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Atrial fibrillation (AF), the most common cardiac 
arrhythmia, is characterized by absence of P waves and 
irregular R-R intervals (1). AF has an estimated prevalence 
rate of 0.4% to 1.0% in the general population, and there 
are approximately 10 million AF patients in China and the 
number of AF patients is estimated to reach 15.9 million 
in the United States by 2050 (2-5). AF is a complex disease 
that results from genetic and environmental factors and 
their interactions (6,7). Framingham Heart Study has 
revealed that familiar historys plays an important role in AF 
[OR =1.40, 95% confidence interval (CI): 1.13-1.74, with P 
value =0.02] and suggested that genetic variations may play 
important roles in the pathogenesis of AF (8).

Using linkage analysis and positional cloning approach, 
several genetic loci, such as KCNQ1, KCNE2, KCNJ2, 
KCNA5, KCNH2, SCN5A,SCN3B,NPPA and NUP155, have 
been found for familiar or monogenic AF and casual genes, 
including KCNQ1, KCNE2, KCNJ2, KCNA5, KCNH2, 
SCN5A, SCN3B, NPPA and NUP155 have been identified. 
In recent years, using genome-wide association study 

(GWAS), deep sequencing and cis-eQTL mapping, more 
genetic loci have been revealed for non-familiar or common 
AF, including 1q24, 4q25, 7q31, 9q22, 10q22, 14q23, 
15q24, 16q22, and 10p11-q21 (9-11). Notably, variants 
of five transcription factors mentioned above may play 
important roles in the pathogenesis of AF. In this review, we 
will focus on the potential role of transcription factors those 
indentified by GWAS in AF.

Paired-like homeodomain 2 (PITX2)

The association between variants (rs2200733 and 
rsl0033464) on 4q25 and AF was first identified by GWAS 
enrolled three populations of European descent and a 
Chinese at 2007 (12). Later, the association was verified 
in Italian population, Polish population and Chinese 
(13-15). Clinical studies showed that rs10033464 affected 
the response to antiarrhythmic drug (AAD) in AF patients, 
while rs2200733 were supposed to be an independent 
predictor of AF recurrence after direct current cardioversion 
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(DCCV). Furthermore, those AF risk variations on 4q25 
were associated with increased risk of both early and late 
AF recurrence after catheter ablation (16-19). Though 
the expression of paired-like homeodomain 2 (PITX2) in 
human adult left atrial appendages has been reported not 
associated with the AF risk SNPs on chromosome 4q25 (20), 
PITX2 may participate in the mechanism of AF, regarding 
that PITX2 is the nearest gene which lies approximately 
150,000 base pairs downstream the AF associated variants 
on 4q25 (21). 

PITX2, a member of the paired-like homeodomain 
transcription factor family, encodes three protein 
isoforms: PITX2a, b, c. Studies showed that Pitx2 mediated 
asymmetric left-right signaling in vertebrate situs-
specific morphogenesis, especially L/R atrial identity and 
asymmetrical ventricular remodeling (22-25). PITX2c 
expresses not only in the left atrium and pulmonary vein 
of embryonic and postnatal mice, but also in rare left atrial 
myocardial cells in left atrium of 1-year-old mice (24). And 
in heart of adult human or mouse, the expression level 
of PITX2c in left atrium is about 100-fold higher than in 
right atrium or in ventricles (26). Specific Pitx2 knockout 
mice survived with obvious congenital malformations, 
conduction system abnormalit ies,  and pulmonary 
myocardial defects (25). Although the cardiac function 
and morphology were normal, the action potential was 
shortened and ectopic automaticity was promoted in 
the left atrium cardiomyocytes of heterozygous Pitx2c-
deficient (Pitx2c+/−) mouse (26).

