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Introduction

Lung cancer remains the leading cause of cancer related 
death among males and females in the United States (1). 
Over the past few decades, while the one-year survival rate 
for lung cancer has increased, the overall 5-year survival 
rate remains dismally low at 19% (1). A major factor for this 
poor prognosis relates to the fact that many patients already 
have advanced disease at the time of initial diagnosis. 
Previous literature reported that up to 55% of lung cancer 
patients already have distant disease when they are initially 
diagnosed (2), with a current predicted 5-year survival rate 
of 5% (1). An accurate classification of pulmonary nodules 
as early stage lung cancers is critical to help reduce lung 
cancer morbidity and mortality. 

Chest radiography remains one of the most common 
imaging tests being ordered (3,4) and is often the first 
examination in the clinician’s arsenal when working up the 

first symptoms of lung cancer such as cough. Interpretations 
of chest radiographs by human readers remains neither 
specific nor sensitive in the diagnosis of lung cancers with 
reported sensitivity ranging between 36–84% depending 
on the study population and tumor size (3,5-8). In fact, 
data from the literature has demonstrated that 19–26% of 
pulmonary neoplasms seen on chest radiographs were not 
detected during their first interpretation (8,9). 

Such shortcomings have led to increasing reliance on 
computed tomography (CT) as a diagnostic and screening 
tool. Additionally, there is an expanding role of CT 
in the use of lung cancer screening after the National 
Lung Cancer Screening Trial (NLST) demonstrated 
an improvement in mortality in high risk patients when 
screened with low-dose CT (LDCT) (10). However, 
although sensitivity for pulmonary nodule detection is 
improved with CT, specificity for lung cancer diagnosis 
remains somewhat low (7). Moreover, human interpretation 
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of CT remains subjective with high reader variability for 
lung cancer detection and diagnosis (11). 

One approach to improve the aforementioned 
shortcomings of radiography and CT is the use of artificial 
intelligence (AI). Over the last few years, there has been 
a surge in research and development of AI and much 
has been published on the use of AI in the detection and 
characterization of lung nodules on both radiography and 
CT. This review is not meant to be all-comprehensive, 
however, our aim is to provide an overview of the progress 
in AI for pulmonary nodule evaluation while outlining some 
of the pitfalls and challenges that remain to bring such 
advancement to routine clinical use.

Terminology

Although applying AI to medicine has been conceptualized 
since the late 1950s (12), the extent of its use was limited. 
However, significant advances in both hardware and 
software have facilitated the recent explosive growth of this 
field. It is important to first define AI and other commonly 
used terms in the field of AI including machine learning 
(ML) and deep learning (DL). 

AI is defined as a discipline of computer science which 
focuses on the creation of machines that are able to perceive 
the world and perform similar to humans (13). The initial 
AI algorithms, meant for simple data analysis, were hard-
coded by programmers and did not recognize patterns not 
specially programmed (14). ML is a subfield of AI where 
algorithms can recognize and learn patterns within complex 
data sets to produce intellectual predictions rather than by 
explicit programming (14,15). However, most traditional 
ML algorithms still required human input and the patterns 
such algorithms are capable of evaluating are still fairly 
simple. DL can be conceptualized as a class of ML where 
algorithms are organized into many processing layers based 
on artificial neural networks, similar to the human brain. 
The most commonly used DL model for medical imaging 
is the convolutional neural network (CNN) (16) (Figure 1) 
which was originally described by Fukushima in 1980 (17). 
LeCun et al. first described the use of backpropagation to 
train CNNs for image recognition in 1989 (18). In 2012, 
Krizhevsky et al. were the first to use a graphics processing 
unit (GPU) to train a CNN to classify objects and as 
result won the ImageNet Large Scale Visual Recognition 
Challenge (19). CNN does not require human intervention 
for complex data analysis (20). Modeled off the human brain 
with neurons organized into multiple layers (21), CNN 

contains input and output layers and the computational 
strength of the networks lies in the integration of multiple 
“neurons” within the multiple deep hidden layers between 
the input and output layers, where the outputs of one layer 
serve as the input of the next layer (Figure 2) (22).

