
marker of aspects of airway inflammation that has been 
developed and validated in the past decade (49,50). 
Children with FeNO in the highest quartile at the start 
of follow-up (>14.8 ppb at 50 mL/s) had more than a 
2-fold increased risk of new-onset asthma compared to 
children with FeNO in the lowest quartile (<7.8 ppb at  
50 mL/s) after adjusting for race/ethnicity, lifetime wheeze 
and community with baseline strata for age and sex (HR, 
2.1; 95% CI: 1.3-3.5) (51). In the CHS, both regional air 
pollution and traffic-related pollution were associated with 
higher FeNO. Among children ages 7 to 11 years old, daily 
24-h cumulative lagged averages of PM2.5 (over 1-8 days),  
PM10 (over 1-7 days) and O3 (over 1-23 days) were 
significantly associated with 17.4% (P<0.01), 9.3% (P<0.05) 
and 14.3% (P<0.01) higher FeNO levels over the IQR  
(7.5 µg/m3, 12.97 µg/m3, and 15.42 ppb for PM2.5, PM10, 
and O3, respectively) of each pollutant, respectively, after 
adjusting for age, sex, race/ethnicity, community, asthma, 
asthma medication use, history of respiratory allergy, time 
of FeNO collection, BMI, secondhand tobacco smoke, 
parental education, language of the questionnaire (English/
Spanish), season and whether FeNO testing was conducted 

outdoors (16). These associations did not significantly vary 
by sex, asthma, and respiratory allergy status. However, 
results suggested that the effects of air pollutants were 
relatively larger in the warm season compared to the cold 
season. Longitudinal analysis showed increases of long-term 
(annual average) exposures of NO2 and PM2.5 (scaled to 
IQR of 1.8 ppb and 2.4 µg/m3, respectively) were associated 
with 2.29 ppb (P=0.02) and 4.94 ppb (P=0.005) increase 
in FeNO after adjusting for age, sex, race/ethnicity, asthma, 
asthma-medication use, history of respiratory allergy, day 
of FeNO collection, season, and short-term (lags of up to  
60 days prior to the day of FeNO test) effects of the same air 
pollutant (52).

From a set of traffic-related pollution metrics, only the 
length of road in a circular buffer around the residence 
was found to be positively associated with FeNO (15). This 
association was restricted to children with asthma, and was 
strongest in the 50 m buffer, the smallest buffer considered. 
Specifically, a 100 m increase in the length of road in a 50 m 
buffer around subject’s home was associated with a 46.7% 
(95% CI: 14.3-88.4%) higher FeNO in children with asthma 
and 0.2% lower (95% CI: −5.5-5.3%) FeNO in children 
without asthma after adjusting for age, sex, race/ethnicity, 
community, asthma, asthma-medication use, rhinitis history, 
BMI percentile, secondhand tobacco smoke, parental 
education, month and hour of FeNO collection and outdoor 
testing. Our future work will investigate the longitudinal 
relationships between traffic-related pollutions and FeNO, as 
well as whether FeNO influences the relationship between air 
pollution and asthma incidence. 

Genetic susceptibility and gene-environmental interaction

In the past 10 years, the CHS has revealed a great amount 
of evidence for genetic influence on the association 
between air pollution and respiratory illness (Table S1). 
The associated genes include GSTs (encoded by GSTM1, 
GSTP1, and GSTT1), microsomal epoxide hydrolase 
(EPHX1), catalase (CAT), myeloperoxidase (MPO), heme 
oxygenase 1 (HMOX-1), tumor necrosis factor (TNF), 
arginases (encoded by ARG1 and ARG2 genes), inducible 
nitric oxide synthase (iNOS, encoded by NOS2), and 
transforming growth factor β1 (TGFβ1). 

