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Background: Obstructive sleep apnea (OSA) has a high prevalence, with an estimated 425 million adults 
with apnea hypopnea index (AHI) of ≥15 events/hour, and is significantly underdiagnosed. This presents a 
significant pain point for both the sufferers, and for healthcare systems, particularly in a post COVID-19 
pandemic world. As such, it presents an opportunity for new technologies that can enable screening in both 
developing and developed countries. In this work, the performance of a non-contact OSA screener App that 
can run on both Apple and Android smartphones is presented.
Methods: The subtle breathing patterns of a person in bed can be measured via a smartphone using the 
“Firefly” app technology platform [and underpinning software development kit (SDK)], which utilizes 
advanced digital signal processing (DSP) technology and artificial intelligence (AI) algorithms to identify 
detailed sleep stages, respiration rate, snoring, and OSA patterns. The smartphone is simply placed adjacent 
to the subject, such as on a bedside table, night stand or shelf, during the sleep session. The system was 
trained on a set of 128 overnights recorded at a sleep laboratory, where volunteers underwent simultaneous 
full polysomnography (PSG), and “Firefly” smartphone app analysis. A separate independent test set of 
120 recordings was collected across a range of Apple iOS and Android smartphones, and withheld for 
performance evaluation by a different team. An operating point tuned for mid-sensitivity (i.e., balancing 
sensitivity and specificity) was chosen for the screener.
Results: The performance on the test set is comparable to ambulatory OSA screeners, and other 
smartphone screening apps, with a sensitivity of 88.3% and specificity of 80.0% [with receiver operating 
characteristic (ROC) area under the curve (AUC) of 0.92], for a clinical threshold for the AHI of ≥15 events/
hour of detected sleep time.
Conclusions: The “Firefly” app based sensing technology offers the potential to significantly lower the 
barrier of entry to OSA screening, as no hardware (other than the user’s personal smartphone) is required. 
Additionally, multi-night analysis is possible in the home environment, without requiring the wearing of a 
portable PSG or other home sleep test (HST).
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Introduction

Sleep disordered breathing (SDB) is characterized by 
abnormal respiratory patterns, which can include pauses 
in breathing, and insufficient ventilation during sleep. The 
most common types of SDB include upper airway resistance 
syndrome (UARS), and obstructive sleep apnea (OSA). OSA 
can be asymptomatic or symptomatic, accompanied by major 
neurocognitive and cardiovascular sequelae (i.e., a condition 
which is the consequence of a previous disease), and typically 
associated with disrupted sleep, daytime fatigue, and a 
concomitant reduced quality of life (QOL) (1-3).

Globally, over 936 million adults aged 30–69 years are 
believed to have mild, moderate or severe OSA [i.e., apnea 
hypopnea index (AHI) threshold values of ≥5 events per 
hour]; 425 million of these adults have either moderate to 
severe obstructive sleep (AHI ≥15). For example, the number 
of individuals with AHI ≥15 is estimated to be 66 million in 
China, 29 million in India, 25 million in Brazil, 24 million  
in the USA, and 20 million in Russia (1). Positive airway 
pressure (PAP) is recommended in patients with excessive 
sleepiness, impaired sleep related QOL, and comorbid 
hypertension, which are more likely with an Apnea 
Hypopnea Index of ≥15 (1,4).

As the prevalence of OSA rises, so do the associated 
health, safety, and economic consequences, and the urgent 
need to identify those suffering with the condition. Access 
to “gold standard” type I in-lab attended polysomnography 
(PSG) and associated diagnostic services remains a 
challenge, particularly in the developing world, and in 
remote communities (5). As a result, there is growing 
interest in home monitoring, such as type II portable 
monitors (PSG), type III & IV portable monitors, screening 
questionnaires & clinical prediction tools, and well as 
emerging contactless technologies—particularly for 
detecting severe OSA in those without severe comorbidity 
(where lab PSG may still be required) (5,6). In this work, 
an example of such non-contact monitoring technology is 
presented.

Existing contact-based monitoring approaches for 
detecting OSA include a diverse range of sensing and 
processing; examples of these using sound include use of a 
microphone attached to the face or to bedding, such as: a 

face frame mask (7), a mattress overlay (8), two microphones 
(one attached to upper lip, the other for ambient noise) 
(9,10), and oro-nasal based airflow acoustics (10,11).

Wireless (i.e., contactless) recording of sleep and related 
biometrics has the potential to enable new insights into 
sleep disorders (12). Fully contactless approaches (i.e., non-
contact sensing at a distance, such as where the sensing 
device is placed on a bedside locker, shelf or similar adjacent 
to the bed) have been explored to estimate wake & sleep 
stages (13-16), breathing rate (17-20), and OSA in (21-24), 
using specialized radio frequency (RF) sensors and artificial 
intelligence/machine learning (AI/ML) algorithms.

