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Introduction

Lung cancer remains the leading cause of cancer related 
deaths in the United States, estimated to account for 
142,670 deaths in 2019 (1). In the National Lung Screening 
Trial (2), lung cancer screening with low dose computed 
tomography (LDCT) was found to aid in early detection of 
and reduced mortality due to lung cancer (2). One concern 
in screening a population for lung cancer is the high rate 
of false positive tests (3). In 2014, based on the results of 
several screening trials, the American College of Radiology 
(ACR) released version 1.0 of the Lung CT Screening 
Reporting and Data System (Lung-RADS) (4). This is a 
standardized method of reporting with recommendations 
for management of pulmonary nodules detected on lung 
cancer screening CT, analogous to the Breast Imaging-
Reporting and Data System framework for breast cancer 
screening and reporting (5). When utilized, it can reduce 
the false positive rate   in lung cancer screening without 

increasing the rates of false negative results (3,6). Lung-
RADS is now deeply embedded as a quality metric on 
which regulation and reimbursement is determined by the 
Centers for Medicare and Medicaid (7). During the first  
5 years of nationwide lung cancer screening, there has been 
a significant accumulation of data and experience with many 
opportunities for continued learning. 

In 2019 the ACR released the updated version 1.1, 
of Lung-RADS given new knowledge gained (8). While 
many similarities exist between versions, multiple changes 
found in version 1.1 were made with the intent to adapt 
to new evidence in the field and to render the system 
more appropriate for the current lung cancer screening 
environment. The ACR provides an excellent resource 
outlining specific modifications implemented in version 1.1 (9).  
These changes are summarized in Table 1. In this review we 
discuss relevant literature for many of these updates, as well 
as some of the implications for future screening programs 
that carry out these changes. 
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Revisions

Nonsolid/ground-glass nodules  

In the Lung-RADS 1.1 update, the measurement thresholds 
for nonsolid nodules have been revised for categories 2 and 
3 (8). In Lung-RADS 1.0, the guidelines defined a nonsolid 
nodule as a category 2 if it measured <20 mm at baseline, or 
≥20 mm if unchanged or slowly growing (4). In the update, 
nonsolid nodules are considered to be category 2 if they 
measure <30 mm at baseline, or ≥30 mm if unchanged or 
slowly growing. Similarly, in the 1.0 version, a nonsolid 
nodule measuring ≥20 mm on a baseline CT, or a new 
nodule, was considered as category 3; in the 1.1 update the 
measurement threshold has been increased to ≥30 mm at 
baseline, or new on subsequent screening.

To our knowledge there are no studies specifically 
investigating a threshold of 30 mm in determining the 
follow-up course for nonsolid/ground glass nodules. There 
are, however, multiple studies characterizing the natural 
course of ground glass nodules (GGNs) (10-13). A patient 
cohort without a history of malignancy that included 89 
pure ground-glass nodules (PGGNs) was followed for a 
median of 59 months (10). Of these 89 PGGNs, 76 did 
not change in size, one decreased in size, and 12 increased 
in size. Of the 12 patients with PGGNs of increasing size, 
11 underwent surgical resection and were found to have 
primary lung adenocarcinoma. Size was found to be a 
significant risk factor for subsequent growth with 50% of the 
GGNs in the growth category initially measuring >8 mm.  

In another group, patients found to have nonsolid and part-
solid nodules were followed for up to 136 months, with 
a mean follow-up of 29 months (12). The investigators 
found that larger nodules were more likely to grow for both 
nonsolid and part-solid types. Kakinuma et al. also confirmed 
that the initial size of PGGNs is the primary predictive 
factor in determining which nodules will grow (11).  
Pure GGNs larger than 10 mm were significantly more 
likely to demonstrate growth of ≥2 mm in follow-up exams 
(Figure 1). 

Yoon et al. studied a group of 338 patients with  
689 GGNs (14). Over a median follow-up of 21.8 months, 
79 of the GGNs in 55 patients grew. Within the growth 
group, nodule size ≥10 mm was again found to be a risk 
factor for future growth. Additionally, a patient history of 
prior malignancy and the presence of a single GGN were 
found to be independent risk factors for future growth, 
whereas the presence of a solid portion did not correlate 
with growth risk  in their study. They hypothesized that 
this may be due to resection of part-solid nodules without 
observation due to their malignant potential (14). Not only 
is a part-solid component known to confer a greater risk 
of malignancy, increasing attenuation of GGNs has been 
shown to be an independent risk factor for future growth 
and invasiveness (15,16).  