Whole-genome expression array observed that amounts of 
genes that were affected by the expression of PITX2c might  
explain the molecular mechanism for abnormal electrical 
activity and susceptibility to AF in PITX2c+/− mouse (26). 
Sinoatrial node (SAN) specific genes Shox2, Tbx3 and Hcn4, 
were up-regulated in the PITX2 null-mutant embryos (27). 
PITX2c can bind and inhibit the expression of Shox2, 
which plays an essential role in sinoatrial and pacemaking 
development. Shox2, a homeodomain transcription factor, 
regulates the SAN genetic program through the repression 
of Nkx2.5 and Tbx3 (27-29). Tbx3, a member of T-box 
transcription factors, can influence the specification and 
formation of the SAN, and the development of left atria 
as well (28,30,31). Hyperpolarization-activated, cyclic 
nucleotide-gated 4 (Hcn4), a pacemaker channel gene, 
maintains a stable cardiac rhythm by preventing sinus 
pauses and has no contribution to the heart rate acceleration 
(27,32,33). Furthermore, studies showed that PITX2c 
also down-regulated the expression of Nppa and Kcnq1. 

NPPA encodes the atrial natriuretic peptide hormone 
that regulates intravascular volume, and KCNQ1 encodes 
potassium channel. Variants in both NPPA and KCNQ1 can 
cause I(Ks) “gain-of-function” and atrial AP shortening, 
and result in calcium current change, which known as a 
common pathogenesis of familial AF (27,34-37). Other 
target genes of Pitx2, include channel and calcium 
handling genes, and genes that stabilize the intercalated 
disc in postnatal atrium (38). And a latest integrated 
genomic analysis discovered that two microRNAs,  
miR-17-92 and miR-106b-25, were up-regulated by Pitx2. 
The transcription of these microRNAs can repress Shox2 and 
Tbx3, and play roles in the abnormal electrical activity (39).

Paired-related homeobox gene 1 (PRRX1)

The association between rs3903239 in paired-related 
homeobox gene 1 (PRRX1) on 1q24 and AF was reported in a 
GWAS study which contained a large number of Europeans 
and Japanese (40). A latest rare variant joint analysis also 
found that damaging variants within the PRRX1 region 
remained significantly associated with AF (P value =0.01) 
after Bonferroni correction (41). Both studies highlighted 
that PRRX1 may affect the susceptibility to AF.

PRRX1 encodes a homeodomain transcription factor, 
which localized in the nucleus and highly expressed in 
the developing heart (especially the conducting system). 
It’s first observed in the developing chick cardiovascular 
system, including epicardium, valve, endocardial cushion 
and the wall of the large arteries and veins (42). Instead of 
directly interacting with deoxyribonucleic acid (DNA) in 
its homeodomain, Prrx1 plays its function by binding the 
muscle creatine kinase enhancer (43,44). The interaction 
between Prrx1 and MADS-domain transcription factors was 
suggested to influence smooth muscle structural proteins 
and pulmonary vasculature dysgenesis was observed in the 
Prrx1 knockout fetal mouse (43-48). According to highly 
expression of PRRX genes in the developing vascular 
system, PRRX1 and PRRX2 may play important roles in 
the differentiation of vascular smooth muscle cells (49). 
Abnormalities of great vessel were observed in double 
mutants’ knockout mouse too (50). A normal heartbeat is 
initiated in the SAN or pacemaker region, while abnormal 
electrical activity originated in pulmonary veins can serve to 
trigger and maintain AF in many pathological conditions (51). 
These abnormal developments of pulmonary vasculature 
may offer pulmonary veins the morphological substrate 
involved in AF. A case-control study has revealed that 
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an anatomic PV variant, left common ostium (LCO) is 
associated with the development of AF with OR of 2.1 (P 
value =0.004) (52). The re-entrant PV tachycardia is also 
suggested to be a mechanism underlying the initiation 
of paroxysmal AF (53). Additionally, the distribution and 
structure of myocardium in the pulmonary veins can also 
influence the radiofrequency ablation of AF (54). 

