

The impact of beta-blocker use on postoperative atrial fibrillation after aortic valve replacement

Sue Hyun Kim¹, Ho Young Hwang¹, Jae Woong Choi¹, Myoung-Jin Jang², Kyung Hwan Kim¹, Ki-Bong Kim¹

¹Department of Thoracic and Cardiovascular Surgery, ²Medical Research Collaborating Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea

Contributions: (I) Conception and design: SH Kim, HY Hwang; (II) Administrative support: HY Hwang; (III) Provision of study materials or patients: HY Hwang, JW Choi, KH Kim, KB Kim; (IV) Collection and assembly of data: SH Kim, JW Choi, KH Kim, KB Kim; (V) Data analysis and interpretation: SH Kim, MJ Jang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

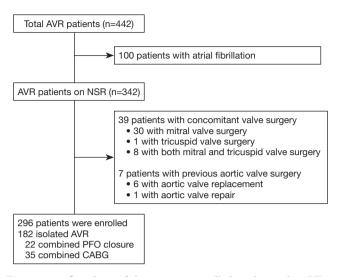
Correspondence to: Ho Young Hwang, MD, PhD. Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea. Email: scalpel@hanmail.net.

Background: Current guidelines recommend perioperative use of beta-blocker (BB) in patients undergoing cardiac surgery to prevent postoperative atrial fibrillation (POAF). However, this recommendation is mainly based on studies those exclusively enrolled patients undergoing coronary artery bypass grafting. This study was conducted to evaluate the impact of perioperative BB use on the occurrence of POAF after aortic valve replacement (AVR).

Methods: From January 2015 to June 2018, 296 patients (male: female = 163:133) who underwent AVR at our institution were retrospectively reviewed. Patients who underwent concomitant valve surgery other than AVR or patients with preoperative arrhythmia were excluded. Mean age at the operation was 67±12 years. All patients were continuously tele-monitored for the occurrence of AF until discharge. Occurrence of any short runs of AF during the hospital stay was treated as POAF. Early outcomes were evaluated and perioperative factors associated with POAF were analyzed using a multivariable logistic regression model.

Results: Early mortality rate was 3.7% (11 of 296 patients). The POAF occurred in 154 patients (52.0%). Univariate analyses demonstrated that postoperative use of BB as well as age, type of prosthesis, history of stroke, body surface area, and chronic kidney disease were associated with the occurrence of POAF. The multivariable model showed that postoperative use of BB within 24 hours after AVR was a preventive factor of POAF (odds ratio, 0.354; 95% CI, 0.163 to 0.770; P=0.009).

Conclusions: Postoperative use of BB within 24 hours after AVR rather than preoperative use might be effective in prevention of POAF.


Keywords: Aortic valve replacement (AVR); beta-blocker (BB); atrial fibrillation (AF)

Submitted Jan 10, 2020. Accepted for publication Feb 24, 2020. doi: 10.21037/jtd.2020.03.30 **View this article at:** http://dx.doi.org/10.21037/jtd.2020.03.30

Introduction

Postoperative atrial fibrillation (POAF) is the most common complication after cardiac surgery with the reported incidence from 20% to 50%, depending on the type of surgery, definition and the diagnostic tools (1-4). The POAF is associated with increased risks of morbidity and mortality from hemodynamic instability, heart failure, thromboembolism and bleeding from anticoagulation (1-4). The pathophysiologic mechanisms of POAF have been considered to be multi-factorial. These included postoperative inflammatory reaction, surge of catecholamines, imbalance of autonomic nervous system, changes in intravascular volume status and substrates

2546

Figure 1 A flowchart of the patients enrolled in the study. AVR, aortic valve replacement; ECG, electrocardiogram.

created by surgical procedure itself such as alterations in cardiac structures and perioperative ischemia (5-10).

