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Introduction 

The pleural mesothelium, derived from the embryonic 
mesoderm, is a monolayer of mesothelial cells that blanket 
the chest wall and lungs on the parietal and visceral 
surfaces, respectively. The normal mesothelial cell layer 
appears smooth, glistening, and semi-transparent. On light 
microscopy, the appearance of the mesothelial cells may 
vary from a row of flattened and elongated ovoid nuclei 
widely separated by cytoplasm to cuboidal or columnar 
cells with round basal nuclei and a cuboidal and fuzzy 

luminal surface (1). These pavement-like cells are similar in 
cytologic characteristics to mesothelial cells that line other 
body cavities such as the peritoneum (2). 

The pleural mesothelial cell (PMC) is the most common 
cell in the pleural space and is the primary cell that initiates 
responses to noxious stimuli (3). PMCs are metabolically 
active cells that maintain a dynamic state of homeostasis in 
the pleural space. As a response to injury, mesothelial cells 
respond by proliferation and chemotaxis to cover areas of 
denuded extracellular matrix. This response is mediated by 
an autocrine signaling due to the production of chemokines. 
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Juxtacrine and paracrine communications between cells 
allow for a rapid response during inflammation (4). The 
cytoplasm of PMCs contains abundant organelles and 
glycogen granules. PMCs are phagocytic and produce 
several cytokines and adhesion molecules (5). Mesothelial 
cells have microvilli and multiple intercellular adherens 
junctions as well as focal adhesions that anchor the 
mesothelial cell onto the extracellular membrane via 
integrins. The size and shape, as well as the number of 
microvilli and the amount of organelles in a PMC may 
reflect its functionality.

Pleural mesothelial cells in development and 
disease

Interactions between the developing endoderm and mesoderm

The complex interplay of signaling pathways between 
the developing endoderm and mesoderm is essential for 
development (6). The lung mesoderm plays a key role in 
regulating the morphogenesis of the lung during all stages 
of the development of the anterior foregut endoderm (7). 
It continuously interacts with the lung endoderm to 
generate various cell lineages within the lung (8) serving 
as an important source of signaling molecules such as 
Fibroblast growth factor 10 (Fgf10) and Wnt2 (9-12) 
that are essential for processes like patterning of early 
endoderm progenitors, epithelial proliferation, and 
differentiation. Additionally, several mesodermal derived 
cells, including airway smooth muscle, vascular smooth 
muscle, endothelial and mesothelial cells, pericytes, 
alveolar fibroblasts, and lipofibroblasts are present in the 
mature lung (8).

The specification of the respiratory system in the 
anterior foregut endoderm during development depends 
on Wnt/β-catenin signaling specifying Nkx2.1+ respiratory 
endoderm progenitors (8). Active bone morphogenetic 
protein (Bmp) signaling is necessary to repress the 
transcription factor Sox2 to allow the expression of Nkx2.1. 
Interestingly, loss of Bmp signaling leads to tracheal 
agenesis with retention of the branching region of the 
lungs (13). Branching morphogenesis relies upon active 
signaling between the developing mesoderm and endoderm 
and the loss of Fgf10 signaling to Fgfr2 in the developing 
endoderm can lead to disruption of branching (11,14). 
Fgf10 expression is in turn regulated by a complex interplay 
of signaling molecules such as Bone morphogenetic protein 
4 (Bmp4) and sonic hedgehog (Shh) (9,10,15).

Role of PMCs during development

PMCs are mesenchymal in origin but exhibit several 
characteristics which are typical of epithelial cells, such 
as a polygonal cell shape, expression of surface microvilli, 
epithelial cytokeratins and tight junctions (16). A process 
called epithelial-to-mesenchymal transition (EMT) allows 
for the differentiation of mesothelium to give rise to the 
endothelium and vascular smooth muscle cells of the vascular 
system, heart, liver and gut during development (17-19). 
Lineage labeling studies in the developing heart show that 
the surface epicardial mesothelium undergoes EMT and 
migrates into the myocardium where it differentiates into 
various cell types, including endothelium, smooth muscle 
cells, and cardiomyocytes (20-23). Moreover, it has also been 
shown that the serosal mesothelium of the gut contributes 
the majority of vascular smooth muscle cells (24,25). The 
hepatocyte growth factor (HGF) is a well-known cytokine 
produced by cells of mesenchymal origin and plays an 
important role in EMT during organogenesis and in 
regulation of lung morphogenesis (26,27).