Tang and colleagues added another dimension to the 
analysis of GGNs by considering true growth (growth ≥2 mm),  
substantial growth (growth ≥5 mm), and stage shift (a shift 
in TNM classification and staging system) (13). Of 93 

Table 1 Updates to version 1.1 of Lung-RADS

Categories Additions Revisions

0 NA NA

1 NA NA

2 Perifissural nodule(s) <10 mm Nonsolid nodules <30 mm OR ≥30 mm in unchanged/slowly 
growing nodule (<1.5 mm)

3 NA Nonsolid nodule ≥30 mm at baseline or new

4A NA 4A now a separate category from 4B/4X, described as “suspicious” 
“Tissue sampling” no longer within the 4A category descriptor

4B/4X May pursue 1 month low dose CT for new large 
nodules to address infectious or inflammatory lesions

S NA NA

C Category removed

--- Volumetric measurements NA

NA, not applicable.
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patients with a dominant PGGN, 37 had true growth, 17 
had substantial growth, and 4 had stage shift. The mean 
time for true growth was 6.95 years, the mean time for 
substantial growth was 9.43 years, and the mean time for 
stage shift was 12.17 years. Of the 93 patients, 36 underwent 
surgical excision. All of these GGNs were demonstrated to 
be neoplastic, with 25 classified as invasive adenocarcinoma.

Although the overall evidence is suggestive that PGGNs 
follow an indolent course, a significant proportion may 
eventually prove to be malignant and, therefore, warrant 
surveillance. Based on data from 44 resected PGGNs, a 
logistic regression model estimated the risk of invasive 
adenocarcinoma to be 8.1% for a PGGN with a maximal 
diameter of 5 mm, and to be 71.6% with a maximal 
diameter of 20 mm (17). Indeed, new nonsolid nodules 
on lung screening LDCT are more likely to be malignant 
than solid nodules (18). The management of new GGNs 
found on follow-up screening has been studied both in the 
Early Lung Cancer Action Project and in the NELSON 
participants (19,20). The incidence of new nonsolid nodules 
in the screening population was low, and most of these 
nodules resolved on follow-up. Although the number of 
subjects was low, two out of four persistent nonsolid nodules 
were found to be premalignant (20).

Despite the malignant potential of PGGNs, Gulati et al. 
found that none of the 16 patients who declined treatment 
of suspicious GGNs after biopsy had adverse events related 
to delaying treatment (21). In addition, none of the 16 died 
from lung cancer within the 10-year study period. Four did 

eventually undergo surgical resection; however, none had 
evidence of metastatic disease.

Based on current evidence, it is likely that the Lung-
RADS framework underestimates the probability of 
malignancy in GGNs given their inclusion in categories 2 
and 3, which estimate a <1% and 1–2% risk of malignancy, 
respectively (18,22). However, as has been demonstrated, 
the natural progression of PGGNs is usually protracted; 
there is typically little risk to the patient to continue annual 
follow-up (21,23). In particular, the evidence suggests 
that any GGN demonstrated at baseline or on a new 
exam measuring >10 mm has a high likelihood of further 
growth (11,14,17). Risk factors such as prior malignancy, 
increased age, or large initial size of the nodule are likely 
predictors of progression of these nodules (12,14). Long 
term longitudinal studies will be informative in assessing 
the ultimate effects of this update. 

Nodule measurement

In the Lung-RADS 1.1 framework, the definition of nodule 
growth as >1.5 mm based on the average of linear two-
dimensional measurements remains. However, nodule 
measurement underwent two notable changes. First, a 
volumetric measurement is now included in addition to 
two-dimensional measurements. Second, regarding two-
dimensional measurements, the guidelines now recommend 
measuring to one decimal point and reporting the average 
diameter to one decimal point. On the other hand, the 

A B

Figure 1 Growth of a large pure ground glass nodule (PGGN). Axial computed tomography images show a 14 mm left apical PGGN (arrows) 
(A) that demonstrated growth of 2 mm at 9-month follow-up (B).  
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Fleischner Society warned that measurements to 0.1 mm 
were likely imprecise for pulmonary nodules (24). Indeed, 
they suggest that nodules smaller than 3 mm are too small 
to accurately measure. To our knowledge, no studies have 
assessed the utility of measurement to the first decimal. 
As the Lung-RADS 1.1 framework is adopted, it will be 
instructive for future studies to evaluate the value of this 
new requirement.