Previous studies have evaluated the effect of different pharmacologic and non-pharmacologic interventions to prevent POAF after cardiac surgery. Among them, perioperative use of anti-arrhythmic drugs or a betablocker (BB) have been reported to be helpful (1-4,7). Current European guidelines on the prevention of POAF after cardiac surgery recommended perioperative use of BB as a class I recommendation with a level of evidence B (4). However, this recommendation is mainly based on studies those exclusively enrolled patients undergoing coronary artery bypass grafting (CABG) (11,12). Therefore, current American guidelines recommend perioperative administration of BB to prevent POAF for CABG patients but not for overall cardiac surgical patients (2,13).

This study was conducted to evaluate the impact of perioperative BB use on the occurrence of POAF after aortic valve replacement (AVR).

Methods

Patient characteristics

The study protocol was reviewed by the Institutional Review Board and approved as a minimal risk retrospective study (approval number: H-1812-149-997) that did not require individual consent based on the institutional guidelines for waiving consent. Four hundred forty two

Kim et al. The impact of BB use on POAF after AVR

patients who underwent AVR between January 2015 and June 2018 at our institution were retrospectively screened. Patients who underwent concomitant valve surgery other than AVR, who had preoperative arrhythmia and those with history of previous aortic valve surgery were excluded and 296 patients were enrolled in the present study (*Figure 1*). Mean age at the operation was 67.2 ± 11.7 years, and 163 patients (55.1%) were male. The EuroSCORE II and STS scores were 2.97 ± 3.10 and 2.88 ± 3.28 , respectively. Etiology of AV disease was degenerative, bicuspid, rheumatic and others in 129 (43.6%), 135 (45.6%), 11 (3.7%) and 21 (7.1%) patients, respectively (*Table 1*).

Surgical procedures

All operations were performed through median sternotomy and aorto-bicaval cannulation. Mechanical valves and bioprostheses were used in 71 (24.0%) and 225 (76.0%) patients, respectively. Concomitant procedures included CABG (n=35), replacement of the ascending aorta (n=71), replacement of total arch (n=2), closure of patent foramen ovale (n=22) and closure of ventricular septal defect (n=1). Mean cardiopulmonary bypass and aortic cross-clamp times were 179±110 and 111±41 minutes, respectively (*Table 2*).

Perioperative medications

BBs were used in preoperative, postoperative (<24 hours after surgery) and both pre- and postoperative periods in 90, 37 and 14 patients, respectively. Non-dihydropyridine calcium channel blockers and statins were administered at preoperative period in 16 (5.4%) and 145 (49.0%) patients, respectively (*Table 3*).

Evaluation of the clinical outcomes

Early mortality was defined as any death within 30 days or during the same hospitalization. All patients were continuously monitored to detect the occurrence of any arrhythmia using five-lead cardiac telemetry until the day of discharge. The occurrence of any short runs of AF was considered as POAF.

Statistical analysis

The statistical analyses were performed using the IBM SPSS (Version 23.0, IBM Corporation, Armonk, NY, USA) and the SAS software package (Version 9.4, SAS Institute,

Journal of Thoracic Disease, Vol 12, No 5 May 2020

Table 1 Study characteristics

Variables	Total (n=296)		
Age, years	67.2±11.7		
Male/female	163/133		
Body surface area, m ²	1.64±0.18		
Overweight (BMI >25 kg/m²)	97 (32.8)		
Risk factors			
Smoking	64 (21.6)		
Hypertension	154 (52.0)		
Diabetes mellitus	72 (24.3)		
Dyslipidemia	87 (29.4)		
History of stroke	31 (10.5)		
Chronic kidney disease (GFR <60 mL/min)	69 (23.3)		
ESRD on dialysis	13 (4.4)		
COPD	12 (4.1)		
Peripheral vascular disease	18 (6.1)		
NYHA class ≥3	52 (17.6)		
LV dysfunction (ejection fraction <0.50)	36 (12.2)		
Coronary artery disease	84 (28.4)		
EuroSCORE II	2.97±3.10		
STS score	2.88±3.28		
Etiology of aortic valve disease			
Rheumatic	11 (3.7)		
Degenerative	129 (43.6)		
Bicuspid	135 (45.6)		
Others	21 (7.1)		

Values are n (%) or mean ± SD. BMI, body mass index; COPD, chronic obstructive pulmonary disease; ESRD, end-stage renal disease; EuroSCORE, European System for Cardiac Operative Risk Evaluation; GFR, glomerular filtration rate; LV, left ventricle; NYHA, New York Heart Association; STS, The Society of Thoracic Surgeons.

