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Introduction

Myocardial infarction is a severe cardiovascular disease 
and a significant risk to human life (1). It could cause heart 
failure and malignant arrhythmia with high morbidities and 
mortalities (2). Inflammatory responses and cardiomyocyte 
apoptosis are the most significant outcomes from 
myocardial infarction (3). Cell apoptosis of cardiomyocytes 

after myocardial infarction usually causes ventricular 
remodeling as well as heart failure (4). In this research, 
we will be focused to explore the mechanisms for cardiac 
progenitor cell reproduction in myocardial infarction 
related heart failure.

Long non-coding RNAs (lncRNAs) are a group of RNAs 
that participate in many kinds of cellular events, such as cell 
growth, differentiation, and proliferation (5,6). Previous 
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findings suggest that circulating lncRNAs are useful 
markers for the diagnosis of cardiovascular disease (7,8). For 
example, several circulating lncRNAs have been discovered 
as prognostic biomarkers for heart failure, including 
HOTAIR (9), H19 (10), LIPCR (11), and EGOT (12). 
The lncRNA CRNDE (colorectal neoplasia differentially 
expressed gene) is transcribed from chromosome 16 on the 
strand opposite to the adjacent IRX5 gene (13). LncRNA 
CRNDE promoted colorectal cancer cell proliferation and 
chemoresistance via miR-181a-5p-mediated regulation 
of Wnt/β-catenin signaling (13). According to Ma et al., 
CRNDE was involved in the regulation of granulocytic 
differentiation of acute promyelocytic leukemia (14). But it 
has not been elucidated whether CRNDE has any effect in 
the reproduction or migration of cardiac progenitor cells. 
Inspired by bioinformatic prediction and previous work (13),  
we are interested in the role of CRNDE in myocardial 
infarction, and therefore we carried a series of experiments 
in vitro and in vivo for this investigation.

MicroRNAs (miRNAs, ~24 nucleotides) have been 
reported to affect the stability and translation of messenger 
RNAs (15). Many reports have revealed that miRNAs could 
regulate cell apoptosis, reproduction, development, and 
differentiation (16). In 2016, Zhu et al. demonstrated the 
potential of using circulating miR-181a as a novel biomarker 
for the diagnosis of acute myocardial infarction (17).  
The expressions of circulating miR-181a in patients with 
AMI were substantially changed in a time-dependent 
manner, indicating the value of plasma miR-181a as a 
novel biomarker for diagnosing MI (17). Herein, we aim to 
investigate the mysteries of miR-181a and its interactions 
with CRNDE in myocardial infarction.

According to Qiu, Homo sapiens LYR motif containing 1 
(LYRM1) could enhance proliferation and inhibits apoptosis of 
preadipocytes (18). Zhu et al. reported that LYRM1 increased 
reproduction and inhibited cell apoptosis during heart 
development (19). However, its functional mechanism remains 
to be clarified. In our experiments, we are determined to 
evaluate the cells’ abilities of proliferation and migration under 
transfections with LYRM1 over-expression or knockdown. 
Our experiments, results, and analysis may provide valuable 
information on its roles in myocardial infarction.

Methods

Cardiac progenitor cell culture

Cardiac progenitor cells were isolated from neonatal 

adult Sprague-Dawley rats by removing the heart and 
homogenizing the tissue as described (20). The cardiac 
progenitor cells were then incubated in DMEM +10% FBS 
(Gibco, HyClone, USA). After that, cardiac progenitor 
cells were kept at thirty-seven Celsius and 5% CO2. All 
procedures on rats are in accordance with the guidelines 
of the Animal Ethics Committee of The First Affiliated 
Hospital of Fujian Medical University. All the experiments 
were conducted according to the principles expressed in the 
Declaration of Helsinki and conform to the Guide for the 
Care and Use of Laboratory Animals published by the US 
National Institutes of Health.

miRNA and siRNA

si-CRNDE (5'-GTGCTCGAGTGGTTTAAAT-3') 
and si-LYRM1 (5'-GCAATCATTTCTAGACTAA-3') 
were made from GenePharma, China. miR-181a-mimic 
(5'-AACAUUCAACGCUGUCGGUGAGU-3') and miR-
181a-inhibitor (5'-ACUCACCGACAGCGUUGAAUGUU-3') 
were provided by RiboBio, China.

Transfections

The transfections of siRNAs and miRNAs in cardiac 
progenitor cells were carried out by lipofectamine-2000 
(Invitrogen, USA). Prior to transfections, we incubated 
cardiac progenitor cells in the medium. si-CRNDE or si-
LYRM1, and miR-181a-mimic or miR-181a-inhibitor were 
transfected to the cells with lipofectamine 2000 (Invitrogen, 
USA).