The way people access information relating to their 
health is rapidly evolving, and increasingly smart devices 
are playing a bigger role. In 2018, 5.1 billion people (67% 
of the global population) had subscribed to mobile services, 
with a further 710 million people expected to subscribe 
to mobile services for the first time by 2025 (rising to 
71% of the population) (25). There were an estimated 3.2 
billion smartphone users in 2019 (26)—exceeding 40% of 
the world population (27). The number of unique mobile 
subscribers in North America was 300 million in early 2018 
(84% of the population) and is growing steadily (28).

This rapid growth has fueled interest in utilizing the 
smartphone sensors and platforms for new sensing and 
health analysis. For example, there has been recent work on 
using passive acoustic analysis for detecting snore and OSA 
(29,30) and sonar reflections for detecting OSA (31,32), 
as well as sleep staging (33), using smartphones. However, 
the former can suffer from interference from background 
ambient noise, and the latter can require very specific setup 
to get accurate signals, with limited smartphone support. 
Additionally, these approaches can estimate sleep quality or 
OSA risk—but seldom do both simultaneously.

In this work, a novel hybrid machine learning software 
development kit (SDK) using both active sonar and passive 
acoustic analysis that can overcome these challenges is 
evaluated. This approach can estimate an AHI value, and 
screen for AHI ≥15 events per hour of sleep time. This is 
implemented as both an Apple (Cupertino, CA, USA) iOS 
app (Swift or Objective C) as well as Google (Mountain 
View, CA, USA) Android (Java) app, wrapping a C++ SDK. 
This patent pending “Firefly” technology does not require 
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any custom hardware, and is compatible with a wide range 
of current and future smartphones, with additional potential 
applications in tablets, smart TVs, smart speakers and 
autonomous vehicles (34-36).

Methods

System overview and typical use case

The Firefly mobile app (and underpinning SDK) is 
designed to estimate AHI, and to screen for OSA risk. The 
technology operates on a mobile computing device such as 
an Apple or Android smartphone. It works by estimating 
sleep and breathing patterns, and then analyzing these 
results in order to track sleep-related health risks associated 
with sleep apnea.

The hybrid processing approach utilizes:
(I)	 Passive breath sound detection (and pauses of same, 

indicative of apnea or hypopnea), and;
(II)	 Active “sonar” (comparable to echo location used 

by bats and dolphins) to detect movement of the 
person as they move and breathe (and reductions in 
same, indicative of apnea or hypopnea).

This includes pre-processing, separating, demodulating, 
and analyzing the complex multipath received signals. 
Breathing movements during sleep are recorded using 
the speaker and microphone within the mobile device by 
detecting changes in the echo of a specially crafted phase 
aligned modulated signal played via a selected speaker. 
Breathing sounds during sleep, background ambient sounds, 
as well as the multipath reflections of the transmitted signal, 

are recorded using a selected microphone within the mobile 
device.

The mobile app development process includes steps of 
prototyping in MATLAB (Mathworks, Natick, MA), Python 
& Tensorflow (37), performance evaluation, followed 
by implementation in C++, equivalence testing, and test 
platform evaluation on Windows, Linux and MacOS using 
continuous integration. The resulting apps are native Apple 
iOS Swift (with portions of Objective C) and Android 
Java apps, wrapping the compiled C++ components. This 
approach allows a common Firefly compiled core to be used 
cross-platform, and facilitates rapid updates to the core 
sensing and algorithms. The development follows software 
life cycle processes based on best practice (e.g., IEC 62304), 
agile software development, and risk management processes 
(e.g., ISO 14971).

A typical use case is as follows. The user installs the app 
on their Android or Apple phone from an app store. No 
other equipment is required, and no phone modification 
is needed; i.e., the user just needs to have the app installed 
on a regular smartphone. The phone is placed on a bedside 
table. It is recommended that the phone is placed above 
the mattress height, at about an arm’s length away from the 
person, and with the charger port pointed towards the chest 
(which is the area where the speaker and mic are located 
in modern phones). The app is started at the beginning of 
the night, automatically commences data processing, and is 
stopped at the end of the night (or stops automatically)—see 
Figures 1,2. If the user picks up or interacts with the phone 
(based on processing of gyroscope, accelerometer, charging 
status, and user interface (UI) touches), the sensing is 

Figure 1 High level overview of the Firefly system, showing a smartphone placed beside the bed.
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paused for the duration of the interaction. In addition, if the 
smartphone is connected to an external Bluetooth speaker 
or ear buds, the sensing is paused.