Cary, NC, USA). Continuous and dichotomous variables were expressed as mean ± standard deviation and number with proportion, respectively. Factors associated with the occurrence of POAF were analyzed; Variables with a P value <0.050 in univariate logistic regression analyses were entered into a multivariable logistic regression model. Multi-collinearity was controlled using the backwards stepwise selection. Results of the multivariable analysis were expressed as P value, odd ratio (OR) and its 95% confidence interval (CI). A P value <0.050 was considered to be statistically significant.

To confirm the impact of BB use on POAF, a propensity score matching (PSM) was also performed by including all preoperative variables. With the use of the caliper-matching method, pairs of patients were matched using a nearest neighborhood (greedy matching) within a caliper width of 0.1 in propensity scores, with a ratio of 1:1. Comparison between the two groups was performed using the χ^2 test or Fisher exact test for categorical variables and Student *t*-test for continuous variables. For the comparison of categorical and continuous variables between the matched group patients, the McNemar test and paired Student *t*-test were used. The balance of covariates between the two groups was evaluated with standardized mean differences (SMD).

Results

Early clinical outcomes

The early mortality rate was 3.7% (11 of 296 patients). The causes of death were low cardiac output syndrome (LCOS) (n=4), sepsis (n=3), acute bowel ischemia (n=3) and mediastinitis (n=1). The postoperative complications included LCOS (n=15, 5.1%), respiratory complications (n=22, 7.4%), bleeding reoperation (n=10, 3.4%), acute renal failure (n=21, 7.1%) and stroke (n=5, 1.7%). Six patients suffered from complete atrioventricular block after surgery and two of six patients needed permanent pacemaker implantation (*Table 4*).

POAF events and risk factor analysis

The POAF occurred in 154 patients (52.0%) at mean 2.8±1.8 days (range, 0 to 13) after surgery. Univariate analyses demonstrated that postoperative BB use (<24 hours) regardless of preoperative use (n=37) was significantly associated with a reduction of the occurrence of POAF (OR, 0.343; 95% CI, 0.163 to 0.724; P=0.005), whereas class of BB (OR, 0.997; 95% CI, 0.530 to 1.872; P=0.991) or preoperative BB use showed no significant association with POAF (OR, 0.949; 95% CI, 0.578 to 1.557; P=0.835). Other factors associated with the occurrence of POAF included age, history of stroke, type of aortic prosthesis, chronic kidney disease and body surface area. The multivariable logistic regression model showed that postoperative BB use within 24 hours after surgery was a

Table 2 Operative data of the study patients

Variables	Total (n=296)
CPB time, minutes	179±110
ACC time, minutes	111±41
Type of AVR	
Mechanical valve	71 (24.0)
Bioprosthesis	225 (76.0)
Concomitant procedures	
Replacement of the aorta	73 (24.7)
Ascending aorta	71 (24.0)
Total arch	2 (0.7)
CABG	35 (11.8)
PFO closure	22 (7.4)
VSD closure	1 (0.3)

Values are n (%) or mean ± SD. ACC, aortic cross clamp; CABG, coronary artery bypass grafting; CPB, cardiopulmonary bypass; PFO, patent foramen ovale; VSD, ventricular septal defect.

Table 3 Perioperative medications

preventive factor of POAF (OR, 0.354; 95% CI, 0.163 to 0.770; P=0.009). Age was also significantly associated with the occurrence of POAF (OR, 1.056; 95% CI, 1.032 to 1.081; P<0.001) (*Table 5*).

When the patients were grouped according to the postoperative BB use, BB use group had more patients with high body surface area and overweight than did non-BB use group. The preoperative New York Heart Association functional class was worse in non-BB use group than in BB use group. After PSM, no preoperative factor was significantly different between the two groups, but the occurrence rate of POAF was still lower in the BB use group compared to non-BB use group (29.7% vs. 4.1%, P=0.039, Table 6).