Incomplete combustions from smoking and fossil fuels 
contain high levels of polyaromatic hydrocarbons (PAHs), 
which can lead to oxidative stress and has been shown to 
relate to asthma and wheeze (53-55). Thus, genes involved 
in xenobiotic-induced oxidative stress were of great interest. 
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GSTM1 null and GSTP1 (rs1695) A/A genotype were shown to 
enhance nasal allergic responses with increased IgE levels (56).  
In the CHS (Table S1), GSTP1 rs1695-G and the upstream 
promoter single-nucleotide polymorphism (SNP) 
rs6591255-A allele were both associated with increased 
occurrences of lifetime asthma and wheezing (25,57). 
There was a significant interaction between in utero 
exposure to maternal smoking and rs1695 genotype on the 
association with wheeze (25). Compared to children with 
no exposure and rs1695 A/A genotype, children exposed to 
in utero maternal smoking and having rs1695 A/G or G/G 
genotypes had a 2-fold increased risk of early-onset asthma, 
current wheezing and medication use for wheeze after 
adjusting for age, sex, ethnicity, community, gestational age, 
and secondhand tobacco smoke (OR, 2.0; 95% CI: 1.1-3.3; 
OR, 1.9; 95% CI: 1.3-2.6); and OR, 1.9; 95% CI: 1.2-2.8, 
respectively). In contrast, children carrying rs1695 A/G or 
G/G genotypes was found to be associated with 40% lower 
risk of new onset asthma compared to children with rs1695 
A/A genotype after adjusting for ethnicity and community 
(HR, 0.6; 95% CI: 0.4-0.8) (27). The opposite direction of 
associations between rs1695 genotype with wheezing and 
asthma incidence suggests rs1695 might have pleiotropic 
effect on asthma traits.

EPHX1 is also involved in the xenobiotic metabolism, 
but less studied. We found EPHX1 SNPs rs1051740 and 
rs2234922 were associated with several asthma outcomes (57)  
(Table S1). After adjustment for age, sex, race/ethnicity, 
in utero maternal smoking, number of smokers at home, 
community, parental education, health insurance and 
parental history of asthma, children with rs1051740 C/C  
genotype had a 49% reduced risk of late onset asthma (OR, 
0.51; 95% CI: 0.29-0.88) compared to children with T/T  
genotype. Children with rs2234922 A/G genotype had 
42% (OR, 1.42; 95% CI: 1.14-1.76); 45% (OR, 1.45; 95% 
CI: 1.12-1.89) and 58% (OR, 1.58; 95% CI: 1.19-2.10)  
increases of lifetime, current and late onset asthma 
compared to children with A/G genotype. The association 
between EPHX1 phenotypes and the risk of asthma varied 
by the GSTP1 rs1695 genotype and residential proximity to 
a major road. Among children with rs1695 G/G genotype, 
those had high EPHX1 activity phenotypes were of a 4-fold 
increased risk of lifetime asthma compared to children with 
low/intermediate EPHX1 activity phenotypes (OR, 4.0; 
95% CI: 1.97-8.16). This association was not significant 
among children with rs1695 A/A or A/G genotypes. 
Association between high EPHX1 activity and the increased 
risk of lifetime asthma was also found among children who 

lived within 75 m of a major road. Children having high 
EPHX1 activity phenotype and rs1695 G/G genotype who 
lived within 75 m of a major road had a 9-fold increased 
asthma risk compared to those having low/intermediate 
EPHX1 activity and rs1695 A/A or A/G genotypes, and 
living more than 75 m of a major road (OR, 8.91; 95% 
CI: 2.40-33.12). No significant association was found for 
children living at least 75 m far from a major road. 