Zinc finger homeobox 3 (ZFHX3)

The variation rs7193343 in ZFHX3 on chromosome 16q22 
was first reported to be associated significantly with AF in 
GWAS [OR of 1.21 (P=1.4×10-10)] (55). And this association 
was replicated in the Polish population (14). Two SNPs 
(rs2106261 and rs6499600) in ZFHX3 are strongly 
associated with AF risk, while another one (rs16971436) is 
borderline significant in a Chinese Han populations (56). 
And significant association of SNP rs2106261 with AF 
was identified in another Chinese Han population (57). 
Moreover, the polymorphism in ZFHX3 magnifies the AF 
risk in HF patients (58).

ZFHX3 encodes a cardiac transcription factor containing 
multiple homeodomains and zinc finger motifs. Two 
missense mutations in ZFHX3 exon were identified and 
in silico analysis showed that these mutations resulted in 
damage of the ZFHX3 protein structure (59). ZFHX3 
interacts with the terminal end of protein inhibitor of 
activated STAT 3 (PIAS3), which is a specific inhibitor of 
signal transducer and activator of transcription 3 (STAT3)  
through binding to activated tyrosine-phosphorylated 
STAT3 dimers and subsequently preventing DNA binding 
to the complex (60,61). STATs were proved to mediate the 
inflammatory process as the major downstream mediators 
of many different inflammatory signaling pathways in a 
pacing-induced AF porcine model. Small GTPase Rac1, 
a molecular target of statin, mediating the activation of 
STAT3 by angiotensin II, and JAK/STAT pathways, was 
activated in this animal model (62). As an independent risk 
of AF, inflammation play roles in the pathophysiological 
mechanisms of the initiation and maintenance of AF (63). 
So this activated angiotensin II/Rac1/STAT signaling 
was suggested to contribute to electrical and structural 
remodeling and inflammatory changes in pacing-induced 
AF model (62). In tachypaced HL-1 cells, the expression 
of ZFHX3 and PIAS3 decreased, while activated STAT3 
up-regulated. Knockdown of ZFHX3 together with 
PIAS3 activated pacing-induced STAT3 signaling more 
effectively than knockdown ZFHX3 alone. On the contrary, 

overexpression of ZFHX3 reversed the above effect (64).  
These data indicated that inhibition of ZFHX3 and 
activation of STAT3 might contribute to AF. Nuclear 
localization and SUMOylation are important to ZFHX3, 
and ZFHX3 is observed cooperating with PML NBs to 
regulate protein SUMOylation in different biological 
processes in endothelial cells. Cause SUMOylation serves 
as a third quality control of misfolded and damaged 
proteins, which contribute to the pathogenesis of many 
forms of cardiac disease and heart failure, ZFHX3 may 
also play roles in AF through mediating the SUMOylation 
of related proteins (65,66).

T-box 5 (TBX5)

A large scale of GWAS study with 4,304 cases and 46,508 
controls from Iceland of European origin revealed the 
association between T-box 5 (TBX5) on 12q24.1 and AF. 
SNP rs3825214 variant in TBX5 is strikingly associated 
with PR interval, QRS duration and AF (67). Another 
genetic study replicated the association between TBX5 and 
AF in Europeans and Japanese, using multiple approaches 
containing large-scale genotyping, cis-eQTL mapping 
and functional validation (68). We also demonstrated that 
rs3825214 in TBX5 was associated with lone AF in Chinese 
Han population (69). Furthermore, TBX5 indwells in the 
gene modules associated with AF identified by weighted gene 
co-expression network analysis of human left atrial tissue (70). 