Discussion

This study demonstrated that postoperative use of BB within 24 hours after AVR rather than preoperative use are effective in prevention of POAF.

Variables	Total (n=296), n (%)	Dosage (mg), median (range	
Types of BB use	180 (60.8)		
Nonselective agents			
Carvedilol	54 (30.0)	12.5 (3.0–25.0)	
Propranolol	3 (1.7)	20.0 (20.0–40.0)	
β_1 -selective agents			
Bisoprolol	100 (55.6)	2.5 (1.25–5.0)	
Nebivolol	17 (9.4)	2.5 (1.25–5.0)	
Atenolol	5 (2.8)	50 (25.0–50.0)	
Betaxolol	1 (0.6)	10	
Fiming of BB use			
Preoperative BB use	90 (30.4)		
Postoperative BB use (<24 hours after AVR)	37 (12.5)		
Both preoperative and postoperative BB use	14 (4.7)		
Other preoperative medications			
Non-dihydropyridine CCBs	16 (5.4)		
Statins	145 (49.0)		

Values are n (%). AVR, aortic valve replacement; BB, beta-blocker; CCB, calcium channel blocker.

The POAF is one of the most common complications after cardiac surgery with an incidence ranging from 20% to 50%. It usually develops between 2 to 4 postoperative days with a peak incidence on the second postoperative day (1-4,14,15). Despite the transient and self-limiting nature of most episodes of POAF, it is an independent predictor of worse outcomes after cardiac surgery, including a 2- to 4-fold increase in stroke and a 2-fold increase in 30-day and 6-month mortalities (1,3,15-17).

Table 4 Early clinical outcomes

Variables	Total (n=296)		
Early mortality	11 (3.7)		
New onset atrial fibrillation	154 (52.0)		
Other postoperative complications			
Low cardiac output syndrome	15 (5.1)		
Respiratory complication	22 (7.4)		
Bleeding reoperation	10 (3.4)		
Acute renal failure	21 (7.1)		
Complete atrioventricular block	6 (2.0)		
Stroke	5 (1.7)		
Mediastinitis	4 (1.4)		

Table 5 Risk factor analysis for the occurrence of POAF

Current European guidelines recommend the perioperative use of oral BB for the prevention of POAF after cardiac surgery as a class I recommendation with a level of evidence B (4). However, this recommendation was based on meta-analyses in which, most of the included studies were exclusively enrolling patients who underwent isolated CABG rather than overall cardiac surgery (11,12). On the contrary, current American guidelines recommend that BB should be administered for at least 24 hours before surgery and reinstituted as soon as possible after surgery in patients who underwent CABG (13). However, this recommendation was not generalized to the other cardiac surgical patients (2).

The present study was object to complete the lack of evidence for the routine application of perioperative BB to prevent POAF after cardiac surgery other than CABG. As the first step, patients who underwent AVR without any concomitant other valve surgery were analyzed in the present study. A recent study on patients who underwent AVR reported that preoperative BB use was an independent predictor of POAF after AVR (OR, 0.310; 95% CI, 0.119 to 0.809; P<0.05), and a combination of pre- and postoperative BB administration was even more effective. However, the study is limited due to the small number of study population (n=119) (18).

The incidence of POAF in the present study might be

	Univariate analysis		Multivariable analysis		
Variables	Odds ratio (95% Cl)	Р	Odds ratio (95% CI)	Р	
Age (years)	1.058 (1.034–1.083)	<0.001	1.056 (1.032–1.081)	<0.001	
History of stroke	2.463 (1.093–5.548)	0.030	2.144 (0.912–5.042)	0.080	
Type of prosthesis (bioprosthesis)	2.908 (1.656–5.107)	<0.001	-	-	
Chronic kidney disease (GFR <60 mL/min)	1.728 (0.995–3.002)	0.052	-	-	
Body surface area (m ²)	0.264 (0.074–0.948)	0.041	-	-	
Preoperative BB use	0.949 (0.578–1.557)	0.835	-	-	
Postoperative BB use*	0.343 (0.163–0.724)	0.005	0.354 (0.163–0.770)	0.009	
Both preoperative and postoperative use*	0.352 (0.108–1.149)	0.084	-	-	
Other preoperative medications					
Non-dihydropyridine CCBs	0.535 (0.189–1.512)	0.238	-	-	
Statins	1.428 (0.903–2.258)	0.127	-	-	