The algorithm uses audio digital signal processing 
(DSP) of sound in the room as detected by the phone’s 
microphone sampled at 48 kHz, including breathing, the 
sound of snoring, and of breathing pauses. This includes 
analysis of breath cessation (quiet time) or breath reduction 
between breaths and/or snores, and recovery breath gasp 
after an apnea. It also employs inaudible sonar (using a 
range above 18 kHz) to measure the breath parameters 
(modulated breathing patterns such as clusters of gaps and 
reductions due to apneas and hypopneas). This hybrid 
approach increases the robustness of the system, and 
allows separation of the biometrics of nearest person to the 
smartphone from a bed partner. In terms of privacy, as the 
audio data are processed by the production Firefly SDK 
locally on the smartphone, no such data need be transmitted 
to any third party system.

During development, many different real-world bedroom 
scenarios were evaluated and tested, in terms of smartphone 
type, smartphone placement beside the bed (such as height, 
distance, and angle), impact of different bedding materials, 
and background sounds. Different factors such as age, body 

mass index (BMI), and gender were checked in terms of 
movement and respiration pattern, as well as the impact 
of one or two people in bed on the detected waveforms. 
Lab based testing was carried out with custom robotic 
breathing phantoms, in acoustically treated environments, 
with calibrated equipment. For example, (I) distance impact 
was evaluated to test respiration rate and movement of 
subject at various distances and heights to a smartphone 
device under test (DUT) with a typical effective range of 1 
m, (II) angle tests of the respiration signal at various angles 
to the DUT chest location covered (from 0–360° angle, 
with optimal results at +/−60°), and (III) blanket impact 
tests of respiration rate with subject covered by selection of 
different bed linens (such as no blanket, sheet, thin blanket, 
quilt, feather quilt, or thick cotton blanket, multiple 
blankets, and so forth). Older and current generation 
phones from suppliers such as Apple (e.g. from iPhone 6 to 
11 Pro Max), Samsung (S6 and later), Google (Pixel family), 
Huawei, Motorola, LG and others were evaluated; their 
speaker and mic sub systems were characterized in order to 
determine capability, manufacturing variability, appropriate 
audio configurations, and suitability of active and passive 
sensing.

The data are processed using proprietary Firefly AI/ML 

Figure 2 Wireframes of possible app screens. These illustrate an estimated AHI of 10 (below a threshold of AHI ≥15), although the subject 
was snoring for most of the night (94%), and should probably continue to monitor their sleep as a result. AHI, apnea hypopnea index.
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algorithms, described below and in (32,34,35). An outline 
of the algorithm architecture is presented in Figure 3. 
Firefly does not change the capabilities of the smartphone 
speaker; rather, it utilizes the fact that the loudspeaker 
and microphone components and associated firmware in 
modern smartphones can support frequencies above those 
audible to most people. Specifically, it uses the frequency 
range of 18–20 or 20–22 kHz for sensing using a swept 
sinusoidal waveform. The reflected signal from the room 
and the direct path component are synchronized and 
demodulated. The components of the remaining signal 
will depend on whether the target is static or moving. 
Assuming an oscillating target at a given distance (e.g., a 
potential “breathing” signal), the signal will contain a “beat” 
signal and a Doppler component. The beat signal is due 
to the difference in frequency position of the transmit and 
received sweeps caused by the time delayed reflection from 
the target. The Doppler is a frequency shift cause by the 
moving target. The waveform shape and breathing signal 
is estimated over range, as depicted in Figure 4, where the 
breathing pattern of the person in bed is detected at around 
25 cm away from the phone. Firefly is designed to manage 
the sometimes highly nonlinear lumped response of speaker 

and mic at these frequencies; this behavior varies between 
phone models (and transducer suppliers), and can also vary 
during a night due to thermal variations, auto gain control 
(AGC), speaker management, and other sophisticated 
software control systems running on different phone 
handsets. By design, the sonar signal is outside the range of 
speech and typical sounds, but has further trend analysis, 
de-noising, and smoothing applied to minimize the impact 
of sharp noises such as pops and bangs in the bedroom 
environment (e.g., doors closing).

The active sonar signal processing involves further 
range-bin spectral and morphological processing in order to 
estimate an effort signal, and then automatically selecting a 
candidate envelope respiratory effort signal based on signal 
to noise ratio. Features in the 25–100 sec timescale, related 
to potential groups of apneas or hypopneas, are provided 
as inputs to a logistical model. This approach is designed 
to reject mechanical periodic sources such as fans, and to 
emphasize SDB patterns.

The passive signal as recorded by the microphone is 
band-pass filtered in the range 250–8,000 Hz [i.e., to 
remove the sonar signal, many potentially interfering 
sounds, and low frequency sounds including mains (AC 

Figure 3 Firefly app algorithm architecture. Active sonar (using the smartphone speaker to play an inaudible signal, and microphone to 
receive reflections of that signal) is processed using logistic models, and then fused with simultaneous processing of the microphone full 
band signal using a neural network to reject non snore sounds.
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50/60 Hz) hum]. Subsequent steps of envelope processing 
including peak enhancement, followed by spectral analysis, 
are performed to produce further features for the logistical 
models.