For lung function, variation in the GST mu family 
(GSTM2-5) locus was found to be associated with lower 
FEV1 and MMEF (26) (Table S1). Two haplotypes of 
GSTM2 (one showed risk effect and one showed protective 
effect) were significantly associated with 8-year growth of 
FEV1 and FVC after adjusting for height, height squared, 
BMI, BMI squared, current asthma status, exercise or 
respiratory illness on the day of the test, any tobacco 
smoking by the child in the last year, GSTM1 null genotype, 
and field technician (all P<0.02). Significant associations 
were only found among children exposed to in utero 
maternal smoking. One haplotype of GSTM3 was associated 
with slower growth of MMEF compared with children with 
other haplotypes (P=0.002). One haplotype of GSTM4 was 
associated with decreased growth in FEV1 (P=0.01), FVC 
(P=0.03), and MMEF (P=0.05) from age 10 to 18. For 
respiratory illness-related absences, minor alleles in SNPs of 
GSTP1 including rs6591255-A, rs1695-G, and rs749174-T 
were associated with a protective effect for respiratory 
illness-related absences after adjusting for age, sex, race, 
community, asthma status, family income, health insurance, 
secondhand tobacco smoke, in utero maternal smoking, and 
BMI (OR, 0.61; 95% CI: 0.43-0.87 for Hispanic White; and 
OR, 0.86; 95% CI: 0.71-1.04) for non-Hispanic White) (58). 
Additionally, the protective effect was restricted among 
children unexposed to in utero maternal smoking.

Catalase (encoded by CAT), myeloperoxidase (encoded 
by MPO), and heme oxygenase (encoded by HMOX-1)  
are enzymes in the oxidative stress defense pathway 
(59,60). Among children in the CHS (Table S1), we found 
there was an epistatic interaction of CAT (rs1001179) and 
MPO (rs2333227) for their association with respiratory-
related school absences after adjusting for age, sex, race, 
community, family income, health insurance, secondhand 
tobacco smoke, in utero maternal smoking, BMI, cat or 
dog ownership, and asthma status (61). Children had CAT 
(rs1001179) G/G genotype and at least one A allele of MPO 
(rs2333227) had 35% higher risk of respiratory-related 
school absences compared to children with CAT (rs1001179) 
G/G genotype and MPO (rs2333227) G/G genotype (OR, 
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1.35; 95% CI: 1.03-1.77). The epistatic interaction was 
significant among children living in communities with high 
O3 level, but was not evident in communities with low O3 
level. The number of (GT)n repeats of the HMOX-1 gene 
showed a bimodal distribution with two peaks being 23 and 
30 repeats among Hispanics and non-Hispanic whites (22). 
Among non-Hispanic whites, children carrying at least one 
HMOX-1 “short” alleles (<23 repeats) were associated with 
36% lower risk of new-onset asthma compared to children 
who had no “short” allele controlling for communities 
with age- and sex-specific baseline hazard (HR, 0.64; 95% 
CI: 0.41-0.99) (22). This association was differentiated by 
ambient ozone level (interaction P=0.003). Children having 
at least one “short” allele of HMOX-1 and residing in the 
low ozone communities had 56% lower risk of asthma 
incidence than those having no “short” allele of HMOX-1  
and living in the low O3 communities (HR, 0.44; 95% CI: 
0.23-0.83). No significant association between HMOX-1  
and asthma risk was found among Hispanics, suggesting 
differential asthma risk of this genetic variant by race/
ethnicity.

TNF mediates asthma occurrence by initiating airway 
inflammation and generating airway hyperreactivity (62-64). 
We previously found DNA sequence variant in rs1800629 
modified the association between secondhand smoking 
and risk of respiratory illness-related school absences (65). 
In the following work, we found more direct associations 
between TNF variant and respiratory illness (Table S1). 
Among children of age 8-11 years old, rs1800629 G/G  
genotype was associated with 20-30% reduced risk of 
lifetime asthma (OR, 0.8; 95% CI: 0.7-0.9), life-time 
(OR, 0.8; 95% CI: 0.7-0.9) and current wheezing (OR, 
0.7; 95% CI: 0.6-0.9), and medication for wheezing (OR, 
0.7; 95% CI: 0.5-0.8) compared to G/A or A/A genotypes 
after adjusting for age, sex, race/ethnicity, town, lifetime 
residence, grade, secondhand tobacco smoke, and in utero  
maternal smoking (66). The protective effects of the G/G  
genotype on ever wheezing, current wheezing and 
medication use for wheeze were two times larger in 
magnitude for children who lived in low ozone (annual 
average <50 ppb) communities compared to others who 
lived in high ozone (annual average ≥50 ppb) communities 
(all interaction P<0.04). No significant interaction was found 
for rs1800629 with ozone for the association with asthma 
prevalence. The difference in the rs1800629 G/G genotype 
effect between low and high ozone exposure was stronger 
in the GSTM1 null compared with the GSTM1 present 
group. Similarly, the difference in the protective effect of 