Wilms tumor-1 (Wt1), a zinc finger transcription 
factor, discovered as a tumor suppressor gene in Wt of the  
kidney (28), is expressed in certain mesoderm-derived tissues 
including the pleura (29). Wt1 regulates many functional 
properties of the developing mesothelium (30,31). Wt1  
can function either as a tumor suppressor (32) or as  
an oncogene (33-35) and has the potential to induce 
EMT (36-38). It confers oncogenic properties in cells of 
hemopoietic origin and regulates transforming growth 
factor-β1 (TGF-β1) in the kidney, demonstrating its tissue 
specific responses (39). PMCs express the Wt1 gene, 
encoding for a 49-52 kDa protein with an N-terminal 
domain that is involved in protein-RNA interactions critical 
for its transcriptional regulatory function (40). In lineage 
labeling studies, using Wt1 as a marker, PMCs were found 
to track into the lung parenchyma and undergo mesothelial-
mesenchymal transition (MMT) to form smooth muscle 
cells of the vascular wall, as well as other cells of the lung 
mesenchyme during development (7,20,41). Another lineage 
tracing study in the mouse embryo showed PMCs readily 
migrate into the lung parenchyma and express α-smooth 
muscle actin (α-SMA) (42). A study employing Wt1CreERT2/+ 
mice visualized Wt1+ mesothelial cell entry into the lung by 
live imaging, and by lineage tagging identified their progenies 
in subpopulations of bronchial smooth muscle cells, 
vascular smooth muscle cells and desmin + fibroblasts (43).  
These studies establish the quintessential role of the 
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mesothelium during development and organogenesis 
and suggest the possibility that re-activation of such 
developmental pathways may modulate lung injury-repair 
and play a role in the pathogenesis of disease processes in 
the post-natal period. 

Pleural mesothelial cells are pluripotent

Although limited, there is evidence suggesting the existence 
of a population of progenitor-like mesothelial cells, with  
the capacity to differentiate into cells of different 
phenotypes (44). It has been demonstrated that the embryonic 
and adult mesothelium represents a common lineage to 
trunk fibroblasts, smooth muscle cells and vasculature (45). 
In one study, primary rat and human mesothelial cells were 
maintained in osteogenic or adipogenic media, and changes 
in mRNA expression of these cells suggested that these 
cells could differentiate into osteoblast- and adipocyte-like 
cells via EMT (46). The transduction of the rat peritoneum 
and pleura with an adenovirus expressing TGF-β1 causes 
mesothelial cells to undergo EMT with subsequent fibrotic 
changes (47,48). In response to TGF-β1 and platelet derived 
growth factor (PDGF), the mesothelial cells retain the 
ability to produce mesenchyme, including smooth muscle 
cells (25,49) and have been shown to adopt a myofibroblast 
phenotype in vitro (50). PMCs respond with haptotactic 
migration to a gradient of TGF-β1, which is dependent 
on smad-2 signaling, suggesting that PMCs may be a 
possible source of myofibroblasts in idiopathic pulmonary 
fibrosis (IPF) (51). Another study demonstrated TGF-β1 
treated PMCs to traffic into the lung and differentiate into 
myofibroblasts (52). Taken together these results suggest a 
role for PMCs in the pathogenesis of IPF.

Pleural mesothelial cell defense mechanisms

PMC is a central component of the pathophysiologic 
processes affecting the pleural space and is essential in 
maintaining its normal homeostasis (4). There exists a 
harmonious cross talk between PMCs and immune cells 
of adaptive immunity. Upon pleural infection, the PMCs 
initiate pro-inflammatory responses by recruiting and 
activating immune cells, which in turn modulate mesothelial 
cell responses (53).

Innate immunity 

The innate immune response of the pleura is ignited within 

the first few hours following an insult to the pleural space (54). 
This response is primarily driven by the PMCs that recognize 
the offending agent and initiate the inflammatory cascade, 
which differs according to the invading agent. 

Glycoconjugates, which consist of PMC-associated 
sialomucins, cover the free surface of the mesothelium (55). 
These mesothelial cell-associated sialomucins are strong 
anionic sites that coat the pleural surface with a negative 
charge and repulse abnormal cells, organisms, and particles. 
These glycoproteins also provide a second level of mechanical 
repulsion to invading cells, microbes, etc. (56,57). In addition, 
mesothelial cells produce fibronectin, a large glycoprotein 
that prevents adherence of organisms such as Pseudomonas 
aeruginosa (55). 

Mesothelial cells release various mediators of inflammation 
such as PDGF, interleukin-8 (IL-8), monocyte chemotactic 
peptide (MCP-1), collagen, antioxidant enzymes and the 
plasminogen activation inhibitor (PAI) (58). Activation 
of proteinase-activated receptor-2 (PAR-2) present on 
PMCs has been shown to potently induce the release of 
inflammatory cytokines such as macrophage inflammatory 
protein (MIP)-2 and tumor necrosis factor (TNF)-β and 
cause neutrophil recruitment into the pleural cavity (59). 

Another innate response of the PMCs is the release of 
reactive oxygen species and the nitric oxide (NO) radical. 
PMCs produce large quantities of NO radicals in response 
to the stimulation by cytokines, lipopolysaccharide (LPS), 
and other signaling molecules (3,60). Inducible NO 
synthase may contribute to the control of infections in the 
pleural space and may be involved in pleural inflammation 
from other insults (55). 