Quantitative real time-PCR (qRT-PCR)

RNAs were extracted by Trizol (Invitrogen, USA). We 
made cDNA by EasyScript and SuperMix (Transgen 
biotech, USA). 10 ng cDNA was prepared for qRT-PCR by 
SYBR Green in Prism 7500 (Applied Biosystems, Thermo 
Fisher Scientific, USA). GAPDH and U6 were controls. 
Table 1 showed the primer sequences.

Western blotting

The cardiac progenitor cells were lysed, and the proteins 
were separated through SDS-PAGE and transferred 
to nitrocellulose membranes (Millipore, USA). The 
membranes were firstly blocked, treated with anti-LYRM1 
(1:500, Abcam), then incubated with horseradish peroxidase 
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linked anti-IgG, and visualized by Chemiluminescence Kit 
(Thermo Fisher Scientific, USA). Gel-pro was used for 
statistical analysis.

Luciferase reporter assays

The CRNDE-WT (wild-type), CRNDE-MT (mutant), 
LYRM1-WT, and LYRM1-MT including the common 
sequences with miR-181a were sub-cloned to luciferase 
reporter plasmids. The reporter vectors and miR-181a-
mimic or NC-mimic were transfected to cardiac progenitor 
cells with lipofectamine-2000. After 2 days’ transfections, 
cardiac progenitor cells were lysed for luciferase activities’ 
measurement.

CCK-8 assays

A total of 5×104 cells/mL of cardiac progenitor cells after 
various treatments were grown in 96-well plate for 1 day. 
Then, cardiac progenitor cells were washed, and the levels 
of cell growth were evaluated by CCK-8 assays (Transgen, 
USA). Ten mL CCK-8 solution was placed to every well, 
and let incubations for four hours at thirty-seven Celsius. A 
microplate reader (Beckman, USA) was used to measure the 
absorbance at 450 nm.

Cell migration

Cardiac progenitor cells after various treatments were 
placed on the top transwell chamber (Corning, USA) 
with DMEM and 0.5% FBS. The bottom chamber had 
DMEM and 10% FBS. After 1 day’s incubations, the 
cardiac progenitor cells on the bottom were cleaned, 
fixed, and stained by 0.1% crystal violet for fifteen 
minutes. We counted the migration cells by microscopy 
(Zeiss, USA).

EdU assays

Cardiac progenitor cells were placed in the 24-well plate 
(1,500 cells/well). EdU was then pipetted to every well 
and had incaution for two hours. After fixing the cardiac 
progenitor cells with 4% paraformaldehyde for half an 
hour at 25 Celsius, we stained cardiac progenitor cells by 
Apollo (Ribobio) and detected the signals by fluorescence 
microscope (Zeiss, USA).

Data analysis

SPSS 17.0 was utilized to analyze the data, shown as mean 
± SD. T-test was used for comparisons between two groups. 
The one-way ANOVA test, followed by Bonferroni’s post-
hoc test, was performed to analyze the difference for over 
two groups. P<0.05 was considered significant.

Results

Hypoxia enhanced stem cell proliferation and migration 
abilities

Figure 1A showed that hypoxia could enhance the cell 
viabilities of cardiac progenitor cells, which was positively 
correlated with the dose of CoCl2 (P<0.05, P<0.01) 
(Figure 1A). From Figure 1B,C, the cardiac progenitor cell 
reproduction and migration potentials were also enhanced 
in CoCl2-related hypoxia. In consistence with the literature, 
hypoxia could enhance cell reproduction and migration 
abilities.

CRNDE affected cardiac progenitor cell proliferation and 
migration under hypoxic conditions

Figure 2A illustrated the qRT-PCR results that CRNDE 
expressions substantially increased in a CoCl2 dose-

Table 1 Sequences of primers used in qRT-PCR

Name Forward primer (5'-3') Reversed primer (5'-3')

CRNDE CGATCGCGCTATTGTCATGG TCCGCCTCGCTTAGACATTG

miR-181a GCGGCAACATTCAACGCTGTCGGTGAGT GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTG

LYRM1 AGGGCAGATGGAAGACACC GATGGATAGGGCGTGGATAA

GAPDH ATTCAACGGCACAGTCAA CTCGCTCCTGGAAGATGG

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

LYRM1, LYR motif containing 1.
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dependent manner (P<0.01). Si-CRNDE was made to 
suppress the expressions of CRNDE in cardiac progenitor 
cells (P<0.01) (Figure 2B). In Figure 2C, we noticed that 
the knockdown of CRNDE substantially reduced the cell 
viabilities of cardiac progenitor cells in hypoxic conditions 
(P<0.01). Figure 2D,E displayed that the reproduction 
and migration potentials of cardiac progenitor cells were 
also suppressed after CRNDE suppression in hypoxia. 
Obviously, CRNDE could affect cardiac progenitor cell 
reproduction and migration following hypoxic stimuli.