DL has been applied to multiple facets of imaging, 
including thoracic  imaging,  where i t  i s  used for 
quantification of diffuse lung diseases (23-26) detection of 
tuberculosis (27) or pneumonia (28), and evaluation of lung 
nodules (29) among other things. The most common utility 
of DL in thoracic imaging at this time is pulmonary nodule 
assessment. AI can help detect, segment and characterize 
pulmonary nodules on chest radiography, CT and positron 
emission tomography (PET). 

Applications

Nodule segmentation

In imaging, segmentation is utilized to isolate an object 
from its surroundings for analysis, such as for nodule size 
evaluation. It is well known that nodule size is a strong 
predictor of malignancy (30,31). Volumetry is currently 
being promoted as the preferred method of nodule size 
measurement and growth determination, given its superior 
reproducibility, potential for three-dimensional analysis of 
the entire nodule and sensitivity in detecting nodule growth 
compared to linear measurements (32-36). Volumetry was 
utilized in the Dutch-Belgian Randomized Lung Cancer 
Screening Trial (Dutch acronym: NELSON) (37) and 
is now incorporated into the United States Lung CT 
Screening Reporting and Data System (Lung-RADS 1.1).

There have been multiple attempts to develop CAD 
algorithms for nodule segmentation since the 1980s. Rules 
for many segmentation algorithms are programed explicitly 
into the software. For example, on CT, the criteria used 
for segmentation could be pixel attenuation (14). However, 
this approach was limited, as the anatomy to be segmented 
is often too complex to yield optimal results; for instance 
when a nodule is adjacent to a structure, such as a vessel, 
with similar attenuation (38). Moreover, most segmentation 
approaches are semi-automated, requiring user input (such 
as drawing a region of interest to initiate segmentation) 
which can be labor intensive and can introduce intra- and 
inter-observer variability. 

Such shortcomings can be obviated with DL automated 
nodule segmentation. DL semantic segmentation refers 
to the process of linking each pixel in an image to a class 

https://www.fritz.ai/image-segmentation/
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label to determine the boundary conditions which delineate 
a specific object. The fully convolutional network is a 
significant breakthrough in DL semantic segmentation. 
Convolutions with large receptive fields replace the fully 
connected layers that are present in the standard CNN (39). 
U-Net is one of the most recognized segmentation CNN 
used in biomedical imaging and combines a uniform amount 
of up- and down-sampling layers with skip connections 
between opposing convolution and deconvolution layers (40).  
A receptive field is the region in the input layer that a 
corresponding CNN feature looks at. Object detection and 
segmentation mask production for each occurrence can 
be achieved simultaneously with mask region-based CNN 
(R-CNN) (41). 

Nodule detection

Since the development of graphical processing units and 
CNN, there has been a significant boost in the performance 
of computer-aided detection (CAD). The goal of CAD is 
to have high sensitivity while having a low number of false 
positives.

Radiography
Multiple strategies have been developed using CAD to 

detect pulmonary nodules on chest radiographs, ranging 
from CAD alone to CAD with concomitant bone 
suppression using dual-energy. These approaches report 
variable success, with nodule detection sensitivity ranging 
from 51.6% to 87% (4,42-46). 

More recently, CAD systems using DL algorithms have 
shown increased accuracy for nodule detection on chest 
radiographs compared to conventional ML. Hwang et al. 
demonstrated that a DL algorithm trained on a dataset 
of 54,221 normal and 35,613 abnormal chest radiographs 
was able to distinguish normal from neoplasm, active 
tuberculosis, pneumothorax, and pneumonia with a median 
(range) area under the curve (AUC) of 0.979 (0.973–1.000) 
for image-wise classification and 0.972 (0.923–0.985) 
for lesion-wise identification (47). The algorithm also 
demonstrated significantly better performance than thoracic 
radiologists, general board-certified radiologists, and non-
radiology physicians. Additionally, all three categories of 
human readers improved when they used this algorithm as a 
second reader. 

Pesce et al. using CNN with a visual attention network 
demonstrated an accuracy of 0.76 for nodule detection and 
0.65 for nodule localization on chest radiographs (48). In 
2018, Nam et al. developed a DL algorithm for malignant 
pulmonary nodule detection on chest radiographs and 
compared its performance with that of 18 physicians (half 
were radiologists) (49). In the data set they used, there were 
a total of 43,292 chest radiographs with a normal to diseased 
ratio of 3.67. Using an external validation data set, they 
demonstrated that the AUC of the algorithm was higher 
than that of 17 of the 18 human interpreters. Additionally, 
as with previous studies, the human interpreters also 
demonstrated improved nodule detection when the 
algorithm was used as a second reader.