The passive signal further includes de-noising, followed 
by calculating Mel Frequency Cepstrum Coefficients 
(MFCCs), and then using multiple 2D CNN convolution 
networks to estimate the probability of particular audio 
fingerprints such as snore, and the relative intensity of 
snoring. For snoring, the passive audio is low pass filtered 
(to 16 kHz), and MFCC’s are calculated for every 25 ms 
of audio. An averaged RMS (root mean square) is also 
calculated for display purposes, e.g., an approximate 
representation of intensity of snoring in a graph. Tensorflow 
is used to train AI models on a large labelled dataset of snore 
and non-snore audio (including examples of CPAP, ocean, 
rainfall, city sounds, electro mechanical time switch, large 
fan, small fan, empty room, home sounds, baby, cot mobile, 
lawn mower, smoked detector, car alarm, squeaky door, 
ultrasonic “pest repeller”, air conditioning, white noise, 
pink noise, TV, washing machine, and more). The CNN 
uses at least two convolution layers (e.g., some standard 
fully connected ReLU/sigmoid layers), dense layers with 
softmax classification, and regularization. As these contain 
more than three layers (including input and output layers), 
they can be considered deep neural networks, and perform 
the audio fingerprinting (rejection of background audio) 
and snore detection.

The combination of the sonar detection of bio-motion 
(including breathing) and processing of the breathing sound 

is used to estimate high and low probability areas of OSA 
in an overnight recording. Input features are generated 
based on knowledge that obstructive events typically occur 
in sequences such as in clusters of modulated breathing, 
and that there are disruptions or gaps due to the obstructive 
apnea or hypopnea in the acoustic signal. While Firefly does 
not measure either airflow or drop in oxygen saturation 
directly, it does measure breathing motion via the sonar 
stream, and thus can capture variation in respiratory effort. 
Since clinical thresholds for variation in respiratory effort 
that would allow scoring of hypopneas do not exist, the 
system does not detect hypopneas in an event by event 
manner. Instead, Firefly captures periods in the sleep 
session where variability in respiratory effort is detected, 
consistent with clusters of hypopneas occurring. Analogous 
cluster behavior has been seen in heart rate and oximetry 
signals for example (38,39). A hybrid approach is utilized by 
Firefly whereby time-frequency features characterizing the 
frequency, duration, and severity of disruptions across the 
night are extracted for each recording from both the passive 
audio, and the sonar reflections, weighted based on the 
channel with higher respiratory signal quality in a rolling 
window.

Examples of Firefly detecting obstructive and central 
events, as well as hypopneas, are provided in Figures 5-8. 
Examples of a full night view (and then two 1 hour chunks) 
of estimated respiration rate, activity, respiratory effort, 
acoustic level with overlaid SDB sections, wake, and snore 
are provided in Figures 9-11. For AHI detection and audio 
fingerprinting, demographic variables were not required, 
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Figure 4 Various motion signals relating to respiratory effort in different range bins are depicted, allowing isolation of one or more people 
in the active sonar sensing field (shown to 1.4 m from the smartphone in this example, with the person at a distance of 25 cm).
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and are not used in the models. However, sleep staging does 
use age and gender to allow for age related changes in sleep 
architecture.

Sleep staging classification is provided by Firefly AI, 
which outputs 30 second epoch labels of absence, presence, 
wake, NREM sleep (N1+N2 light sleep, N3 deep sleep), 
and REM; the details are discussed in (33). The resulting 
“time asleep” data are used as part of the AHI calculation, 
i.e., the duration of time with high probability of apnea 
or hypopneas (modulation) for total sleep time, while 
the user is present within the field of the Firefly enabled 
smartphone.

The sleep staging adds an extra layer of robustness to the 
system, by rejecting “wake” events (other than arousals due 
to apneas) that might otherwise be incorrectly detected as 
apnea.

For the screener, a method that provides a binary 
classification (“positive” or “negative”), with an adjustable 

working point based on probability and given threshold, 
is used. This screener is implemented as a logistic model, 
which is used to estimate the probability of the night being 
positive (AHI ≥15 events per hour of actual sleep time). 
Separately, an AHI number is estimated, which is derived 
using a linear regression model.

After the recording session has completed, the data 
processing is completed on the phone, and a result 
generated. The result includes:

(I)	 An estimated AHI number—similar to significant 
breathing interruptions (of >10 seconds) average 
per hour, and;

(II)	 A binary classification indicating if the number of 
significant breathing interruptions was ≥15 events 
per hour of sleep (detected risk of OSA/“positive”), 
or <15 per hour of sleep time (low risk of 
OSA/“negative”).