Infectious pathogens express pathogen-associated 
molecular patterns (PAMPs) that are composed of 
proteins, carbohydrates, lipids, or nucleic acids and may be 
intracellular or surface bound (61). PAMPs include LPS, 
bacterial lipoproteins, lipoteichoic acids of gram-positive 
bacteria, bacterial cell wall peptidoglycans (PGNs), and 
fungal and mycobacterial cell wall components (62). The 
mesothelial cells recognize PAMPs and initiate multi-level 
defense mechanisms (63). Some of the pattern recognition 
receptors including CD14, integrins, the mannose receptor, 
and the Toll-like receptors (TLRs) (64) bind to PAMPs to 
identify the pathogen and initiate downstream signaling 
with production of various peptides with antimicrobial 
activity, chemokines, and cytokines such as TNF-α, IL-1, 
IL-6, and IL-8 (62). Murine primary PMCs constitutively 
express TLR-1 through TLR-9 and activation with 
staphylococcal PGN, which is a gram-positive bacterial cell 



967Journal of Thoracic Disease, Vol 7, No 6 June 2015

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2015;7(6):964-980www.jthoracdis.com

wall component and a TLR-2 agonist, results in significant 
increase in TLR-2 and the antimicrobial peptide beta-
defensin-2 (mBD-2) expression (65). 

Acquired immunity

Acquired immunity involves the T- and B-cell lymphocytes 
and the expression of distinct antigenic receptors (66,67). 
PMCs release chemokines such as IL-1, IL-6 and interferons 
(IFNs), which co-stimulate T cells, and contribute to 
the cytokine networks that allow for undifferentiated T 
lymphocytes to become T-helper (Th)-1 or Th2-type cells 
that subsequently direct different inflammatory responses in 
the pleural space (3). 

Defensins are small cationic peptides with antimicrobial 
function. In addition to innate immune responses, as noted 
above, human β-defensin-2 also promotes adaptive immune 
responses by recruiting dendritic cells and T lymphocytes and 
attracting neutrophils to sites of microbial invasion (68,69). 
Pleural fluids from patients with empyema contain elevated 
levels of human β-defensin-2 (70). PMCs have also contribute 
to kallikrein-kinin system (KKS)-mediated inflammation in 
pleural disease via a heat shock protein 90 (HSP90)-dependent 
mechanism (71).

Pleural permeability and formation of pleural effusion

PMCs are linked together by adherens junctions. Malignant 
cells, bacteria, or cytokine mediated activation of the pleural 
mesothelial monolayer results in altered shape and gap 
formation, leakage of protein and fluids, and movement of 
phagocytic cells into the pleural space, causing a breach in 
the integrity of the pleura.

Cadherins and catenins are transmembrane adherens 
junction proteins that allow for a change in permeability via the 
contraction of the intracellular actin cytoskeletal filaments and 
gap formation between mesothelial cells (72). Neural cadherin 
(n-cadherin) on PMCs loses tyrosine phosphorylation and 
combines with plakoglobin and actin in tightly confluent cells 
when adherens junctions are stabilized (73). However, n-cadherin 
is heavily phosphorylated in tyrosine and there is decreased 
expression of β-catenin in weakened junctions (74). The opening 
up of adherens junctions is reversible, functioning as a “zipper”, 
with mesothelial cells returning to their normal shape with 
closure of junctions within 15 min after stimulation in vitro (75).

Vascular endothelial growth factor (VEGF), a 35- to 45-kDa 
dimeric polypeptide, is a permeability and angiogenic factor 
mediating neovascularization (76). Its expression is upregulated 

in activated PMCs (77) and it is produced in large quantities 
in inflammatory and malignant effusions (76,78,79). VEGF 
dependent tyrosine phosphorylation of adherens junction 
proteins and the dynamic interaction between n-cadherin and 
β-catenin, are key determinants of mesothelial paracellular 
permeability. Upon exposure to noxious stimuli, the interaction 
of surface ligands with intercellular molecules expressed on 
mesothelial cells can cause cell migration and leakage of high 
molecular weight proteins across the pleural membrane, 
leading to the formation of a pleural effusion. 

Parapneumonic effusion and Empyema
A characteristic feature of parapneumonic effusions is the 
accumulation of neutrophils and mononuclear phagocytes. 
Pleural fluid from patients with uncomplicated parapneumonic 
effusions and empyemas contains higher levels of IL-8 
(released by PMCs) than pleural effusions from patients with 
malignancy, tuberculosis, or heart failure (80). Interestingly, 
PMCs produce IL-8 in a polar manner during pleural 
inflammation, and thereby regulate the influx of neutrophils 
into the pleural space (81). Moreover, antibodies to IL-8 
can mediate inhibition of neutrophil entry into the pleural 
space (82). PMCs have also been shown to release Hsp72 
[an isoform of Heat shock protein 70 (HSP70)] in response 
to bacterial infection and levels of Hsp72 are significantly 
increased in infectious pleural effusions, as compared 
to non-infectious effusion (83). The role of Hsp2 in the 
pathogenesis of pleural infection needs to be further 
explored. 

Recently, a novel murine model of pneumonia-associated 
empyema revealed that S. pneumoniae crossed mesothelial 
layers by translocation through cells rather than by a 
paracellular route (84). Pleural infection by bacteria, such 
as Staphylococcus aureus, induces the PMCs to release VEGF 
which alters mesothelial permeability, leading to protein 
exudation in empyema (78). S. aureus activates the early 
response genes c-fos and c-jun and activator protein-1 
(AP-1) in primary mouse PMCs, which may contribute 
to the activation of pro-apoptotic genes Bak and Bad and 
release of cytochrome-c and caspase-3, thereby, resulting 
in apoptosis of PMCs (85). Interestingly, S. aureus-
activated PMCs appear to extend the life span of recruited 
polymorphonuclear leukocytes by modulating Bcl-xL and 
Bak gene expression and activity of active caspases during 
acute inflammation and empyema (86). 