rs1800629 G/G genotype between low and high ozone 
exposure was larger among children with GSTP1 (rs1695) 
A/A genotype than children with rs1695 A/G or G/G  
genotypes. The interaction between the rs1800629 G/G  
genotype and O3 was also found in the association with 
bronchitic symptoms among asthmatic children (29). The 
rs1800629 G/G genotype was associated with 47% reduced 
risk of bronchitic symptoms for asthmatic children who 
were exposed to low ambient O3 after adjusting for age, 
sex, ethnicity, grade, secondhand tobacco smoke, lifetime 
residence, and community (OR, 0.53; 95% CI: 0.31-0.91). 
The protective effect was not found among children living 
in high O3 communities. 

Arginases play an important role in asthma pathogenesis 
through nitrosative stress-mediated airway inflammation 
(64,67-69). CHS results showed both ARG1 and ARG2 were 
globally associated with asthma prevalence (28) (Table S1).  
Compared to the most common ARG1 haplotype that 
carried the wild-type allele for seven tagged SNPs, 
one ARG1 haplotype carrying the variant allele (T) for 
rs2749935 was associated with a 45% reduced risk of asthma 
after adjusting for age, sex, ethnicity, child’s atopic status, 
parental history of asthma, parental education, secondhand 
tobacco smoke, in utero  maternal smoking, health 
insurance, and community (OR, 0.55; 95% CI: 0.36-0.84).  
Each variant allele (G) of ARG2 SNP rs3742879 was 
associated with a 31% increase in asthma risk (OR, 1.35; 
95% CI: 1.04-1.76). Atopy and ambient O3 modified the 
association between one ARG1 haplotype and the risk of 
asthma (interaction P=0.04 and 0.02, respectively). This 
particular ARG1 haplotype was associated with reduced 
asthma risk among atopic children or children living in high 
O3 communities, but was not associated among non-atopic 
children or children living in communities with low level 
of O3. No significant interactions were found for ARG2 
haplotypes or SNPs with atopy and O3 in the association 
with asthma risk. In addition to the observed associations 
for genetic variations of ARG, epigenetic variations in ARG 
were also investigated for its role in modulating FeNO levels 
in children. In the CHS, DNA methylation in ARG2 was 
significantly associated with airway inflammation among 
children with mean age of 9 years old (70). A 1% increase 
in average DNA methylation of ARG2 was associated with 
a 2.3% (95% CI: −4.0% to −0.6%) decrease in FeNO after 
adjusting for age, sex, race, plate, town, month of DNA 
collection, asthma medication use, and parental education. 
This association was more striking among asthmatic children 
than children without asthma (interaction P=0.01). A similar 
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interaction was also found for ARG1, though little association 
existed between DNA methylation of ARG1 and FeNO.