Although the Fleischner Society noted in 2017 that linear 
measurement remains the standard of practice (25), linear 
two-dimensional nodule measurements are problematic 
from the perspective of consistency and reliability, especially 
considering most malignant nodules have irregular growth 
patterns. Revel et al. demonstrated significant intra- and inter-
reader variability in measurement of solid pulmonary nodules 
to the extent that a change in size of less than 1.73 mm had 
only a 5% chance of corresponding to real change (26). 

Therefore, a notable addition in the Lung-RADS 
1.1 update is the inclusion of thresholds for volumetric 
measurements. While not applied in the NLST trial, 
volumetric measurements were used in the NELSON 
trial (27). Benefits of volumetric measurements, such as 
reproducibility, potential three-dimensional analysis of the 
entire nodule, and increased sensitivity in detecting nodule 
growth, have led some to promote volumetric measurement 
as the preferred method of measuring nodule size and 
growth determination in lung cancer screening (28-30). 

Additions

Volumetry

The process of volumetric analysis has been well described (28);  
however, a brief discussion is worth including. The initial 
step is accurate segmentation of a pulmonary nodule (28,31). 
The most common approach employed by current software 
is a semi-automated process where the radiologist places 
a “seed” inside a pulmonary nodule, and a region growing 
algorithm is employed to highlight the nodule (Figure 2). 
Important features within segmentation software are the 
ability to distinguish the nodule from background parenchyma, 
vessels, and the pleural wall. Upon completion of automated 
segmentation, usually there is an option to manually adjust 
the segmentation, although this has the potential to introduce 
variability into the measurements (28). 

While most software packages for volumetric analysis use 
a semi-automated approach, development of computer aided 
detection (CAD) of nodules with automated segmentation 

is progressing rapidly. Conventional machine learning 
and deep learning techniques, such as convolutional 
neural networks, have allowed CAD to function with 
up to 95% sensitivity in the detection of pulmonary  
nodules (32). CAD tools with both automatic segmentation 
and volumetric analysis capabilities are available. Indeed, 
a variety of software solutions with varying abilities exist, 
both commercially and open source (33,34). While some 
solutions come as a dedicated lung cancer screening 
workstation; others can be installed and utilized within a 
PACS that is already in place. Integration and improvement 
of these tools with PACS software will be an important 
step in the process of increasing tool access to radiologists 
participating in lung cancer screening programs (35). We 
are not aware of studies analyzing the implementation of 
these tools within a PACS system; this will be a helpful 
area of research as CAD and volumetric tools continue to 
improve. 

At this point, important limitations in the implementation 
of volumetric measurement for pulmonary nodules 
persist. One major limitation is continued variability of 
measurements between vendors  and even various iterations 
of the same software. In 2009, six vendor solutions were 
tested with highly variable measurements from each (36). 
Three of these vendors’ products were again tested in 
2014 with similar variability of measurement. However, 
a notable finding in the latter study was the relative 
consistency in the change of volumes across vendors (34).  
Open source and commercial vendors were studied in a 
multi-institutional retrospective study which concurred with 
the aforementioned findings, demonstrating that change 
in volume is relatively consistent regardless of the software 
solution employed (33). Given this consistency, nodules 
can be followed using volumetric measurements when 
determined by the same software solution. However, care 
must be taken when interpreting volumetric data generated 
by different software or different versions   of the same 
software (33,34). 

Differences  in CT acquis i t ion parameters  and 
segmentation algorithms are also important factors that 
can lead to variability in volumetric measurement. Slice 
thickness and other protocol-related factors such as the 
reconstruction kernel and field of view must remain 
constant for reliable measurements to be performed (28,37). 
Although some software packages allow customization of 
options that change the density threshold for segmentation, 
standardized parameters must exist between practices 
in order to maintain homogenous and comparable 
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measurements if volumetry is to be widely utilized. 
Alternatively, advanced, more generalizable algorithms 
must be developed to compensate for variability of imaging 
parameters across time and institutions.