Tuberculous pleural effusion
Early during the course of granulomatous inflammation, 
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there is  a neutrophil-predominant response (87). 
Subsequently, mononuclear phagocytes engulf mycobacteria 
resulting in coalescence of mononuclear cells into 
granulomas. Bacillus Calmette-Guérin (BCG) infection has 
been shown to induce chemokine expression and increase 
the production of MIP-1 alpha and MCP-1 (CCL2) by 
mouse PMCs (88), which is inhibited by IL-4, suggesting 
that Th1 and Th2 cytokines may regulate the C-C 
chemokine expression in PMCs and play an important role in 
mononuclear cell recruitment to the pleural space (89). BCG 
infection has also been shown to down regulate beta-catenin 
(an adherens junction protein) expression, decrease electrical 
resistance across the PMC monolayer, enhance the release 
of VEGF from PMCs, and increase permeability across 
the mesothelial monolayer (90). In tuberculous pleuritis, 
PMCs express intercellular adhesion molecule (ICAM)-1 
and facilitate monocyte transmigration across a chemotactic 
gradient generated by MIP 1-alpha or MCP-1 (91). 

Pleural  f lu ids  of  pat ients  with  granulomatous 
inflammation also contain interferon-γ (IFN-γ), a critical 
cytokine for the recruitment of mononuclear cells (92). 
IFN-γ augments cytokine and chemokine production by 
local cells and causes a significant increase in MCP-1 and 
MIP-1 production by mesothelial cells (88). IFN-γ also 
upregulates antimicrobial, phagocytic and T-cell-activating 
functions, and NO release by PMCs (60). 

Malignant pleural effusion
Metastases from cancers of the lung, breast, stomach, and 
ovary are seen in greater frequency in the pleural space 
than metastases from other malignancies. Malignant cells 
can overcome the pleural defense mechanisms by means 
of various mechanisms (93). For example, the sialomucin 
complex (SMC) on the PMCs acts as a defense lawyer, and 
its removal by sialidase (as expressed by ovarian cancer cells 
HTB-77) increases the susceptibility of the PMC layer to the 
adherence of malignant cells and to increased metastasis (57). 

PMCs produce significant quantities of hyaluronan, 
which is a ligand for CD44 receptors (94,95). Malignant 
ce l l s  interna l ize  the  CD44-hya luronan complex 
and hydrolyze it  to several low-molecular-weight 
oligosaccharides. These oligosaccharides are angiogenic 
and also chemotactic for malignant cells and increase the 
permeability of the mesothelial monolayer. Low-molecular-
weight hyaluronan also induces malignant mesothelioma 
cell proliferation and haptotaxis via interaction of the CD44 
receptor (96).

VEGF and basic fibroblast growth factor (bFGF) 

released by malignant cells increase the permeability of 
the surrounding tissues to allow for neovascularization of 
the pleural surface. Angiogenesis develops an environment 
surrounded by blood vessels through which the malignant 
cells can be nourished and is crucial for their growth. 
Cancer cells can also induce PMCs to release VEGF, 
increase the permeability of the monolayer, and can also 
produce autocrine growth factors (97).

Endostatin, released by normal cells and tissues, 
induces cell cycle arrest and apoptosis, inhibits endothelial  
cell migration, inhibits angiogenesis and reduces tumor 
growth (98). It is a potential defense mechanism of PMCs 
against invading malignant cells. The pleural fluids 
from patients with malignant pleural effusions contain 
significantly lower levels of endostatin when compared 
with fluids from patients with congestive heart failure (99). 
Interestingly, talc insufflation has been noted to induce 
PMCs to release endostatin (100). 

Asbestos related pleural disease
PMCs have been shown to initiate the inflammatory 
response to asbestos by releasing chemotaxins for 
neutrophils in the presence of crocidolite (101). Asbestos 
directly stimulates PMCs to synthesize IL-8, which may 
play an important role in mediating asbestos induced pleural 
inflammation (102). Crocidolite asbestos has been shown 
to induce PDGF mediated fibroblast proliferation in the 
pleura (98). Moreover, PMCs actively phagocytose asbestos 
fibers, which seem to stimulate PMC fibronectin synthesis 
that may play a role in the induction of pleural fibrosis (103). 

Carbon nanotubes (CNT) have recently been shown 
to cause a length-dependent, asbestos-like inflammatory 
response via a significant release of acute phase cytokines 
such as IL-1β, TNFα, IL-6 and IL-8 from the macrophages. 
When treated with conditioned media from CNT-treated 
macrophages, mesothelial cells cause a dramatic release 
of cytokines, which can potentiate the pro-inflammatory 
response of macrophages that can lead to fiber, related 
pleural disease (104). 