*, use of BB <24 hours after surgery. AVR, aortic valve replacement; BB, beta-blocker; CCB, calcium channel blocker; CI, confidence interval; GFR, glomerular filtration rate.

Table 6 Baseline characteristics and the occurrence rate of POAF for postoperative beta-blocker (BB) use group and non-BB use group

Table o Dasenne characterístics an	Table 6 Baseline characteristics and the occurrence rate of POAF for postoperative beta-blocker (BB) use group and non-BB use group All study patients Propensity score-matched patients						
Variables		Non-BB use (n=259)	Р	·	Non-BB use (n=37)	SMD	 Р
Age (years)	65.4±12.2	67.5±11.6	0.307	65.4±12.2	65.2±11.5	0.016	0.939
Sex (male)	21 (56.8)	142 (54.8)	0.825	21 (56.8)	19 (51.4)	0.109	0.617
Body surface area (m ²)	1.70±0.16	1.63±0.18	0.020	1.70±0.16	1.66±0.23	0.222	0.255
Overweight (BMI >25 kg/m²)	20 (54.1)	77 (29.7)	0.003	20 (54.1)	18 (48.6)	0.108	0.564
Risk factors, n (%)				(*)			
Smoking	9 (24.3)	55 (21.2)	0.669	9 (24.3)	7 (18.9)	0.132	0.527
Hypertension	22 (59.5)	132 (51.0)	0.333	22 (59.5)	23 (62.2)	-0.055	0.796
Diabetes mellitus	8 (21.6)	64 (24.7)	0.682	8 (21.6)	10 (27.0)	-0.126	0.617
Dyslipidemia	7 (18.9)	80 (30.9)	0.135	7 (18.9)	8 (21.6)	-0.067	0.739
History of stroke	3 (8.1)	28 (10.8)	0.779	3 (8.1)	3 (8.1)	0.000	>0.999
Chronic kidney disease (GFR <60 mL/min)	9 (24.3)	60 (23.2)	0.876	9 (24.3)	9 (24.3)	0.000	>0.999
ESRD on dialysis	0 (0.0)	13 (5.0)	0.163	0 (0.0)	0 (0.0)	0.000	>0.999
COPD	1 (2.7)	11 (4.2)	>0.999	1 (2.7)	2 (5.4)	-0.137	0.564
Peripheral vascular disease	3 (8.1)	15 (5.8)	0.480	3 (8.1)	6 (16.2)	-0.250	0.257
NYHA class ≥3	2 (5.4)	50 (19.3)	0.038	2 (5.4)	2 (5.4)	0.000	>0.999
LV dysfunction (EF <0.50)	3 (8.1)	33 (12.8)	0.593	3 (8.1)	4 (10.8)	-0.092	0.705
Coronary artery disease	11 (29.7)	73 (28.2)	0.845	11 (29.7)	11 (29.7)	0.000	>0.999
EuroSCORE II	2.60±3.06	3.02±3.11	0.449	2.60±3.06	2.36±2.32	0.088	0.694
STS score	2.23±2.71	2.98±3.36	0.250	2.23±2.71	2.09±1.85	0.060	0.697
Preoperative medications							
BBs	14 (37.8)	76 (29.3)	0.293	14 (37.8)	12 (32.4)	0.113	0.637
Calcium channel blockers	2 (5.4)	14 (5.4)	>0.999	2 (5.4)	3 (8.1)	-0.108	0.655
Statins	19 (51.4)	126 (48.6)	0.758	19 (51.4)	17 (45.9)	0.108	0.593
Etiology of aortic valve disease							
Rheumatic	1 (2.7)	10 (3.9)	>0.999	1 (2.7)	2 (5.4)	-0.137	0.564
Degenerative	16 (43.2)	113 (43.6)	0.965	16 (43.2)	16 (43.2)	0.000	>0.999
Bicuspid	16 (43.2)	119 (45.9)	0.758	16 (43.2)	13 (35.1)	0.167	0.467
Others	4 (10.8)	17 (6.6)	0.313	4 (10.8)	6 (16.2)	-0.159	0.527
POAF	11 (29.7)	143 (55.2)	0.004	11 (29.7)	20 (54.1)	-	0.039