Another gene involved in the nitrosative stress is 
NOS2, which produces NO in response to environmental 
stimuli (71-74). CHS results showed seven SNPs in the 
promoter region of NOS2 were globally associated with an 
increased risk of new-onset asthma (P=0.002) and a lower 
growth of FEV1 (P=0.02) (75) (Table S1). Further analysis 
indicated that a pair of “yin-yang” haplotypes of these 
seven SNPs contributed to the association. One copy of 
the “yin” haplotype (h0111101) was associated with a 49% 
increased risk of new-onset asthma compared with children 
without this haplotype controlling for communities with 
age- and sex-specific baseline hazard (HR, 1.49; 95% CI: 
1.03-2.14), and this association was dose-dependent. In 
contrast, the “yang” (h1000010) haplotype was associated 
with 34% (HR, 0.66; 95% CI: 0.49-0.88) reduced risk of 
new-onset asthma and 48.9 mL (95% CI: 11.6-86.2 mL) 
higher 8-year FEV1 growth. Interestingly, the increased 
risk of new-onset asthma for the “yin” haplotype was only 
found among children who had GSTM1 null genotype 
(interaction P=0.002). However, the protective effect of the 
“yang” haplotype did not vary by the GSTM1 genotype. To 
investigate NOS2 associations with airway inflammations, 
we found PM2.5, DNA methylation in iNOS were jointly 
associated with FeNO after adjusting for age, sex, ethnicity, 
asthma, respiratory allergy, parental education, community, 
month of FeNO collection, NOS2 promoter haplotypes and 
experimental plate (76). Among children at the highest 10th 
percentile of iNOS methylation (>56.6%), higher ambient 
PM2.5 was associated with higher FeNO (P=0.0002); whereas 
such an association was not significant among children at 
lower methylation levels.

Because TGF-β1 is involved in airway inflammation 
(77 ,78 )  and  remode l ing  (79 ,80 ) ,  the  func t iona l 
polymorphisms in the TGFB1 gene may play a role in 
asthma occurrence. We found children with the SNP 
rs4803457 T/T genotype had a 1.8-fold increased risk of 
early persistent asthma (asthma as diagnosis before age 
3 years with at least one episode of wheeze or asthma 
medication use after starting first grade) compared to 
children with C/C or C/T genotypes after adjusting for 
age, sex, ethnicity, atopic status, parental history of asthma, 
family income, parental education, in utero maternal 
smoking, number of smokers at home, insurance, and 
community (OR, 1.81; 95% CI: 1.11-2.95) (81) (Table S1). 
This association was varied by the residential proximity 
to a freeway (interaction P=0.02). The T/T genotype was 

associated with more than 3-fold increased risk of lifetime 
asthma among children living within 500 m of a freeway. 
However, such an association was not significant among 
children who lived more than 500 m from a freeway.  
In utero exposure to maternal smoking was previously 
found to be associated with higher risk of asthma (82). We 
additionally found such an association can vary by TGFB1 
genotypes (interaction P=0.1) (81). The association between 
in utero exposure to maternal smoking and increased risk of 
early persistent asthma was only observed among children 
with T/T genotype (OR, 3.15; 95% CI: 0.81-12.26), but 
not among children with C/C or C/T genotypes (OR, 0.97; 
95% CI: 0.57-1.66). 

Discussion

Although air pollution levels have decreased over the last 
decades (Figure 1), the CHS found both regional and 
traffic-related pollutants are associated with increased 
asthma prevalence and new-onset asthma, increased risk of 
both chronic and acute respiratory symptoms for children 
with asthma, slower lung function development, and higher 
airway inflammation. Effects of traffic-related pollutions 
are independent of effects of regional pollutions. The 
mechanisms underlying the observed associations may 
involve multiple genetic influences, gene-environmental 
interactions, and the interactions between air pollution 
and other exposures such as in utero maternal smoking and 
parental stress. 

The CHS results provide evidence that air pollution is a 
major challenge to public health with respect to childhood 
respiratory illnesses, especially for countries whose air 
quality is worse than in the United States. Substantial 
lifelong adverse effects are a real threat if children’s 
exposures are not reduced. Many approaches can be applied 
to reduce air pollution exposures including both primary 
and secondary strategies (30). 