Malignant pleural mesothelioma (MPM)
The Eph transmembrane tyrosine kinases constitute 
the largest family of receptor tyrosine kinases. The Eph 
receptors are capable of recognizing signals from the cell 
microenvironment and influencing cell-cell interaction and 
migration. EphA2 overexpression has been implicated in 
tumor growth, angiogenesis, and metastasis, and has been 
noted in aggressive malignancies (105-108). Overexpression 
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of EphA2, as seen in malignant mesothelioma cell lines, 
significantly increases the haptotactic migration of the 
malignant mesothelioma cells while downregulation of 
EphA2 expression causes inhibition of cell proliferation and 
haptotactic migration, and induction of apoptosis through 
caspase-9 activation (109). Moreover, activation of the EphA2 
receptor by its ligand ephrinA1 downregulates total EphA2 
expression via phosphorylation and suppresses the growth 
of MPM cells via ERK1/2 signaling (110). Receptor EphA2 
inhibition has been suggested as an approach for inhibiting 
MPM growth as it has been shown to induce both extrinsic 
and intrinsic apoptotic pathways in MPM Cells (111). 

High levels of activated HGF and c-Met have been 
observed in mesothelioma and these correlate with disease 
relapse and poor prognosis (112-114). Inhibition of HGF 
signaling can block phosphorylation of downstream 
signaling molecules, cell growth, migration and invasion in 
mesothelioma (115-117). HGF has also been implicated in 
dissemination of mesothelioma by inducing mesothelial cells 
to round up, separate and detach from the serosal surface and 
then stimulate invasion of adhering tumour cells (118-121).

IL-8, a proinflammatory and angiogenic cytokine, 
has been described to function as an autocrine growth 
factor and plays an important role in tumor-related 
neovascularization (122). Antibody treatment against IL-8 
has been shown to decrease human MPM progression (123). 

A term mesodermoma has been suggested to define 
neoplasms arising from undifferentiated and multipotential 
mesoderm (124).  The dif ferent t issue types seen  
in malignant mesothelioma and other serosal pathologies 
may be a result of mesothelial cell differentiation. The 
expression of CD26 has been shown to be increased 
in various cancers (125) and it has been demonstrated 
that CD26 upregulates periostin secretion by malignant 
pleural mesothelioma (MPM) cells (126). In a study of a 
retrospective cohort of 352 patients, immunohistochemistry 
of a tissue microarray showed that the activation of 
periostin-triggered EMT is associated with the sarcomatoid 
histotype of malignant mesothelioma and has an impact on 
shorter survival of patients (127). 

Recently, in an orthotopic model of human pleural 
malignancy, intrapleural chimeric antigen receptor (CAR) 
T cell therapy caused antigen-induced T cell activation and 
a robust CAR T cell expansion and effector differentiation, 
resulting in increased antitumor efficacy. Interestingly, a 
significant finding of this study was that regional T cell 
administration also promoted elimination of extrathoracic 
tumor sites (104). 

Resolution of pleural inflammation

The resolution of pleural inflammation is primarily 
dependent upon the resolution of the inciting process, 
for example, eradication of the pathogenic microbe and 
microbial products from the pleural space in case of pleural 
infection. Inflammation of the pleural surface may resolve 
without fibrosis with regeneration of a normal mesothelial 
surface, or with fibrosis that involves the production and 
proliferation of fibroblasts.

Repair of injured pleura without fibrosis not only requires 
a re-establishment of the normal pleural mesothelial 
monolayer but also a downregulation of the inflammatory 
response, including inhibition of fibroblast proliferation 
and collagen synthesis. Rat PMCs exhibit chemotaxis and 
proliferation in response to thrombin in a dose-dependent 
manner, suggesting that thrombin may play an important role 
in the regulation of pleural repair without fibrosis and the 
re-establishment of the mesothelial monolayer (128). PMCs 
produce prostaglandin E2 (PGE2), the release of which is 
completely blocked by anti-thrombin 3 and indomethacin 
suggesting its role in the repair process of pleural injury (129). 
In addition, MCP-1 induces proliferative and haptotactic 
responses in PMCs, which may play a crucial role in the 
regeneration of the mesothelium and re-epithelialization of 
the denuded basement membrane at the site of pleural injury 
during the process of pleural repair (130). 

Pleural fibrosis

Pleural fibrosis can be a result of various inflammatory 
processes such as rheumatoid pleurisy, bacterial empyema, 
asbestos exposure, malignancy, retained hemothorax, and 
medications (6). PMCs play a pivotal role in the initiation 
and maintenance of pleural inflammation that is driven by 
cytokines and a large number of inflammatory cells that are 
recruited to the pleural space. 

Transforming growth factor-β (TGF-β)
A key abnormality in most fibrotic diseases is the 
overproduction of TGF-β, a family of multifunctional growth-
modulating cytokines. PMCs express receptors for TGF-β, and 
elevated levels of TGF-β have been found in pleural effusions 
and pleural tissues during disease processes (131). TGF-β 
regulates cell proliferation, cell migration, cell differentiation, 
and extracellular matrix production and is a potent chemo-
attractant for fibroblasts (1). Mesothelial cell stimulation 
by TGF-β leads to increased synthesis of collagen, matrix 
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proteins, matrix metalloproteinase-1 and -9, and tissue 
inhibitor of matrix metalloproteinases-2 (132,133). The 
presence of high levels of TGF-β in empyema, tuberculous 
pleuritis, and asbestos-related pleural effusions suggests a role 
in pleural fibrosis (134-136). In animal models, intrapleural 
administration of TGF-β induces pleural scarring and 
mediates pleurodesis (137,138). 