Values are n (%) or mean ± SD. BMI, body mass index; COPD, chronic obstructive pulmonary disease; ESRD, end-stage renal disease; EuroSCORE, European System for Cardiac Operative Risk Evaluation; GFR, glomerular filtration rate; LV, left ventricle; NYHA, New York Heart Association; SMD, standardized mean difference; STS, The Society of Thoracic Surgeons.

Journal of Thoracic Disease, Vol 12, No 5 May 2020

relatively high compared to literature. Meticulous 24-hour monitoring of all patients until discharge might be the reason for this high incidence. Contrary to the relatively high rate of POAF, the early mortality rate of the present study was comparable to those reported by the STS National Cardiac Surgery Database (3.7% vs. 4.5%) (19). The present study showed that the postoperative BB use resulted in a 64% reduction of the occurrence of POAF, and the preventive effect was remained statistically significant in PSM analysis. This effect was in agreement with previous meta-analyses showing 56% to 61% risk reduction of POAF (20,21). The most effective timing of BB administration to prevent POAF after cardiac surgery is uncertain. A recent meta-analysis showed that perioperative BB had consistent protective effect in postoperative supraventricular arrhythmias, irrespective of the timing of administration (21), whereas another meta-analysis showed that postoperative initiation of BB prophylaxis resulted in a statistically significant reduction of POAF incidence by 50% (12). The present study also showed that the perioperative BB use might be most effective when it was administered within 24 hours after surgery, regardless of its use in the preoperative period; when multi-collinearity was controlled by stepwise regression model, only postoperative use of BB within 24 hours after AVR showed statistically significant reduction of the POAF occurrence.

Only preoperative use of BB was not effective at all in reducing POAF after AVR. This could be explained by adverse effects associated with a rebound phenomenon caused by discontinuation of BB after surgery in patients who took them before surgery (22,23). This result is in accordance with current recommendations which suggest that patients who are already taking BB should continue to take them up to the morning of surgery and restart on the first postoperative day after surgery (24).

The present study has limitations that must be recognized. First, this study was a retrospective study although all consecutive patients who underwent AVR during the study period were enrolled. Second, protocols regarding the use of BB such as the types of drugs, dosage and timing of administration had diverse heterogeneity. Further randomized controlled trials based on the uniform protocol of BB administration might be needed to draw a definitive conclusion.

Acknowledgments

Funding: None.

Footnote

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi. org/10.21037/jtd.2020.03.30). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. This study was approved by the Institutional Review Board of the Seoul National University Hospital (H-1812-149-997). This study is based on data retrieved from a hospital medical record system. All personal data have been protected and secured according to current national and international laws.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Echahidi N, Pibarot P, O'Hara G, et al. Mechanisms, prevention, and treatment of atrial fibrillation after cardiac surgery. J Am Coll Cardiol 2008;51:793-801.
- January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/ HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 2014;64:e1-76.
- Mathew JP, Parks R, Savino JS, et al. Atrial fibrillation following coronary artery bypass graft surgery: predictors, outcomes, and resource utilization. MultiCenter Study of Perioperative Ischemia Research Group. JAMA 1996;276:300-6.
- Kirchhof P, Benussi S, Kotecha D, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur J Cardiothorac Surg 2016;50:e1-88.
- 5. Creswell LL, Schuessler RB, Rosenbloom M, et al.