The app can be tailored to generate a portable document 

Figure 5 Estimated active (sonar) and passive (acoustic) signals for a segment of obstructive apnea (PSG annotations in lower panel) for a 
subject with a very high AHI of 91.4 events per hour. PSG, polysomnography; AHI, apnea hypopnea index.
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format (PDF), secure email, link to Electronic Health Record 
(EHR) or other report format that could be shared with a 
physician/clinician for review, and follow-up if required.

Protocol

A total of 248 adults (age ≥21 years) participated in three 
studies which took place across the following periods of 
time: Jun–Aug 2017, Feb–Sep 2018, and Apr–Sep 2019 
at the Advanced Sleep Research GmbH (ASR), a contract 
research organization, in Berlin, Germany. These studies 
were performed in accordance with the protocol and all 
applicable laws, rules, regulations, guidelines and standards 
including the provisions of the World Medical Associations 
Declaration of Helsinki, German MPG and all relevant 
confidentiality, privacy and security of patient/test subject 
information laws [Bundesdatenschutzgesetz (BDSG)].

Informed consent to participate was obtained, and 
subjects were monitored for one night with a full PSG 

system and either an Android or an Apple smartphone 
(Samsung (Seoul, South Korea) S7, Apple (Cupertino, CA, 
USA) iPhone 7, iPhone 8 Plus or iPhone XS) equipped with 
a Firefly logging app in a sleep lab setting.

A total of 128 recordings were used for training (S7—100, 
iPhone7—7, iPhone 8 Plus—17 and iPhone XS—4) while 
the remaining 120 recordings (S7—74, iPhone7—15, 
iPhone 8 Plus—19, iPhone XS—12) were kept back for 
independent testing. In terms of process within ResMed, 
an algorithm team developed the processing system on 
the training data, a software team implemented the SDK, 
and separate quality assurance (QA) and system test teams 
performed independent assessment of the performance of 
the released SDK.

The clinical characteristics and demographic information 
for the training and the test sets are presented in Table 1. 
A breakdown of SDB event types per severity class across 
the PSG pooled dataset is provided in Table 2. As can be 
seen, hypopneas dominate in terms of SDB events, and thus 
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Figure 6 Example of hypopneas, for a patient with AHI of 42.2 events per hour. AHI, apnea hypopnea index. 



4484 Tiron et al. Smartphone screening for OSA 

© Journal of Thoracic Disease. All rights reserved.   J Thorac Dis 2020;12(8):4476-4495 | http://dx.doi.org/10.21037/jtd-20-804

the authors are confident that the algorithm has adequate 
training data to recognize this class.

As less than 10% of the subjects have clinically significant 
levels of central apneas as scored by the PSG lab, the data 
are not sufficiently powered to allow reporting performance 
of the algorithm on this subset. However, it is noted that by 
design the Firefly algorithm is able to detect central apneas 
and different types of periodic breathing with reasonable 
accuracy based on the active sonar signal, even in the 
absence of passive snoring/recovery breaths which typically 
accompany obstructive events and not central ones. In other 
words, the sonar stream captures breathing motion, and 
hence variation in respiratory effort associated with central 
apneas (e.g., see Figure 8: upper panel).

PSG recordings for the first two periods were scored by 
the same expert scorer using the AASM 2012 guidelines (40).  
Recordings for the final period were scored by a different 
scorer using the updated AASM 2018 guidelines (41); the 
changes in guidelines are not material for this analysis, 

as a criteria of 3% desaturation for hypopnea was used 
in all three periods (this only became mandatory in the 
2018 guidelines). The Firefly smartphone recordings were 
aligned with the PSG recordings by using the timestamps 
of each device, which were synchronized to an internet time 
service or cellular/mobile network when available. The 
QA team also carried out movement analysis on the PSG 
accelerometer channels, and cross correlated with Firefly 
movement analysis to confirm alignment.

The test dataset was randomly selected by QA to have an 
equal proportion of each class. One consequence of this step 
was a resulting class imbalance (a skew to normal and mild 
OSA, with fewer moderate and severe cases) in the training 
dataset as noted in Table 1; accordingly, the training process 
required oversampling to correct for this imbalance.

The logistic model was trained using regularization with 
five-fold cross validation. The linear regression model used 
robust fitting of residuals (i.e., to better tolerate outliers that 
could confound other approaches such as “least squares”). 

Figure 7 Example of hypopneas, for a patient with AHI of 74.8 events per hour. AHI, apnea hypopnea index.
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Due to the relatively sparse data available for training, this 
approach was used to avoid over-fitting.