Platelet-derived growth factor (PDGF)
Mesothelial cells produce PDGF (139), a mitogenic cytokine 
for mesothelial cells (140), that stimulates hyaluronan 
production in mesothelial cells and fibroblasts and promotes 
the growth of fibroblasts (141,142). Moreover, PDGF 
stimulates collagen production by mesothelial cells. In mouse 
models, PDGF mediates fibroblast proliferation in the pleura 
in response to inhaled crocidolite asbestos fibers, whereas 
antibodies against PDGF inhibit fibroblast proliferation (143). 
Furthermore, PDGF also induces the expression of TGF-β, 
thereby potentiating the fibrotic response (144).

Basic fibroblast growth factor (bFGF)
bFGF, also called fibroblast growth factor-2 (FGF-2), stimulates 
mesothelial cell proliferation in vitro and in vivo (145). This 
angiogenic factor is mitogenic for fibroblasts, smooth muscle 
cells, and endothelial cells (146-148) and is present in pleural 
effusions of various etiologies (149,150). In one study, bFGF 
levels were higher in the pleural fluid of patients who underwent 
successful talc pleurodesis compared to those who failed talc 
pleurodesis (151). Moreover, mesothelial cells stimulated with 
talc were noted to release higher amounts of bFGF when 
compared to controls (151).

Hepatocyte growth factor (HGF)
The role of HGF may be opposite to that of TGF-β or 
b-FGF in pleural fibrosis (118). Elevated HGF levels have 
been reported in serosal (pleural and peritoneal) fluids, 
serum, and bronchoalveolar lavage (BAL) and pulmonary 
edema fluid of patients with various diseases (152-156). 
HGF stimulates proliferation, migration and collagen 
production in mesothelial cells (156-158). Increasing HGF 
levels in the lung and other organs enhances repair and 
slows the progression of fibrosis (159-166), while inhibition 
of HGF by neutralizing antibodies increases fibrosis (167). 
The role of HGF in repair has been described for various 
tissues, but its role in the pleura is not well established. 

Disordered fibrin turnover
Disordered fibrin turnover plays an important role in 

the pathogenesis of pleural fibrosis (168). Formation of a 
transitional fibrin neomatrix contributes to tissue organization 
and fibrotic repair during the process of wound healing. With 
ongoing remodeling, collagen deposition occurs and leads to 
progressive scarring and fibrotic repair (168). 

Tissue factor is  expressed by mesothelial  cells , 
macrophages, and fibroblasts (169-171) and is detectable in 
the pleural fluid (172). The concurrent expression of tissue 
factor pathway inhibitor (TFPI) by PMCs regulates the 
process of coagulation in the pleural space (172,173). In the 
setting of pleural injury, the level of intrapleural tissue factor 
appears to exceed that of TFPI and intrapleural coagulation 
is upregulated in patients with exudative effusions compared 
to patients with effusions due to congestive heart failure (172).

The PMCs and recruited inflammatory cells can produce 
components of both the fibrinolytic system and inhibitors of 
the fibrinolytic system including tissue plasminogen activator, 
urokinase, urokinase receptor, and plasminogen activator 
inhibitor-1 (PAI-1) and are hypothesized to be involved in 
the pathogenesis of pleural injury and fibrosis (172).

Human PMCs secrete urokinase and tissue plasminogen 
activator, which are detectable in pleural effusions in a free 
form and complexed to PAI-1 and PAI-2 (169,172). Both 
urokinase and tissue plasminogen activator can activate 
plasminogen present in pleural fluids with the subsequent 
generation of plasmin. PMCs, macrophages, and lung 
fibroblasts also express urokinase receptors (174-176). 
Both urokinase and urokinase receptor are involved in the 
regulation of cytokine-mediated cellular signaling and cell 
trafficking (177). Moreover, urokinase is a chemotaxin and a 
mitogen for mesothelial cells and lung fibroblasts (174,178). 
Tissue plasminogen activator is mainly responsible for 
intravascular thrombolysis while urokinase is mainly involved 
in extravascular proteolysis and tissue remodeling (179). 
TGF-β increases mesothelial cell production PAI-1 and 
PAI-2, which are the major inhibitors of urokinase mediated 
intrapleural fibrin clearance and can lead to accelerated 
pleural connective tissue matrix organization and pleural 
fibrosis (169,180). The complex interplay of urokinase, 
urokinase receptor, and PAI responses determines the local 
fibrinolytic activity and influence the processes of pleural 
inflammation and repair, and development of pleural fibrosis.