Kim et al. The impact of BB use on POAF after AVR

Hazards of post-operative atrial arrhythmias. Ann Thorac Surg 1993;56:539-49.

- 6. Maisel WH, Rawn JD, Stevenson WG. Atrial fibrillation after cardiac surgery. Ann Intern Med 2001;135:1061-73.
- Andrews TC, Reimold SC, Berlin JA, et al. Prevention of supraventricular arrhythmias after coronary artery bypass surgery. A meta-analysis of randomized control trials. Circulation 1991;84:III236-44.
- 8. Levy MN. Sympathetic-parasympathetic interactions in the heart. Circ Res 1971;29:437-45.
- Ishii Y, Schuessler RB, Gaynor SL, et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation 2005;111:2881-8.
- Kalus JS, Caron MF, White CM, et al. Impact of fluid balance on incidence of atrial fibrillation after cardiothoracic surgery. Am J Cardiol 2004;94:1423-5.
- Arsenault KA, Yusuf AM, Crystal E, et al. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. Cochrane database Syst Rev 2013;1:CD003611.
- Khan MF, Wendel CS, Movahed MR. Prevention of postcoronary artery bypass grafting (CABG) atrial fibrillation: efficacy of prophylactic beta-blockers in the modern era: a meta-analysis of latest randomized controlled trials. Ann Noninvasive Electrocardiol 2013;18:58-68.
- Hillis LD, Smith PK, Anderson JL, et al. 2011 ACCF/ AHA Guideline for Coronary Artery Bypass Graft Surgery: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2011;124:e652-735.
- Wyse DG, Waldo AL, DiMarco JP, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med 2002;347:1825-33.
- 15. Aranki SF, Shaw DP, Adams DH, et al. Predictors of atrial fibrillation after coronary artery surgery. Current

Cite this article as: Kim SH, Hwang HY, Choi JW, Jang MJ, Kim KH, Kim KB. The impact of beta-blocker use on postoperative atrial fibrillation after aortic valve replacement. J Thorac Dis 2020;12(5):2545-2552. doi: 10.21037/ jtd.2020.03.30 trends and impact on hospital resources. Circulation 1996;94:390-7.

- Kaw R, Hernandez AV, Masood I, et al. Short- and longterm mortality associated with new-onset atrial fibrillation after coronary artery bypass grafting: a systematic review and meta-analysis. J Thorac Cardiovasc Surg 2011;141:1305-12.
- Almassi GH, Pecsi SA, Collins JF, et al. Predictors and impact of postoperative atrial fibrillation on patients' outcomes: a report from the randomized on versus off bypass trial. J Thorac Cardiovasc Surg 2012;143:93-102.
- Yokota J, Nishi H, Sekiya N, et al. Atrial fibrillation following aortic valve replacement: impact of perioperative use of intravenous β-blocker. Gen Thorac Cardiovasc Surg 2017;65:194-9.
- Jamieson WR, Edwards FH, Schwartz M, et al. Risk stratification for cardiac valve replacement. National Cardiac Surgery Database. Ann Thorac Surg. 1999;67:943-51.
- Crystal E, Connolly SJ, Sleik K, et al. Interventions on prevention of postoperative atrial fibrillation in patients undergoing heart surgery: a metaanalysis. Circulation 2002;106:75-80.
- Blessberger H, Kammler J, Domanovits H, et al. Perioperative beta-blockers for preventing surgery-related mortality and morbidity. Cochrane Database Syst Rev 2018;3:CD004476.
- 22. López-Sendón J, Swedberg K, McMurray J, et al. Expert consensus document on beta-adrenergic receptor blockers. Eur Heart J. 2004;25:1341-62.
- 23. London MJ. Perioperative beta-blockade, discontinuation, and complications: do you really know it when you see it? Anesthesiology. 2009;111:690-4.
- 24. Sousa-Uva M, Head SJ, Milojevic M, et al. 2017 EACTS Guidelines on perioperative medication in adult cardiac surgery. Eur J Cardiothorac Surg. 2018;53:5-33.

2552