CT
The use of AI for chest CTs is more complicated than for 
radiographs given the large number of images and 3D 
nature of each CT exam. Detection of small pulmonary 
nodules on CT can be challenging given the fact that a 
volumetric CT has over 9 million voxels and a 5-mm nodule 
only occupies approximately 130 voxels (38). Multiple 
studies have shown that there is significant variability in 
nodule detection sensitivity amongst radiologists (50-52), 
with as many as 8.9% of cancers missed on the National 
Lung Screening Trial (NLST) (53). Although concurrent 
reading of scans by two radiologists improves detection 
sensitivity, it is impractical in daily practice given its time-

Figure 1 Euler diagram demonstrating the AI hierarchy. ML is a 
subfield of AI where algorithms can recognize and learn patterns 
using complex data sets to produce without explicit programming. 
DL can be conceptualized as a class of ML where algorithms are 
organized into many processing layers based on artificial neural 
networks, similar to the human brain. CNN is the type of DL 
model most commonly used for medical imaging presently. AI, 
artificial intelligence; ML, machine learning; DL, deep learning; 
CNN, convolutional neural network.

ARTIFICIAL INTELLIGENCE (AI)

DEEP LEARNING (DL)

MACHINE LEARNING (ML)

CONVOLUTIONAL

NEURAL NETWORK

(CNN)



6957Journal of Thoracic Disease, Vol 12, No 11 November 2020

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(11):6954-6965 | http://dx.doi.org/10.21037/jtd-2019-cptn-03 

consuming and inefficient nature (54). For this reason, 
it is extremely useful to use AI to aid radiologists in 
nodule identification and to act as a “second radiologist” 
to concurrently read the study. Additionally, low dose 
CT (LDCT) has been widely accepted after the NLST 
demonstrated improvement in mortality in high risk 
patients when screened with LDCT (10). This has caused 
an increase in CT utilization and an even greater need 
for a CAD system to aid in the radiologist’s workflow by 
maintaining interpretation accuracy in the face of increased 
work volume. 

CAD for lung nodule detection began in the early 
2000s using traditional ML approaches such as support 
vector machines (SVM) (55). Traditional CAD systems 
have provided good results on CT, though, often involving 
complex pipelines of algorithms that rely deeply on manual 
input which limited their performance (55). Traditional 
CAD algorithms for pulmonary nodules include nodule 
segmentation, feature extraction, classification of lesions 
as non-nodules as opposed to true nodules. The number 
of selected features and the type of ML model used for 
classification (Fisher linear discriminant, massive training 
artificial neural network, random forest, distance weighted 
nearest neighbor support vector among others) is dependent 
on the type of CAD system being utilized (21,56). Although 
conventional ML CAD successfully assisted nodule 

detection, one pitfall of conventional ML is overfitting 
where there is apparent high algorithm performance for 
a particular training data set that cannot be replicated on 
other independent datasets (57).

Algorithms using DL can possibly eliminate the innate 
obstacles in traditional CAD systems by eliminating the 
need for complex human-led pipelines and their ability to 
self-learn previously unknown features with limited direct 
supervision (38,39). In 2015, Hua et al. were the first to 
publish results of a DL pulmonary nodule detection system 
on CT, reporting a sensitivity of 73% and a specificity 
of 80%, which was superior to the conventional CAD 
systems available at that time (58). Since that time, there 
have been multiple studies showing the superiority of CAD 
with DL compared to conventional CAD, including a DL 
system studied by Setio et al. in 2016 which reached 85.4% 
sensitivity for nodule detection with only one false positive 
lesion per scan (59). In 2018, Huang et al. developed a 
DL network for detection of pulmonary nodules using 
the LUNA 16 and Ali Tianchi databases and evaluated its 
performance on the LUNA 16 dataset. They noted false 
positive rates of 0.125 and 0.25 per scan with sensitivities 
reaching as high as 81.7% and 85.1%, respectively (60). 
There have also been studies that exhibit sensitivity of 
nodule detection as high as 95%, however, they have a 
wide variety of false positive rates (1.17 to 22.4) (61-63). In 

Figure 2 Schematic representation of a convolutional neural network containing an input layer, three hidden connected layers, and an 
output layer. The computational strength of such network lies in the integration of multiple “neurons” (represented by the circles) within 
the deep hidden layers between the input and output layers. Typically the outputs of one layer serve as the input of the next layer.