CRNDE modulated cardiac progenitor cell proliferation 
and migration via targeting miR-181a in hypoxia

The binding scheme between CRNDE and miR-181a 

were shown in Figure 3A, with shared binding sequences. 
According to Figure 3B, CRNDE suppression could 
greatly elevate miR-181a expressions in both normoxic 
and hypoxic conditions (P<0.01). Figure 3C showed that 
miR-181a mimic reduced the luciferase activities of the 
CRNDE-WT, but didn’t affect the CRNDE-MT (P<0.01). 
As shown in Figure 3D, the miR-181a expressions were 
dramatically lowered in cardiac progenitor cells in 
hypoxia (P<0.05, P<0.01). In addition, the miR-181a-
inhibitor substantially restored the cell viabilities (P<0.01) 
(Figure 3E), and abilities of reproduction (Figure 3F) 
and migration (Figure 3G) in cardiac progenitor cells. 
It was illustrated that CRNDE could modulate cardiac 
progenitor cell proliferation and migration via miR-181a 
in hypoxic conditions.

Figure 1 Hypoxia enhanced cardiac progenitor cell reproduction and migration. (A) Cell viabilities of cardiac progenitor cells after various 
levels of CoCl2. (B) EdU assays of the cardiac progenitor cell reproduction potentials after hypoxia. (C) Cell migration assays of the 
migration potentials of cardiac progenitor cells by CoCl2 treatments (×50 μm). *P<0.05, **P<0.01.
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LYRM1 suppressions lowered the protection from miR-
181a-inhibitor on cardiac progenitor cells after hypoxia

Figure 4A used PicTar and TargetScan to predict that 
LYRM1 was a target of miR-181a. It shows that miR-
181a mimic substantially repressed the luciferase activities 
of cell transfected with LYRM1-WT (P<0.01). But miR-
181a mimic didn’t suppress the luciferase activities of 
LYRM1-MT. It indicated that LYRM1 was targeted by 
miR-181a. Figure 4B discovered that LYRM1 expressions 

were decreased in cardiac progenitor cells after transfecting 
with miR-181a-mimic but increased in cardiac progenitor 
cells by miR-181a-inhibitor (P<0.01). Figure 4C showed 
that LYRM1 expressions were promoted in CoCl2-
related hypoxia (P<0.05, P<0.01). Figure 4D illustrated 
that mRNA and protein levels of LYRM1 were markedly 
reduced in cardiac progenitor cells after siLYRM1 
transfections (P<0.01). However, LYRM1 knockdown in 
cardiac progenitor cells under hypoxic conditions repressed 
cell viabilities (Figure 4E), reproduction (Figure 4F)  

Figure 2 CRNDE affected cardiac progenitor cell proliferation and migration under hypoxic conditions. (A) qRT-PCR for CRNDE 
mRNA levels in cardiac progenitor cells in hypoxic conditions. (B) qRT-PCR results identified the effectiveness of siRNA against CRNDE 
in cardiac progenitor cells. (C) Cell viabilities in cardiac progenitor cells after si-CRNDE. (D) EdU assays for cell reproduction abilities in 
cardiac progenitor cells after CRNDE knockdown. (E) Cell migration assays for cell migration abilities in cardiac progenitor cells after si-
CRNDE (×50 μm). **P<0.01.
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and migration (Figure 4G) abilities that were induced 
by miR-181a-inhibitor (P<0.01). It indicated that  
miR-181a modulated cardiac progenitor cell functions 
though LYRM1.

Si-LYRM1 inhibited CPC viability and migration ability

Then, we assessed the effect of si-LYRM1 on CPCs’ 
viability and migration ability. According to Figure 5A, 
si-LYRM1 greatly inhibited the cell viability of CPC, in 

contrast to the si-NC. From Figure 5B,C, we found that  
si-LYRM1 also suppressed cell proliferation and migration 
abilities. It was obvious that the knockdown of LYRM1 
inhibited CPC viability and migration ability.