Pleurodesis
Pleurodesis is the process of obliteration of the pleural 
space and absence of defining surfaces between the parietal 
and visceral pleura. Talc mediates pleurodesis by stimulating 
PMCs to release chemokines such as IL-8 and MCP-1, 
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causing increased chemotactic activity for neutrophils and 
monocytes, and enhancing the expression of ICAM-1 (181). 
Talc has also been shown to induce PMCs to release bFGF 
and PDGF (151). In one study, pleural fluids collected after 
talc insufflation and conditioned media from talc-activated 
PMCs were noted to induce apoptosis in human umbilical vein 
endothelial cells. Thus, talc appears to alter the angiogenic 
balance in the pleural space from a biologically active and 
angiogenic environment to a more angiostatic milieu (100).

Tetracyclines cause pleurodesis by stimulating the PMCs 
to produce a growth-factor-like activity for fibroblasts (182). 
Intrapleural administration of TGF-β has been shown to 
induce pleurodesis in animal models (137,138). It has been 
suggested that unlike talc and tetracycline, TGF-β can 
induce collagen synthesis without stimulating PMCs to 
release IL-8 and provoking pleural inflammation (183). It is 
noteworthy that TGF-β can induce transient production of 
large pleural effusions possibly due to increased production of 
VEGF from PMCs (184). Interestingly, in case of significantly 
advanced malignant pleural disease, where talc or another 
sclerosing agent may have little interaction with normal 
PMCs, the fibrotic response has been found to be attenuated, 
emphasizing the role of PMCs in pleural fibrosis (4).

Idiopathic pulmonary fibrosis (IPF)
IPF is a rapidly progressive lung disease of unknown 
etiology, with limited therapeutic options and a median 
survival of 3-5 years (185). Fibrotic remodeling in 
IPF occurs by mesenchymal cell proliferation and the 
differentiation of progenitor cells into myofibroblasts, 
which secrete excessive amounts of extracellular matrix 
resulting in scarring and destruction of the lung architecture 
(46,186,187). It begins in the distal sub-pleural regions 
and progresses proximally into the lung parenchyma,  
the reasons for which are poorly understood (188). High-
resolution computed tomography (189) and 3-dimensional 
(3D) morphometric analysis (190) of the IPF lung suggest 
a complex and highly interconnected reticulum of fibrous 
tissue extending from the pleura into the underlying 
parenchyma. These findings suggest an intrinsic factor of 
the pleura as the culprit for IPF. 

The extent of fibroblastic foci present on lung biopsy 
predicts survival in IPF patients (191,192). The mechanisms 
involved in the formation of fibroblastic foci and the origin 
of myofibroblasts are poorly understood (193). Also, there 
is no clear explanation for the histopathological pattern 
of usual interstitial pneumonia (UIP) and its peripheral 
localization (194). The reasons for association of IPF with 

ageing and aberrant epithelial activation are also unknown, 
but there is some evidence to suggest that an abnormal 
recapitulation of developmental pathways may play a role (188). 

Pleural mesothelial cells in IPF
The embryonic mesoderm plays a crit ical  role in 
lung-branching morphogenesis, vasculogenesis, and 
alveologenesis, the latter involving septation by alveolar 
fibroblasts (195). In response to airway-alveolar injury, 
the pleural mesothelium may mobilize reparative cells in a 
process that replicates features of embryonic development 
(16,75,196-198). PMCs respond to their microenvironment 
and have the capacity to differentiate into adipocytes, 
endothelial cells, and osteoblasts, suggesting remarkable 
plasticity (46,51,75,85). EMT seems to play a role in liver, 
kidney, and lung fibrosis (199). Some studies have suggested 
a role for EMT in the generation of myofibroblasts in lung 
parenchyma (200-202), although other studies appear to 
contradict this in injury-provoked lung fibrosis (203). 

Wt1 expressing cells, including PMCs, have the capacity 
to switch between a mesenchymal and epithelial state (204). 
A balance between the epithelial and mesenchymal states of 
cells is essential for normal development and for maintenance 
of adult tissue homeostasis (205). Wt1 is necessary for the 
morphologic integrity of pleural membrane and loss of Wt1 
contributes to IPF via MMT of PMCs into a myofibroblast 
phenotype (206). Wt1 expressing PMCs have been shown 
to migrate into the lung parenchyma and differentiate into 
subpopulations of bronchial smooth muscle cells, vascular 
smooth muscle cells, fibroblasts, and also myofibroblasts 
supporting the hypothesis that IPF may be an altered 
recapitulation of development (42,43,207). Other studies have 
demonstrated the differentiation of PMCs into myofibroblasts 
in response to transforming growth factor TGF-β1 (51,208). 
In response to TGF-β1, PMCs lose their polarity and cell-
cell junctional complexes, migrate into lung parenchyma, 
and undergo phenotypic transition into myofibroblasts via 
smad-2 signaling (51,208). The demonstration of TGF-β1 
induced PMC trafficking into the lung and differentiation into 
myofibroblasts supports a role for PMCs in the pathogenesis 
of IPF and suggests a potential role for pleural-based therapies 
to modulate pleural mesothelial activation and parenchymal 
fibrosis progression (52).