“Primary strategies” which reduce the release of air 
pollutants are critical for the reduction of regional ambient 
air pollution levels and local traffic-related pollutant levels. 
Such strategies require the stringent control of automobile 
and truck emissions. Even under current regulatory levels 
of air pollutants, adverse effects of air pollution occur for 
many respiratory illnesses including asthma, low lung 
function growth, and airway inflammation. These results 
suggest stricter regulatory standards are needed to prevent 
adverse health outcomes in the US, Europe and other 
developed nations. Additional pollutants which are not 
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Figure 1 Regional air pollution trends from year 1992 to year 2010 in 16 Southern California communities from the Children’s Health 
Study. Four air pollutants levels are presented: (A) NO2; (B) O3; (C) PM2.5; and (D) PM10. Town names represented by the town code: 
1, Alpine; 2, Lake Elsinore; 3, Lake Gregory; 4, Lancaster; 5, Lompoc; 6, Long Beach; 7, Mira Loma; 8, Riverside; 9, San Dimas; 10, 
Atascadero; 11, Santa Maria; 12, Upland; 13, Glendora; 14, Anaheim; 15, San Bernardino; 16, Santa Barbara. 

included in the current standard need to be targeted in the 
future based on the growing knowledge of their detrimental 
impact on public health, including ultrafine particles and 
PAHs. Traffic-related pollutions are major risk factors, but 
there are no federal regulatory standards for traffic-related 
pollutions as for regional air pollutions by NAAQS that 
was put in place as mandated by the 1970s Clean Air Act. 
Regulation of traffic-related pollutants would be appropriate 
to protect children’s respiratory health. 

Given the limitations in the current regulations and 
the long time necessary to revise regulations, “secondary 
strategies” to reduce exposure or to decrease personal 
susceptibility may also be required. Such strategies could 
include citing schools and parks away from roads with 
high traffic volumes; issuing warnings to the public with 
recommendations for reducing outdoor activity on high 
pollution days; and minimizing commuting time on roads 
especially for school commutes. 

The strengths of CHS are the long-term, prospective 
follow-up of five large cohorts of children, with exposure 
and outcome data collected consistently. We have used 

central air monitors to measure regional pollution, 
and different traffic metrics to estimate traffic-related 
pollutions. Target genes, GWAS, and DNA methylation 
data are available for assessing the genetic and epigenetic 
associations with respiratory health outcomes. 

However, we acknowledge that some challenges exist for 
our future studies. First, although different air pollution 
exposure models such as dispersion model and land use 
regression models, and air monitors have been used to 
estimate and measure ambient and traffic-related pollutions, 
incorporating activity patterns in time and space (home, 
school, commute, and workplace) (11) in estimating risk 
estimate remains a challenge particularly for investigating 
chronic health effects where personal monitoring (especially 
in children) is infeasible. Second, identification of the factors 
involved in asthma etiology has remained a big challenge 
because of complex interplay between environmental and 
genetic factors. While candidate gene approach has showed 
promising interactive effects of ambient air and traffic-
related pollution on respiratory health, GWAS efforts has 
not yielded new susceptibility loci for air pollution mediated 
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effects. Additionally, much of the variability of asthma 
cannot be explained by known asthma-related SNPs. Third, 
use of epigenetics as a mediating factor of ambient air and 
traffic-related pollution with health outcomes has received 
interest in scientific community, but there are challenges 
ahead with evaluating pollution effects in biological samples 
with mixed cell populations from surrogate tissues (rather 
than the tissue of interest, lung or airway in this instance, 
which is infeasible in children or in population-based 
study), and that epigenetic variation occurring with short-
term exposure making it difficult to use these variations for 
long-term effects.

In conclusion, air pollution has important adverse effects 
on respiratory illnesses, which may be mediated in part by 
genes, tobacco smoke exposures and parental stress. Future 
research is warranted to better define the long-term effects 
of air pollution including the relationship between early 
life exposure to air pollution and health outcomes after 
into adulthood. Individual interventions based on personal 
susceptibility may be needed to efficiently prevent adverse 
effects attributable to air pollution while control measures 
are being implemented. Lastly, more aggressive air 
pollution regulations are needed to achieve improved public 
health benefits for future generations of children.
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