As a further processing step, if the estimated AHI value 
was found to not match the binary classification class, a 
rescoring of the estimated AHI was carried out; e.g., an 
estimated AHI via linear regression is say 14.7 events per 
hour, but the corresponding binary output is “positive” (risk 
of OSA), the status will remain “positive”, and the estimated 
AHI rescored as 15 events per hour.

Results

AHI estimation

The results of the linear regression model for the training 
and withheld test sets of Firefly estimated AHI versus lab 
human expert scored PSG are illustrated in Figure 12 as a 
scatter plot.

Modified Bland-Altman (42) plots are provided for these 

data in Figure 13.

Screener classification for AHI ≥15 (“negative” or “positive”)

For datasets that are significantly skewed (such as for the 
training data severity category balance indicated in Table 1), 
precision recall (PR) curves can provide useful insight into 
model performance (43). Therefore, the performance of the 
classifier based on the logistic regression model is presented 
for the training and the testing sets in Figure 14, which 
depicts both the receiver operating characteristic (ROC) 
and PR curves.

The confusion matrix corresponding to the selected 
working operating point of the Firefly screener (“0” 
low risk, “1” high risk of OSA) is shown in Table 3. Key 
performance metrics [sensitivity, specificity, positive 
predictive value, negative predictive value, accuracy, ROC 
area under the curve (AUC), and PR AUC] are provided 
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in Table 4. A confusion matrix corresponding to the same 
operating point of Firefly for each OSA class (normal, mild, 
moderate, severe) is provided in Table 5.

Performance comparison with other apps

A comparison of Firefly to ResApp (44), and to Resonea 
Drowzle (29) (a phone app OSA screener that recently 
obtained FDA approval), is provided in Table 6. For 
ROC AUC, the performance of the Firefly system on the 

withheld test set exceeds both other systems.
The default operating point (OP) for Firefly was used 

to compare with ResApp. Drowzle reports two operating 
points in (29), where the first OP corresponds to a high 
sensitivity setting (the default configuration of Drowzle), 
and the second OP has lower sensitivity and higher 
specificity. It should be noted that the Firefly production 
OP is set for mid-sensitivity; thus, in order to provide a 
fair comparison, high and low sensitivity operating points 
were also processed for Firefly, see Table 6. Firefly shows 

Figure 9 A full night view of a Firefly app recording, showing (from top to bottom): estimated respiration rate in breaths per minute, relative activity 
level, respiratory effort (derived from respiratory envelope), and relative acoustic level (filtered). Wake, SDB, and snore events are overlaid.
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similar sensitivity and higher specificity than Drowzle for 
both operating points. Firefly shows similar sensitivity and 
specificity to ResApp (with a slight bias to higher sensitivity, 
and slightly reduced specificity).

Discussion

The dissonance between the high prevalence (and 
significantly under-diagnosed) condition of OSA, and the 
existing diagnostic lab PSG pathway (with associated high 

costs and long waiting lists), is jarring (1,45). In a world 
forever changed by COVID-19, it is becoming clear that 
certain aspects of healthcare will need to evolve to better 
attend to our post-pandemic needs. Arising from this, the 
authors believe that a significant opportunity exists for 
newly evolving contactless, smartphone based approaches to 
allow large scale screening of OSA. The Firefly technology 
has the significant benefit of having a low barrier to 
access, i.e., just requiring the downloading and installing 
an Android or Apple App on a supported smartphone. An 

Figure 10 “Hour 2” segment of the recording depicted in Figure 9. In this segment, apneas are detected with associated snoring. The 
patient woke up twice in this segment.
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added benefit is that this can potentially enable scarce and 
valuable PSG resources to be better focused on complex 
and comorbid cases.

The Firefly technology platform benefits from a hybrid 
processing approach, such that two related data streams 
(active sonar, and passive acoustic) are processed to enhance 
the robustness of the system. The passive arm calculates 
biometric features in the audible acoustic frequency range 
relating to movement, breathing and snoring, whereas the 
sonar stream measures respiratory effort and movement 
based on changes in a reflected waveform.

The performance of Firefly on the withheld test set as 
an OSA screener (with a sensitivity of 88.3% and specificity 
of 80.0% for a clinical threshold of AHI ≥15 events/hour—
detailed in Table 4) has been shown to be comparable to 
published results of other audio based screeners ResApp (43), 
and Resonea Drowzle (29).

The system also provides an estimate for the AHI score, 
which exhibits good performance as depicted in Table 5 
and Figure 12, with a correlation of 0.81 on the testing set. 
Specifically, 61.7% (74/120) of the AHI results from the 
Firefly technology match their correspondent PSG result in 

Figure 11 “Hour 4” segment of the recording depicted in Figure 9. In this segment, apneas are detected without associated snoring.
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the class of OSA severity (none, mild, moderate or severe). 
Encouragingly, where differences were detected, the errors 
are limited to the adjacent class of OSA severity in 95% 
of the cases, with only 6 recordings out of 120 showing 
difference of OSA severity class prediction larger than one 
level. The system has good specificity with only two normal 
subjects being classified as moderate.