INPUT LAYER                                          HIDDEN LAYERS                                                 OUTPUT LAYER
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2020, Schwyzer et al. studied the diagnostic performance 
of DL for small 18F-fluorodeoxyglucose (FDG) avid 
pulmonary nodules in PET scans and examined whether 
different image reconstruction [block sequential regularized 
expectation maximization (BSREM) and ordered subset 
expectation maximization (OSEM)] affected nodule 
detection accuracy (64). They found that the DL algorithm 
they implemented may aid detection of small FDG avid 
pulmonary nodules and is affected by image reconstruction. 
On a per-slice analysis, the sensitivity and specificity were 
66.7% and 79% for OSEM, respectively. For BSREM, 
the sensitivity and specificity were 69.2% and 84.5%, 
respectively. 

Nodule classification and cancer prediction

After nodules are detected, the classification of these 
nodules as benign or malignant is critical as it guides 
management. Distinguishing cancerous from noncancerous 
nodules is particularly important during early stages of the 
disease, given a 5-year survival rate of 61% for localized 
non-small cell lung cancer (NSCLC) compared to a dismal 
6% for metastasized NSCLC (65). 

Unfortunately, imaging appearance of benign and 
malignant nodules can have considerable overlap, resulting 
in significant inter-observer variability among radiologist 
which can lead to missed malignancies, unwarranted 
interventional procedures, such as biopsies and/or 
resections with attendant potential complications, and/or 
unnecessary imaging surveillance which can be costly (66). 
For this reason, classification of nodules and prediction of 
malignancy is an area generating a great deal of interest.

Pulmonary nodules are low-contrast tissues that are not 
easily distinguished from its surroundings. However, each 
nodule contains characteristics that can be represented 
by “features” in ML. For medical imaging, these features 
are typically numeric. “Radiomics” is a term created by 
Lambin and colleagues to describe the automatic extraction 
of characteristics from diagnostic imaging by turning 
image voxels into a collection of numbers that cannot only 
help determine lesion malignancy or tumor grade but also 
monitor treatment response (67). A set of numeric features 
can be conveniently described by a feature vector. Feature 
vectors typically represent a lesion’s textures, density, 
intensity value, shape, and/or geometry. A classifier is the 
ML model that can differentiate feature vectors between 
different pulmonary nodule types by application of a 
training algorithm and labeled data (Figure 3) (68).

There is a large volume of articles devoted to multiple 
kinds of classifiers used such as SVM and random 
forest to classify pulmonary nodules or determine risk 
of malignancy (69). Using the SPIE-AAPM Lung CT 
Challenge dataset of 70 thoracic CTs, Rendon-Gonzalez 
et al. used SVM trained textural and shape features for 
lung nodule classification, reporting 78.08% accuracy, 
84.93% sensitivity, and 80.92% specificity (70). Lynch 
et al. applied various ML techniques to the Surveillance, 
Epidemiology and End Results (SEER) program database 
to help predict survival in lung cancer patients and 
concluded that the performance of these techniques, 
when applied to this particular database, may be on par 
with classical methods (71).

Newer ML algorithms can also identify spatial 
complexity, intensity pattern, and a range of other texture 
features that are beyond human capability to perceive (38). 
Pathology literature has shown that malignant lung nodules 
have increased heterogeneity which are not appreciable with 
the human eye but can be quantified with radiomics (72). 

In addition to being applied in CT, there has been recent 
work using AI for detecting and classifying pulmonary 
nodules on PET/CT. In 2019, Teramoto et al. developed an 
automated scheme using a ML technique (random forest) 
for the classification of nodules using conventional CT in 
combination with early and delayed phase PET/CT (73).  
They reported that 94.4% of malignant nodules were 
identified accurately. The accuracy rate of benign nodule 
detection using CT in addition to two-phase PET images 
was 44.4% higher than that obtained by CT images alone 
and 11.1% higher than CT plus early PET images.