Pleural mesothelial cell as a potential 
therapeutic target

Recent studies show that in IPF patients, PMCs are present 
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in the explanted lung tissue parenchyma (52,208). Moreover, 
the number of calretinin-positive cells correlate with the 
degree of fibrotic change seen in the parenchyma (208), 
as measured by the Ashcroft score (the histo-pathological 
grading of pulmonary fibrosis (209-212). The finding that 
PMCs migrate into the lung parenchyma and transform 
into myofibroblasts provides a rational explanation for the 
spatio-temporal distribution of fibrosis in IPF and invokes 
a novel, alternative hypothesis for the origin and source of 
the myofibroblasts. PMCs not only seem to play a role in 
the tissue remodeling responses seen in patients with IPF, 
but may also represent a novel cellular biomarker of disease 
activity and a potential therapeutic target. 

Intra-pleural delivery of compounds is an innovative 
therapeutic modality that can be refined to deliver drugs 
targeting the lungs. Direct delivery of the small molecule 
inhibitors to the pleura can potentially provide a direct 
and efficient way to deliver a high concentration of the 
compound to target the pro-fibrogenic activities of PMCs, 
thereby increasing its efficacy and minimizing systemic 
toxicity. Intra-pleural delivery may result in higher, 
sustained drug levels in the BAL fluid when compared with 
serum levels (208). For example, intrapleural CAR T cell 
therapy was found to vastly outperform systemically infused 
T cells even when accumulated at equivalent numbers in 
the pleural tumor (104). 

Several methods such as liposomal drug delivery, 
nanoparticle (NP) delivery of proteins, and gene therapy 
have been explored for site-directed delivery of therapeutic 
agents (213-215). For example, biodegradable fluorescein 
isothiocyanate (FITC) labeled PLGA (poly-lactic-co-
glycolic acid) NPs (which can carry therapeutic compounds 
conjugated to PLGA) can be coated with antibody targeted 
to mesothelin (a PMC marker) to allow them to target 
the pleural surface and potentially diffuse into the lung 
parenchyma. Intra-pleural delivery of molecules to the 
lung is feasible and appears to be safe, however, delivery 
techniques will need to be refined to minimize lung injury. 

Conclusions

The PMCs are the most common cells in the pleural 
space and are quintessential for maintenance of a dynamic 
state of homeostasis in the pleural space. PMCs are 
mesenchymal in origin and via the process of EMT, give 
rise to the endothelium and vascular smooth muscle cells 
heart, liver and gut during development. In response to 
TGF-β1 and PDGF, PMCs have been shown to produce 

mesenchyme, adopt a myofibroblast phenotype in vitro, and 
undergo EMT with subsequent fibrotic changes; suggesting 
pluripotency of PMCs and their importance in the diseases 
of lung and the pleura. 

PMCs exhibit various innate and acquired immune 
mechanisms and form the central component of pleural 
defense mechanisms. These mechanisms include functions 
such as providing a mechanical barrier to invasion as well 
as a sophisticated, multilayered, and coordinated system of 
cytokines and inflammatory cell recruitment. For example, 
TLRs on PMCs recognize pathogens via PAMPs such as 
LPS, bacterial lipoproteins, cell wall PGNs, and bacterial 
and viral nucleic acids; and initiate downstream signaling 
with production of various peptides with antimicrobial 
activity, chemokines, and cytokines such as TNF-α, IL-1, 
IL-6, and IL-8. Transmembrane adherens junction proteins, 
Cadherins and catenins, and VEGF allow PMCs to regulate 
pleural permeability and upon exposure to noxious stimuli, 
the interaction of surface ligands for intercellular molecules 
expressed on PMCs causes changes in the permeability of 
the pleural membrane, leading to the formation of a pleural 
effusion. 

Metastases to the pleura are seen in greater frequency, 
from cancers of lung, breast, stomach, and ovary than from 
other malignancies. Malignant cells can overcome the 
pleural defense mechanisms by means of various mechanisms 
such as removal of SMC by sialidase, hydrolysis of CD44-
hyaluronan complex, suppression of endostatin release 
by PMCs, and by VEGF and bFGF mediated increase in 
permeability and neovascularization. Overexpression of 
EphA2 (a member of the Eph transmembrane tyrosine 
kinase family), as seen in malignant mesothelioma cell 
lines, significantly increases the haptotactic migration of 
the malignant mesothelioma cells while downregulation of 
EphA2 expression causes inhibition of cell proliferation and 
induction of apoptosis. High levels of activated HGF and 
c-Met have been observed in mesothelioma and inhibition 
of HGF signaling can block phosphorylation of downstream 
signaling molecules, cell growth, migration and invasion in 
mesothelioma.

Resolution of pleural inflammation may occur without 
fibrosis with regeneration of a normal mesothelial surface, 
or with fibrosis. PMCs play a pivotal role in the process of 
pleural fibrosis via release of TGF-β, PDGF, bFGF and 
HGF, and by a disordered state of fibrin turnover; resulting 
in the production and proliferation of fibroblasts. PMCs 
also migrate into the lung parenchyma and differentiate into 
subpopulations of bronchial smooth muscle cells, vascular 
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smooth muscle cells, fibroblasts, and also myofibroblasts 
suggesting that IPF may be an altered recapitulation of 
developmental pathways. Moreover, PMCs may represent 
a novel cellular biomarker of disease activity in IPF and a 
potential therapeutic target.
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