Some limitations of this work are as follows. As a 
single site in Europe was used for lab PSG, the data of 
the 248 adults will likely cover only a subset of all of the 
possible manifestations of SDB. These limitations are 
counterbalanced by using multiple human expert scorers, 
and also by algorithm design, whereby the robustness of the 
logistic classification model (which employs a small number 
of features) considerably reduces the risk of over-fitting. 
Some degradation in performance is seen between the 
training and test sets, although this only equated to a drop 
in accuracy of 3.3%. Not every supported phone handset 
was tested in the PSG lab; this was counterbalanced by 

using several examples of each handset model, and rotating 
these. Additionally, engineering lab testing of all supported 
phones is carried out to assess speaker and microphone 
performance variation, testing with breathing phantoms, 
and so forth, in order to confirm performance.

Looking more closely at the Bland Altman plots 
presented in Figure 13, it is informative to examine the 
recordings outside ±2 standard deviations (SD) around 
the median bias. Looking at the false positives (FP) (i.e., 
AHI <15 on PSG, but Firefly predicted as ≥15), four 
recordings exhibit severe periodic limb movements during 
sleep (PLMS). A table looking at PLMS ≥15 events per 
hour in the full dataset (N=248) is provided in Table 7 
which shows 9 FP with PLMS ≥15 (out of 26 FP, equating 
to 35% of all false positives); 8 of those 9 have already an 
underlying SDB condition, with a median PSG AHI of 
10.7 events per hour. For the remaining false positives, 
the most likely mechanism is the presence of respiratory 
events that resemble hypopneas but do not meet the 

Table 1 Demographics and clinical description of the Firefly training and test datasets

Variable Training set Test set

Subjects (% male) 128 (52%) 120 (68%)

Age median [mean, SD] (years) 52 [49, 15] 54 [52, 14]

AHI median [mean, SD] (events/hour) 7 [13, 18] 14 [20, 20]

PLM median [mean, SD] (events/hour) 1 [7, 15] 2 [9, 17]

BMI median [mean, SD] (kg/m2) 26.3 [27.1, 5.2] 27.6 [28.2, 5.5]

Subjects by severity category

Normal AHI <5 59 (46%) 30 (25%)

Mild 5≤ AHI <15 30 (23%) 30 (25%)

Moderate 15≤ AHI <30 20 (16%) 30 (25%)

Severe AHI ≥30 19 (15%) 30 (25%)

AHI, apnea hypopnea index; PLM, periodic limb movement; BMI, body mass index; SD, standard deviation.

Table 2 PSG pooled data for the 248 recordings used in training and validation: breakdown of SDB event types per severity class

Severity class # Hypopneas # Central apneas # Mixed apneas # Obstructive apneas

Normal 692 66 6 32

Mild 2,833 174 17 257

Moderate 5,717 408 69 826

Severe 9,034 883 568 3,100

PSG, polysomnography; SDB, sleep-disordered breathing.
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specific criteria, or acoustic or movement interferers that 
are similar to the apnea/hypopnea modulation time, and 
falsely flag OSA.

In terms of false negatives (FN) (i.e., AHI ≥15 on 
PSG, but Firefly predicted as <15), potential factors 
include a presentation of OSA (particularly hypopneas) 
that does not give rise to the typical envelope modulation 
morphology; other factors include the subject knocking 
into the smartphone (or the charging cable) with the duvet 
(comforter), and in one recorded case managing to cover 
the phone with the duvet; it is noted that this is more 
likely in unfamiliar lab/sleeping surroundings, and when 
instrumented with PSG equipment.

BMI is reasonably well balanced between the training 
and test sets (as per Table 1), and when inspecting the 
results did not appear to be a factor in the FP or FN cases. 
Indeed, lab bench testing included a range of BMIs and 
associated breathing patterns (such as patterns typical in 
obese subjects) during the design process such as to reduce 
variability.

Sleeping body position variability (supine, prone, left, 
right, different angles to smartphone and so forth) was 

analyzed and incorporated at the design phase to ensure 
robustness to body position change throughout the night in 
an unconstrained setting, and was not separately considered 
during analysis of the PSG data (which is a constrained 
setting, as the subjects were instrumented).