There have also been several studies using ML in 
examining the radiomic features extracted from the 
parenchyma surrounding lung nodules (perinodular) to help 
distinguish benign and malignant nodules. Overall, these 
studies have found that the perinodular radiomic features 
can risk stratify lung cancers. For example, in 2019, Uthoff 
et al. reported that the inclusion of parenchymal imaging 
features improved the performance of the ML tool over 
exclusively nodular features (P<0.01) (74). 

A key advantage of DL over traditional ML systems is 
that they are able to maximize classification with limited 
direct supervision because of their ability to self-learn 
previously unknown features (38). Studies comparing the 
use of DL in pulmonary nodule classification has shown 
superiority over standard ML techniques (43,56,75,76). 
Ciompi et al. introduced a DL system based on Lung-RADS 
in 2017 that surpasses classical ML in nodule classification 
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performance while keeping inter-observer variability 
comparable to four experienced human observers (77). In 
2018, Shaffie et al. described a generalized DL system with 
the potential to be a valuable tool for lung cancer detection 
because it achieved an accuracy of 91.2% for distinguishing 
malignant from benign nodules (78).

In 2019, Ardila et al. developed a DL network that used 
the patient’s prior and current CT volumes to help predict 

the risk of lung cancer (79). The model demonstrated an 
excellent performance (94.4% AUC) on 6,716 National 
Lung Cancer Screening Trial cases and demonstrated 
similar performance on an independent clinical validation 
set of 1,139 cases. In this project, they conducted two reader 
studies. When prior CT imaging was available, the model 
performance was on-par with the radiologists. The model, 
however, outperformed all six radiologists when prior CT 

Figure 3 General illustration of a feature based machine learning nodule classification and risk stratification model [modified from 
Computer-Aided Nodule Assessment and Risk Yield (CANARY), Mayo Clinic, Rochester, MN, USA]. (A) Nodule Classification. After 
nodule segmentation, radiomic features are extracted from the images. Following feature-pathology correlation and feature selection, the 
machine learning model is trained to classify pulmonary nodules. There is typically a validation step with a separate set of data to further 
refine the algorithm before final testing prior to use. (B) Risk stratification. Multiple nodules with features representative of the population 
and the corresponding survival data are used to train the algorithm, which in turn classifies the features into three main groups in the case 
of CANARY and performs survival analysis of each group of nodules (the orange group has good, the green group has intermediate and the 
purple group has poor prognosis).
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imaging was not available, with an absolute reduction of 
11% in false positives and 5% in false negatives. 

Zhou et al. have reported that particular nodule imaging 
characteristics correlate with specific metagene groups (80)  
and there has been significant interest in trying to define 
a radiogenomic signature for specific gene mutations 
(such as ALK, EGFR, and K-RAS) in order to assess a 
targeted inhibitory agent treatment response (81-83). Rios 
Velazquez et al. obtained a radiomic signature that was able 
to successfully discriminate between positive and negative 
EGFR cases with an AUC of 0.69 (84).

Pitfalls, challenges, and potential solutions

Although AI offers many potential opportunities for 
improved patient care, pitfalls and multiple challenges 
must be overcome prior to routine clinical adoption. Most 
algorithms, especially DL algorithms, require large, well-
labeled anonymized data sets, which are challenging to 
curate and the process of generating such data sets can be 
highly labor intensive. Several methods are being adopted 
to overcome the challenge of limited data, including the 
development and release of publicly available databases. For 
example, the National Institutes of Health released 100,000 
labeled chest radiographs (85) in 2017. The labels in this 
database were prepared using natural language processing 
to derive disease classification data from radiology reports. 
This allows implementation of larger databases so that the 
labeling step can be omitted. 

Another strategy to tackle the lack of large datasets is 
to artificially generate data sets with features similar to a 
given training dataset using CNN such as the generative 
adversarial network (GAN) (86). Such GANs could be 
trained to learn representative features in a completely 
unsupervised manner. Since the features are generated and 
not selected from pre-existing images, the labeling step can 
be obviated. GANs can be incorporated with supervised 
strategies or used independently.

 Transfer learning is another strategy that is being 
employed to help with the need of large annotated 
databases. This method consists of training large non-
medical imaging data sets and then transferring the learned 
parameters onto the smaller medical imaging datasets (21). 
For example, in 2016, Bush et al. pretrained a CNN model 
on a subset of an ImageNet dataset containing millions 
of labeled real-word images and retrained it to detect 
the presence or absence of pulmonary nodules on chest 

radiographs with a sensitivity of 92% and specificity of 
86% (87).