Another challenge in nodule volumetric measurement 
is segmentation of small pulmonary nodules, as current 

volumetric solutions tend to underestimate the volume 
of nodules <5 mm (28,38). Subsolid nodules provide an 
additional challenge to segmentation software due to their 
indistinct borders and relatively similar densities compared 
to the normal lung parenchyma background. New 
algorithms are in development with the help of machine 

Risk = P SILA =0.571

Volume =1.29 cm3 

A

B C

D E

Figure 2 Illustration of pulmonary nodule segmentation and volumetry. (A) Semi-automated segmentation and basic volumetry in a picture 
archiving and communication system (PACS) integrated program (Visage, Visage Imaging Inc., Richmond, Victoria, Australia). Semi-
automated segmentation in axial (B), coronal (C), and sagittal (D) planes of a solid nodule in a different patient (shaded in red), and its 
resultant volumetric measurement (E) in a standalone image-based risk prediction tool (Computer-Aided Nodule Assessment and Risk Yield, 
Mayo Clinic, Rochester, MN, USA). 
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learning to improve nodule segmentation and subtract 
background details, such as blood vessels and pleura (39). 
Using a novel technique with CAD and vessel suppression, 
Lo et al. showed that radiologist sensitivity in detecting 
suspicious pulmonary nodules can be increased while also 
decreasing the time of interpretation by 26% (40). Indeed, 
deep learning and convolutional neural networks are 
increasingly able to deliver on tasks such as correct nodule 
localization and segmentation (32).  

Few details have been studied regarding the use of 
volumetric measurement in clinical practice. One group 
found that volumetry was helpful in detecting suspicious 
growth of pulmonary nodules, but altered the decision to 
biopsy in only a small number of cases (41). On the other 
hand, the addition of volumetric measurements alone has 
been shown to increase the ability of several models to 
predict malignancy (42). As volumetric measurements come 
into wider use, additional tools will become available, such 
as CAD and automatic segmentation, to aid the decision-
making process. As these tools are advanced, their ability 
to detect and measure pulmonary nodules with increasing 
accuracy and efficiency will increase, thus becoming a more 
important aspect of clinical practice. Until that time, many 
hurdles must be overcome before implementing volumetric 
measurements in the setting of lung cancer screening. 

Perifissural nodules

A notable update to the Lung-RADS reporting system 
is the addition of perifissural nodules (PFNs) <10 mm 
as a specific finding within the benign category (8). As 
defined in the Lung-RADS framework, a PFN is an oval, 
lentiform, or triangular-shaped solid nodule with smooth 
margins. Additionally, these nodules are located on or 
within 10 mm of a fissure and are most often below the 
level of the carina (43,44). In one series, a retrospective 
analysis of 146 patients undergoing lung cancer screening 

CT revealed that up to one third of screened patients had 
PFNs on screening CT (43). These patients were followed 
out to 7.5 years, and none of the PFNs developed into 
malignancy. Another study also demonstrated the benignity 
of PFNs using data from the Dutch-Belgian Randomized 
Lung Cancer Screening Trial (Dutch acronym: NELSON 
trial) (45). In the NELSON cohort, 794 of 4,026 detected 
nodules (19.7%) represented PFNs. The majority of 
typical and atypical PFNs detected at baseline remained 
stable or regressed at first follow-up CT. Of the PFNs that 
grew, none were found to be malignant, even at 5.5 years 
of follow-up.   An additional analysis of NELSON trial 
participants investigated patients presenting with new solid 
nodules at 1, 3, and 5.5 years after baseline (46). In these 
participants, 1,494 new nodules were detected; of the 91 
malignant nodules detected, none were classified as a typical 
or atypical PFN. Given that these benign PFNs might have 
artificially increased the false positive rate of lung cancer 
screening, it would be instructive for future studies to assess 
whether excluding these PFNs decreases false positive rates.  

While prior studies support the classification of 
PFNs as benign out-of-hand, there can be variability 
in their evaluation. In a study analyzing cancerous and 
noncancerous nodules from the NLST database, significant 
inter-reader variability was demonstrated in classifying small 
solid nodules accurately as PFNs (44). Both de Hoop (45)  
and Schreuder (44) distinguished between “typical” and 
“atypical” PFNs. Typical PFNs were defined as smoothly 
marginated, small, solid, lentiform/oval/triangular-shaped 
nodules attached to or within 10 mm of a fissure, with 
extending linear densities (44,45) (Table 2, Figure 3). An 
atypical PFN was described by de Hoop et al. (45) as a 
nodule otherwise meeting criteria for a PFN that is not 
visibly attached to a fissure, while Schreuder et al. (44) 
described an atypical PFN as a nodule meeting two of 
three major characteristics of a PFN (namely typical shape, 
attachment to a fissure, and presence of extending linear 

Table 2 Characteristics of typical and atypical PFNs (12)

Typical perifissural nodules Atypical perifissural nodules

Attached to a fissure Usually perifissural but without visible attachment

Solid Solid

Smooth margins Smooth margins

Oval, lentiform, or triangular shape Oval, lentiform, triangular shape, or convex on one side and rounded on the other (not influenced 
by fissure)