It is noted that the constrained nature of the laboratory 
setting in ASR might not be fully representative of the 
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polysomnography.
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variability of setup conditions that can be encountered in a 
home environment. However, some variability in room type 
was provided, with different sizes and configuration, as well 
as air conditioning being used on some nights (a potential 
interferer with other acoustic systems). Furthermore, 
ResMed has prior experience in deploying contactless sleep 
measurement in the home environment in unsupervised 
conditions, and managing the associated variability, such 

as with the S+ by ResMed RF and SleepScore Max bedside 
devices (46).

Work by Stöberl et al. suggests that there is high night-
to-night variability of OSA, and that the probability of 
missing moderate OSA was up to 60%; they noted that 
single-night diagnostic sleep studies are prone to mis-
categorize OSA if arbitrary thresholds are used (47). Thus, 
technology such as Firefly that does not interfere with the 
user’s sleeping habits, and is easy to use for multiple nights 
offers the ability for longitudinal monitoring of subjects in 
their home environment in order to more reliably identify 
the condition.

Other potential benefits of the technology include the 
simultaneous assessment of sleep quality and fragmentation 
[such as discussed in (33)] and respiratory rate, snoring, and 
OSA change on and off PAP therapy. This could provide 
new insights for physicians into the response to PAP 
treatment, and increase patient long term adherence.

Figure 14 Upper panel (A) presents the receiver operating 
characteristic (ROC) curves, and panel (B) the precision recall (PR) 
curves for the logistic classifier, using a clinical threshold of AHI 
≥15, for the training and testing sets (including 95% confidence 
intervals). AHI, apnea hypopnea index; AUC area under the curve; 
CI confidence interval.
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Table 3 Classification table for the Firefly technology as a screener 
for a clinical threshold of AHI ≥15 versus the PSG classification

Firefly technology
PSG classification

Negative Positive

Negative Train: 77, test: 48 Train: 4, test: 7

Positive Train: 12, test: 12 Train: 35, test: 53

AHI, apnea hypopnea index; PSG, polysomnography.

Table 4 Performance of the Firefly technology as a screener for a 
clinical threshold of AHI ≥15

Performance (AHI ≥15) Training set Test set

Sensitivity (%) (CI) 89.7 (75.4–97.3) 88.3 (77.3–95.1)

Specificity (%) (CI) 86.5 (77.9–92.3) 80.0 (67.8–88.7)

PPV (%) (CI) 74.5 (59.5–85.7) 81.5 (70.9–89.6)

NPV (%) (CI) 95.1 (88.5–98.7) 87.3 (76.1–94.4)

Accuracy (%) (CI) 87.5 (81.3–92.3) 84.2 (75.8–89.2)

ROC AUC (CI) 0.95 (0.91–0.98) 0.92 (0.85–0.95)

PR AUC (CI) 0.87 (0.78–0.94) 0.89 (0.80–0.94)

Sensitivity, specificity, positive predictive value (PPV), negative 
predictive value (NPV), accuracy and AUC of the ROC and PR 
curves are provided for the training and testing sets respectively. 
The 95% confidence intervals are shown in parenthesis. AHI, 
apnea hypopnea index; ROC, receiver operating characteristic; 
AUC, area under the curve; PR, precision recall.
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Conclusions

The results demonstrate that the Firefly App and SDK 
technology performs both reliably and accurately in the 
detection of clinically significant OSA, and in the estimation 
of AHI, when compared to a PSG gold standard. It offers 
significant benefits such as the ability to run on Apple 
and Android smartphones without any added hardware, 
provides integrated sleep staging, respiration rate analysis, 
and the ability to monitor for multiple nights in the home 
environment.
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Firefly SDK PSG classification

Normal Mild Moderate Severe
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Severe Train: 0, test: 0 Train: 2, test: 3 Train: 4, test: 7 Train: 14, test: 23

AHI, apnea hypopnea index; PSG, polysomnography; SDK, software development kit.

Table 6 Comparing performance of Firefly with Drowzle and ResApp

Performance (AHI ≥15) Firefly training Firefly testing Drowzle ResApp

ROC AUC 0.95 0.92 0.87 0.91

High sensitivity OP (Sens%, Spec%) (94.9, 77.5) (93.3, 70.0) (93.7, 63.0) N/A

Selected Firefly mid sensitivity OP (Sens%, Spec%) (89.7, 86.5) (88.3, 80.0) N/A (86.0, 83.0)
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Table 7 Periodic limb movements during sleep (PLMS) details across training and test sets

SDB category n PLMS ≥15 events per hour
Prevalence PLMS ≥15 events 

per hour
FP

FP with PLMS ≥15 events per 
hour*

Normal 89 8 9% 2 1

Mild 60 13 22% 24 8

Moderate 50 12 24% NA NA

Severe 49 9 18% NA N/A

*Median AHI for FP with PLMS ≥15 events per hour is 10.7 events per hour. SDB, sleep-disordered breathing; FP, false positive detection.
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