An addit ional  hurdle  s tems from the fact  that 
pathologically proven datasets are typically needed 
for nodule classification; however, there is potential 
interpretation variation between pathologists. More 
sophisticated ML models might need to account for 
molecular markers given their emerging significance, 
however, such markers are not uniformly acquired by all 
institutions. Moreover, uniformed labeling of training 
cases might be problematic as not all physicians utilize the 
same terminologies for characterizing lung nodules (e.g., 
confusion between subsolid versus nonsolid or ground 
glass) or classifying the actual pathology of the nodules (e.g., 
minimal invasive adenocarcinoma or adenocarcinoma in situ 
as opposed to low grade adenocarcinoma). One potential 
solution is for leading radiology and pathology societies to 
work on standardized, clearly defined terminologies. 

Another challenge that arises in the age of big data are 
the ethical and legal aspects of data sharing and patient 
privacy. In the US, the Health Insurance Portability and 
Accountability Act imposes severe monetary fines for 
privacy breach. It is therefore extremely important that 
the data sets used in training are fully anonymized and 
comply with the laws. Internationally, data protection 
laws vary. Some geographic locations prevent data from 
leaving physical locations legally which limits research. 
Furthermore, implementation of AI into clinical practice 
requires an interconnected network of patient datasets 
so that AI is both robust and generalized across different 
patient diseases, demographics, and regions around the 
world (66).

To many, ML remains a “black box”, rendering output 
features not apparent to the human eyes questionable. It is 
uncertain if correlation with pathology will decrease this 
skepticism. Education of fellow physicians might mitigate 
anxiety toward the unknown. In real world clinical settings, 
physicians typically synthesize clinical as well as imaging 
features to derive differential diagnoses which can add 
complexity to any given prediction model. Algorithms 
incorporating non-imaging and multi-modality imaging 
features are emerging (88). 

Lastly, the most challenging task at present is how 
best to rigorously validate any algorithm prior to clinical 
application, because many ML algorithms suffer from 
overfitting and perform very well for a specific set of data 
but lack generalizability. Overfitting describes the situation 
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where a model has seemingly high performance for a given 
data set but fails on unseen independent data. This can be 
seen when there are insufficient number of samples in a 
training set or the training set is not well balanced. This 
problem can be detected using model validation techniques 
such as cross validation, which estimates how accurately 
a predictive model will perform in practice. Overfitting is 
common with DL algorithms that contains many layers 
generating numerous variables to learn from small training 
sets. This problem would be alleviated by using larger and/
or more varied training sets (89). 

A  r e l a t e d  i s s u e  t o  o v e r f i t t i n g  i s  t h e  l a c k  o f 
generalizability (63). Kim et al. studied whether the 
diagnostic performance of ML based radiomic models 
for dif ferentiat ing subsol id nodules and invasive 
pulmonary adenocarcinomas (IPAs) was affected by image 
reconstruction. Specifically, the group compared images 
reconstruction with the recently popularized model-based 
iterative reconstruction (MBIR) to the traditional filtered 
back projection (90) and found that inclusion of a CT 
scan reconstructed using MBIR significantly decreased 
diagnostic performance for the identification of IPAs. One 
potential solution would be to use diverse data sets that 
encompass different image reconstructions to train ML 
algorithms. 

Underfitting is another problem that can be seen during 
training of algorithms. This happens when there is too 
much regularization, resulting in an inflexible model that 
fails to learn from the data set or when the model is too 
simple, with too few features. For example, models with an 
insufficient number of features in the presence of multiple 
subpopulations in the training set will fail to encompass the 
entire population (89). Therefore, one remedy for this issue 
is to ensure an adequate number of features during training 
and to use just enough regularization to prevent overfitting 
but not so much that generates underfitting.

Conclusions

There has been much progress in AI assisted nodule 
segmentation, detection and classification in the recent 
years. However, ML for nodule evaluation is at its 
infancy and there are still many limitations to overcome, 
including general acceptance of such disruptive innovation. 
Nonetheless, ML is here to stay and has demonstrated 
many promising potentials for pulmonary nodule evaluation 
and management. It is imperative for both radiologists and 
clinicians to be cognizant of these algorithms’ capabilities 

and limitations and play an active role in introducing these 
tools clinically to improve patient care. 
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