PFNs, perifissural nodules. 
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densities). None of the nodules defined as atypical from 
the NELSON database were found to be malignant (45). 
However, inter-reader variability in classifying typical and 
atypical PFNs can lead to false negative results. Schreuder  
et al.  found that 13 pulmonary malignancies were 
misclassified as a PFN by at least one reader (44); 11 of 
13 of these were located in the upper lobes, and two were 
attached to a fissure. Therefore, although studies strongly 
supported the Lung-RADS 1.1 update to include PFNs 
<10 mm in the benign category, care should be taken when 
assessing these nodules to accurately identify the features of 
typical and atypical PFNs in order to avoid the possibility of 
a false negative finding. 

Infectious/inflammatory nodules

In addition to changes in measurement and classification, 
the ACR now includes follow-up recommendations for 
indeterminate nodules within the framework of Lung-

RADS. This change allows radiologists some flexibility 
when reporting solid nodules on screening CT that 
qualify as category 4B or 4X lesions. According to Lung-
RADS version 1.1, such nodules may be followed up on 
a one-month basis to check for resolution of possible 
inflammatory or infectious etiology (9).

Few studies have detailed the rate of resolution among 
solid nodules detected on CT. One study analyzed 964 
indeterminate solid nodules found in 770 patients screened 
as part of the NELSON cohort (47). Of the 964 nodules, 
97 nodules in 75 participants resolved. Of the nodules that 
resolved, 75% did so spontaneously on the 3-month follow-up 
CT. Non-peripheral location and spiculated borders increased 
the chances that a nodule would be found to have resolved 
at follow-up. Additionally, a higher percentage of nodules   
measuring ≥8 mm at baseline resolved compared to smaller 
nodules, and at a more rapid rate (47). Notably, solid nodules 
are far less likely to resolve than GGNs or part solid nodules 
(PSNs) (48). Yu et al. found within their cohort that only 22% 

A B

C D

Figure 3 Samples of typical and atypical perifissural nodules on computed tomography. (A) Axial section showing a typical PFN (arrow) attached 
to the right major fissure (arrowheads). (B) Coronal section with another typical PFN (arrow) attached to the minor fissure (arrowheads). An 
atypical PFN (arrow) in axial (C) and coronal (D) sections without visible attachment to the right major fissure (arrowheads in C).
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of solid nodules resolved during follow-up compared with 
67% of PGGNs and 55% of mixed GGNs (48). Both Yu’s and 
Lee’s groups found that age ≤55 years and blood eosinophilia 
were predictors for nodule resolution (48,49). A multiplicity 
of PSNs, a large solid component, and irregular borders were 
also predictors for resolution (49) (Figure 4). 

The time to resolution for GGNs, PSNs, and solid 
nodules is unfortunately not clear (47-49). Zhao et al. (47) 
found that of nodules that resolved, 75 of 97 did so by the  
3 month follow-up CT, and Lee et al. (49) defined transience 
as reduction or resolution of PSNs at 3 months. Subjects 
studied by Yu et al. had a mean follow-up duration of  
4.7 months, although the time to resolution was not specifically 
described (48). Diederich et al. found that among 133 resolving 
pulmonary nodules, 80% completely resolved in a mean of  
492 days (50). The majority of these nodules (85%) were solid.

The Lung-RADS 1.1 update suggests a one-month 
follow-up CT for new solid nodules which meet criteria 
for categories 4B or 4X. It is likely that over one month, 
many transient nodules may at least partially resolve (47), 
while a shorter follow-up time may potentially lead to a 
greater number of false positive results, particularly in 
younger patients (48,49). It would be informative to assess 
if a one-month follow-up period is the optimal interval for 
surveillance of these new nodules.

Supplemental resources

Risk calculators

In both the 1.0 and 1.1 iterations of Lung-RADS, the ACR 

provides a link to the Brock University nodule malignancy 
prediction calculator as an adjunct to assist in decision-
making for management of pulmonary nodules detected 
on screening. Although the Brock calculator is unchanged, 
a discussion of risk calculators does have implications for 
implementation and continued improvement of a lung 
cancer screening program. 

Developed by McWilliams et al., this calculator is listed 
as “Nodule Malignancy Prediction Calculator” on the Brock 
University website (51). The data that needs to be entered 
into the calculator includes patient age, sex, family history 
of cancer, presence of emphysema, the type and number 
of nodules, nodule location, and presence of spiculation. 
In the literature, this calculator has been referred to as 
the Vancouver risk calculator and Pan-Canadian Early 
Detection of Lung Cancer (PanCan) model, but we will 
refer to this risk calculator hereafter as the Brock calculator. 
This tool is referenced specifically to facilitate the decision 
to pursue further diagnostic or functional imaging and/or to 
proceed with biopsy (8). 