CRNDE modulated CRNDE/miR-181a/LYRM1 in 
cardiac progenitor cells after hypoxia

According to Figure 6A, the mRNA and the protein levels 
of LYRM1 were dramatically reduced after CRNDE 

Figure 3 CRNDE modulated cardiac progenitor cell reproduction and migration via targeting miR-181a in hypoxic conditions. (A) The 
binding sequence of CRNDE and miR-181a. (B) qRT-PCR for miR-181a expressions under si-CRNDE. (C) Luciferase assays verification 
of miR-181a and CRNDE. (D) miR-181a expression levels in cardiac progenitor cells in hypoxia. (E) CCK-8 assays for the cell viabilities 
in cardiac progenitor cells transfected with si-CRNDE and miR-181a-inhibitor after hypoxia. (F) EdU assays for cell reproduction abilities 
in the cardiac progenitor cell by si-CRNDE+ miR-181a-inhibitor. (G) Cell migration assays for the cell migration abilities in cardiac 
progenitor cells by si-CRNDE+ miR-181a-inhibitor (×50 μm). *P<0.05, **P<0.01.
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suppression (P<0.01). It suggested that LYRM1 was 
positively correlated with CRNDE. In Figure 6B, cell 
viabilities were suppressed by si-CRNDE but were elevated 
by miR-181a-inhibitor. But the addition of si-LYRM1 
attenuated this effect. Similarly, we found that CRNDE/
miR-181a/LYRM1 axis affected cardiac progenitor cell 
reproduction (Figure 6C) and migration (Figure 6D) abilities 
under hypoxic conditions (P<0.01). Overall, our results 
suggested that CRNDE exerted its roles in modulating 

cardiac progenitor cell reproductions and migration by 
upregulation of LYRM1 by targeting miR-181a.

Discussion

It was well known that cardiac progenitor cells can quickly 
lose their reproduction abilities in infarcted myocardium 
activities (21). CCK-8 assays results found that hypoxia 
could enhance the cell viabilities of cardiac progenitor cells, 

Figure 4 LYRM1 suppressions lowered the protection from miR-181a-inhibitor on cardiac progenitor cells after hypoxia. (A) TargetScan to 
predict that LYRM1 was a target of miR-181a, and luciferase reporter assays in miR-181a and LYRM1. (B) qRT-PCR and western blotting 
for LYRM1 expressions in cardiac progenitor cells with transfections of miR-181a-mimic and miR-181a-inhibitor. (C) mRNA’s expressions 
and protein’s expressions of LYRM1 in cardiac progenitor cells after hypoxia. (D) mRNA expressions and protein levels by si-LYRM1 in 
cardiac progenitor cells. (E) CCK-8 assays for the cell viabilities in cardiac progenitor cells transfected with si-LYRM1 after miR-181a 
inhibitions in hypoxia. (F) EdU incorporation assays for cell proliferation potentials in cardiac progenitor cells transfected with siLYRM1 
after miR-181a inhibitions under hypoxic conditions. (G) Cell migration assays for cell migration potentials in cardiac progenitor cells 
transfected with siLYRM1 after miR-181a inhibitions by hypoxia (×50 μm). *P<0.05, **P<0.01. LYRM1, LYR motif containing 1.
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Figure 5 Si-LYRM1 inhibited CPC viability and migration ability. (A) Cell viability of CPC transfected with si-NC or si-LYRM1. (B) Cell 
proliferation potentials in cardiac progenitor cells after transfection with si-NC or si-LYRM1. (C) Cell migration assays for cell migration 
potentials in cardiac progenitor cells after transfection with si-NC or si-LYRM1 (×50 μm). **P<0.01. LYRM1, LYR motif containing 1.

which was positively correlated with the dose of CoCl2. 
The reproduction and migration potentials of cardiac 
progenitor cells were also enhanced in CoCl2-related 
hypoxia. Previous reports revealed that the expression levels 
of lncRNA CRNDE attenuated cardiac fibrosis via Smad3-
Crnde negative feedback in diabetic cardiomyopathy (22), 
and also participated in the regulation of the proliferation 
and migration of vascular smooth muscle cells (23). The 
qRT-PCR results that CRNDE expressions substantially 
increased in a CoCl2 dose-dependent manner. The 
knockdown of CRNDE considerably reduced the cell 
viabilities of cardiac progenitor cells in hypoxic conditions. 
The reproduction and migration potentials of cardiac 
progenitor cells were also suppressed after CRNDE 
suppression in hypoxia. In agreements with previous 
findings, we also found that CRNDE could affect cardiac 
progenitor cell proliferation and migration by hypoxic 
stimuli.