TBX5 belongs to the evolutionarily conserved T-box 
family of transcription factors, and may play a role in 
heart development and specification of limb identity (71).  
In humans, mutations in TBX5 can cause Holt-Oram 
syndrome, which includes congenital heart defects, 
conduction system abnormalities,  and upper l imb 
deformities (72,73). In an atypical Holt-Oram syndrome 
family, affected patients have mild skeletal deformations and 
almost none has congenital heart disease, and paroxysmal 
AF. A novel mutation in TBX5, c.373 G>A, is co-segregated 
with the disease and leads to p.G125R, a gain-of-function 
protein that can interact with NKX2.5. The mutated TBX5 
enhances the DNA-binding properties of the recombinant 
and activates Nppa and Cx40 promoters. This activation 
accelerats the AF related genes expression such as Nppa, 
Cx40, Kcnj2, and Tbx3 (74). Tbx5−/− mice can’t survive 
before birth because of failure of heart tube looping and an 
under-developed caudal part. The expression of Nppa and 
Cx40 reduced in heterozygous Tbx5 knockout mice, while  
up-regulated and resulted in spontaneous beating phenotype 
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when Tbx5 was overexpressed in P19C16 embryonic carcinoma 
cells (75-77). Furthermore, TBX5 can also interact with 
TBX3, which controls the SAN gene program, induces 
pacemaker activity and changes ectopic automaticity in 
atrial myocardium (30,74).

NK2 homeobox 5 (NKX2.5)

In a three-generation family with inherited cardiac anomalies, 
the mutation c.768T>A in NK2 homeobox 5 (NKX2.5) on 5q34 
was identified associated with atrial septal defect and AF (78).  
Another NKX2.5 loss-of-function mutation, p.F145S, was 
identified in AF family, whose inheritance pattern was 
autosomal dominant with complete penetrance (79). More 
mutations, such as p.E21Q, p.T180A, p.N19D and p.F186S 
were indentified and expand the spectrum of NKX2.5 
mutations linked to AF (80,81). 

NKX2.5, a homeobox-containing transcription factor, 
continuously expresses in heart from development to 
maturity, and plays its function in the formation and 
development of heart. Mutations in NKX2.5 cause a variety 
of heart malformation diseases: atrioventricular (AV) 
conduction abnormalities, atrial septal defects, high degree 
AV block and tetralogy of Fallot (82,83). Functional analysis 
associated the mutant proteins with significantly reduced 
transcriptional activity of NKX2.5 by directly inhibiting 
its transcription or affecting its nuclear distribution or  
DNA-binding ability (84). A meta-analysis of GWAS 
revealed the association between the genetic variations 
in NKX2.5 and PR interval (85). Another study enrolled 
7,575 individuals (mean age 46 years, 54% women) who 
underwent routine 12-lead electrocardiography found that 
variations of NKX2.5 were associated with the PR interval 
in the general population. PR interval reflects atrial and 
AV nodal conduction and individuals with prolonged PR 
interval have a higher risk of future AF and cardiac sudden 
death, so NKX2.5 may affect the disturbances of PR interval 
and contribute to AF (86).

In transgenic mice that carry a loss of function allele 
(I183P) for NKX2.5, PR prolongation was observed as 
early as 2 weeks and quickly developed into complete AV 
block at 4 weeks. Meanwhile, the expression of two gap 
junctional proteins: Cx50 and Cx43 dramatic decreased. 
These Nkx2.5 mutated mice all got congenital structurally 
normal hearts, yet displayed progressive AV conduction 
defects and HF (87). Other studies showed that Nkx2.5 
might reduce the genes which were potentially sufficient to 
provide automaticity in the pulmonary myocardium. And 

Cx40-negative, Hcn4-positive phenotype in the pulmonary 
myocardium caused by variation of Nkx2.5 could be an 
important trigger of AF (88). Furthermore, NKX2.5 
controls PITX2 expression in inchoate cardiac lateral plate 
mesoderm instead of pulmonary myocardium, via direct 
binding to the consensus DNA-binding site within the 
asymmetry enhancer element of PITX2. Considering the 
role of PITX2 mentioned before, they may work together 
to influence the cardiac development and susceptibility 
substrate of AF (89).

In summary, genetic variations may influence the 
function of transcription factors and affect the ion channels, 
development of cardiac conduct system or myocardium 
fibrosis, and play important roles in the pathogenesis of AF. 
Identification of the exact targets which are regulated by 
AF-related transcription factors may lead to potential new 
treatments to AF.
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