Many risk calculators have been developed based on 
disparate populations with variable lung cancer risk (52). 
The Brock calculator is particularly useful because it was 
developed using a lung cancer screening population (52). 
In presenting the Brock calculator, McWilliams et al. 
pointed out that while a nodule’s size is the most important 
predictor of malignancy, in a number of individuals the 
largest lung nodule is not necessarily malignant (51). 
Sixteen of 102 (15.6%) cancers within the studied PanCan 
participants were found in the second largest nodule. This 
detail highlights the need for risk calculators to aid in 

A B

Figure 4 Illustration of a resolving solid nodule. Axial image demonstrates a new spiculated nodule (arrow) detected on screening computed 
tomography (A) that resolved on a 4-month follow-up CT (B).
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guiding management to target nodules most likely to be 
malignant (51). 

White et al. recently compared the ACR Lung-RADS with 
the Brock calculator using data from the NLST cohort (53).  
On both a per nodule and per patient basis, the Brock 
calculator was more specific and accurate in detecting 
malignancy than the Lung-RADS categorization. However, 
sensitivity was not found to be significantly different. When 
applied to the NELSON cohort at a single time point, the 
Brock calculator outperformed Lung-RADS in identifying 
malignant nodules (54). The Brock calculator has also 
performed well in cohorts from the Netherlands (55) and 
United Kingdom (56).

When applied to a community lung cancer screening 
program, the Brock  risk calculator performed well at a 
population level in identifying patients with at least one 
pulmonary nodule with a high probability of cancer (57). 
However, when applied on an individual basis, the risk 
calculator performed poorly in distinguishing malignant 
from benign lesions for nodules >6 mm. Hammer et al. 
found similar challenges when applying risk calculators 
to large (≥8 mm) nodules in their population (58). They 
identified 86 pulmonary nodules, 69% of which were 
proven to be malignant by biopsy (39/59) and surgical 
excision (18/59). However, all tested risk calculators 
underestimated the risk of malignancy within this subset of 
large nodules. Specifically, the Brock calculator performed 
the best, but with only a 53% negative predictive value and 
an 81% positive predictive value in this population (58). 

An important factor when applying a risk stratification 
tool is external validation. The Brock calculator has been 
studied in multiple population settings, but Winter et al. 
pointed out that few studies have utilized discrimination 
and calibration metrics in applying this predictive model to 
a new population (59). Fundamental differences in nodule 
characteristics between the PanCan and NLST cohort are 
important considerations when applying this risk calculator 
to a generalized population (59,60). Prior to recalibration, 
applying the Brock risk calculator to the NLST cohort 
overestimated the probability of cancer. However, with 
recalibration, calculator performance improved (59).  

Further evaluation of the performance of Lung-RADS 
1.1, the Brock, and other risk calculators with appropriate 
external validation will be helpful (59). A major benefit of 
the Lung-RADS framework is that it enables immediate 
PACS-side radiologist categorization of pulmonary 
nodules (53). It also provides standardization for nodule 
classification. Additionally, the Lung-RADS categories 

account for growth, while the Brock calculator does not (54).  
Radiologists and clinicians will likely benefit most by 
utilizing clinical judgement, having been informed by these 
risk calculators, in their decision making (58).

Conclusions

The 1.1 update of Lung-RADS introduces many changes. 
While some reflect growing knowledge about the behavior 
of benign or indolent nodules, other changes aim to 
allow radiologists to use Lung-RADS more flexibly and 
effectively. It will be instructive to study the effects of these 
recent Lung-RADS changes by incorporating PFNs into 
the benign category, measuring nodules to the nearest 
decimal point, and using risk stratification tools, such as 
the Brock calculator, separately and in tandem with Lung-
RADS 1.1 in management decisions. As segmentation tools 
and volumetric analysis are refined and more advanced 
quantitative tools integrating AI analysis of the imaging 
characteristics are implemented in practice, the evidence 
suggests that our ability to detect change earlier will 
increase. Additionally, advances in machine learning may 
further aid our efforts to effectively manage patients with 
suspicious lung nodules. These potential advancements in 
lung cancer surveillance make for an exciting time in the 
realm of thoracic imaging. 
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