MiRNAs were proved to participate in the regulation of 
a variety of cellular events such as apoptosis, reproduction, 
development, and differentiation (24,25). For instance, 
circulating miR-181a as a potential novel biomarker for 
diagnosis of acute myocardial infarction. Circulating miR-

181a levels in patients with MI were substantially changed 
in a time-dependent manner, indicating the value of plasma 
miR-181a as a novel biomarker for diagnosing MI (17). Ji 
et al. demonstrated that CRNDE enhances hepatocellular 
carcinoma cell proliferation, invasion, and migration via 
regulating the miR-203/BCAT1 axis (26). It was shown that 
CRNDE could bind with some specific miRNAs and exert 
its biological functions in cellular processes (13,26). In our 
study, CRNDE suppression could much elevate miR-181a 
expressions, and miR-181a-mimic inhibited the luciferase 
activities of CRNDE-WT but didn’t affect the CRNDE-
MT. Additionally, miR-181a-inhibitor substantially 
restored the cell viabilities and abilities of reproduction and 
migration in cardiac progenitor cells following a CRNDE 
knockdown under hypoxic stimuli. For the first time, we 
discovered that CRNDE could regulate cardiac progenitor 
cell proliferation and migration by targeting miR-181a in 
hypoxic conditions.

According to Chen, knockdown of LYRM1 substantially 
inhibited reproduction and differentiation and enhanced 
apoptosis in an embryonic carcinoma cell model of 
cardiac differentiation (27). In our experiments, LYRM1 
expressions were decreased in cardiac progenitor cells by 
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miR-181a mimic but elevated by miR-181a-inhibitor. MiR-
181a mimic substantially repressed the luciferase activities 
of cell transfected with LYRM1-WT. But miR-181a-mimic 
didn’t suppress the luciferase activities of LYRM1-MT. It 
is quite possible that miR-181a could bind with LYRM1. 
What’s more, LYRM1 knockdown in cardiac progenitor 
cells under hypoxic conditions repressed cell viabilities, 
proliferation, and migration abilities that were induced by 
miR-181a-inhibitor. As far as we know, we are the first to 
report that miR-181a modulated cardiac progenitor cell 
functions though LYRM1.

Li demonstrated that lncRNA MALAT1 enhanced 

cardiac progenitor cell reproduction and migration via up-
regulating JMJD6 via targeting miR-125 mRNA (28). In a 
similar pattern, we found that the protein levels of LYRM1 
were dramatically reduced after CRNDE suppression, 
and LYRM1 was positively correlated with CRNDE. 
In consistence with previous findings, it was confirmed 
that CRNDE/miR-181a/LYRM1 axis affected cardiac 
progenitor cell proliferation and migration abilities under 
hypoxic conditions. CRNDE exerted its roles in modulating 
cardiac progenitor cell reproduction and migration by the 
upregulation of LYRM1 via sponging miR-181a.

It is well known that lncRNAs can act as competing 

Figure 6 CRNDE exerted its roles in regulating cardiac progenitor cell reproduction and migration in hypoxia via the CRNDE/miR-
181a/LYRM1 axis. (A) mRNA’s expressions and the protein’s expressions of LYRM1 in cardiac progenitor cells after CRNDE suppression. 
(B) CCK-8 assays for cell viabilities in cardiac progenitor cells in hypoxia. (C) Cell proliferation potentials in cardiac progenitor cells after 
treatments under hypoxia. (D) Cell migration assays for cell migration potentials in cardiac progenitor cells (×50 μm). **P<0.01. LYRM1, 
LYR motif containing 1.
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endogenous RNA (ceRNA) or molecular sponges to exert 
“sponge-like” effects on many specific miRNAs, resulting 
to the downregulation of miRNA levels, upregulation of 
mRNA levels (target genes), and inhibition of miRNA/
mRNA-mediated functions (29,30). In this study, the 
lncRNA CRNDE functioned as a molecular sponge for 
miR-181a to modulate the expression of LYRM1 under 
CoCl2-regulated hypoxia conditions. The upregulated 
CRNDE induced by hypoxia isolates miR-181a by binding 
with it, thus reducing the regulation of miR-181a on 
LYRM1 and promoting the expression of LYRM1, and vice 
versa.

Conclusions

Our finding demonstrated that CRNDE could modulate 
cardiac progenitor cell proliferation and migration 
potentials via the miR-181a/LYRM1 axis in hypoxia. The 
results may provide a new regulatory mechanism for cardiac 
progenitor cell reproduction in hypoxia and a new target for 
MI-related heart failure therapy.
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