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Introduction

Although advances over the last 10–20 years have progressed 
understanding of the mechanisms and pathophysiology 
of cough, and of the impact of cough on patients, much 
remains poorly understood (1). These developments have 
occurred along with, and have been strongly supported by, 
tools for measuring cough (2).

As has been reviewed elsewhere (2-6), cough can be 
measured in a number of ways. Clinically, subjective 

measures are the most routinely employed, either crudely 
through qualitative questioning, or more formally through 
quantitative assessments including the Leicester Cough 
Questionnaire (7), cough severity visual analogue scale 
(VAS) (8), cough severity diary (CSD) (9) and the cough-
specific quality of life questionnaire (CQLQ) (10). These 
subjective assessments are straightforward and important, 
allowing a valuable insight into the impact of the cough 
on the individual (11). However, by nature of their 
subjectivity, such tools are a proxy measure only, of a 
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patient’s perception of actual coughing events, rather than 
a direct assessment of cough itself. Subjective and objective 
measures show only moderate correlation at best (12). 

Objective measurement aims to offer an impartial 
quantification of the physiological and pathological 
phenomenon of cough. Although it is possible to measure 
different physical characteristics, including force or 
intensity (13,14), and acoustic properties of cough (15), the 
most widely measured objective variable for assessing cough 
is its frequency. 

There are several reasons why cough frequency 
measurements might be useful. Chronic cough is a common 
disorder, affecting approximately 10% of the population (16), 
and is associated with significant morbidity (17,18). Cough 
counts in individual patients are an objective marker of 
cough severity, variation over time may suggest triggers or 
aetiologies, and repeated measures following treatments 
can assess their efficacy. With the wider use of cough 
monitoring in research, objective cough counts are now 
becoming primary endpoints in clinical trials of anti-tussive 
therapies (19,20).

Cough frequency measurement may also be useful for 
monitoring treatment of other respiratory diseases (21), 
assessing infectiousness in tuberculosis (TB) (22), detecting 
early signs of exacerbations of chronic respiratory disease (23), 
and possibly for screening for the early stages of potentially 
treatable diseases including lung cancer and TB.

For the time being, at least to our knowledge, cough 
frequency monitoring has not been incorporated into 
routine clinical practice and remains a research tool. This 
review will provide an up-to-date overview of cough 

counting tools currently and recently used in research, 
discuss technological aspects, and speculate on possible 
future developments in the field. 

Due to the scope of this review and the constantly-
evolving nature of the field, it does not aim to be 
comprehensive, but rather to offer the reader insights by 
focusing on key principles, and on technology and devices 
which have led to significant advances in the understanding 
and management of cough. 

Defining cough

Cough is characterised by three stages. During the first, 
inspiratory stage, air is drawn into the lungs. This is 
followed by the compressive stage characterised by forced 
expiratory effort against the closed glottis. Finally, during 
the expulsive stage there is opening of the glottis and rapid 
outflow of air. This sudden release of rapid and turbulent 
expiratory airflow is responsible for the characteristic 
sound of a cough which essentially defines it (24,25). This 
third stage itself usually has three component phases which 
comprise the cough sound, as described in Figure 1 and 
below. 

Coughs often occur close together in clusters, which 
may be described as epochs, bouts, peals or attacks. During 
these, the initial inspiratory phase is followed by a series of 
further compressive phases associated with glottal closure, 
sometimes with additional inspirations (24). A bout or 
epoch is defined as a cluster of two or more cough sounds, 
separated from the next by an interval of no more than  
2 seconds (24).

Figure 1 The component phases of the cough sound: opening of the vocal cords (first phase), air flow through the open larynx (second 
phase), and re-apposition of the cords (third, voiced, phase—not always present). Shown as changes in sound amplitude (A) and frequency (B).
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Different units have been proposed for cough counting, 
including individual cough sounds, cough bouts, and time 
spent coughing (26). No measure is demonstrably superior, 
but numbers of cough sounds and time spent coughing are 
very closely correlated (27). Individual cough sounds, either 
occurring in isolation or as part of a cluster, are probably 
therefore the most intuitive basic units of cough (25,28). 

Establishing a reference standard for counting 
coughs

The assumed gold standard method for counting coughs, 
against which potential automated cough counters are 
evaluated, is the ‘manual’ counting of cough sounds from 
near-patient audio recordings. Within pairs, cough counts 
performed by experienced cough researchers are reported 
to be highly consistent (29,30). One study though has 
specifically set out to test the validity of cough counting by 
ear amongst a larger group (28). 

Fifteen doctors untrained in counting coughs were 
asked to individually listen to audio recordings, lasting 
around 15 minutes and containing coughs from patients 
with respiratory diseases. There was very close inter- and 
intra-observer agreement of the reported cough counts. 
The recordings contained a mixture of lone coughs and 
coughing bouts, and no specific instructions were given 
as to how coughs should be counted. The consistently 
reported values for cough frequency corresponded to 
the total numbers of individual cough sounds, providing 
further good justification not only for counting by ear as 
the reference standard for determining cough frequency, 
but also for using discrete cough sounds as the basic unit for 
cough counting (28).

A brief history of cough frequency monitors

Attempts at quantifying cough frequency over prolonged 
periods began in the 1950s (31). In 1964 Woolf and 
Rosenberg were able to demonstrate a reduction in cough 
frequency with anti-tussive therapy by counting coughs 
recorded from a microphone above the head of the bed 
connected through to a tape recorder (32). Recording was 
triggered by sound from the microphone and continued 
to record for 5 seconds after the sound had stopped, 
allowing it to record up to 24 hours of observations on  
2 hours of tape. Manual counts of the audio recordings 
were then undertaken by the investigators. A similar system 
was developed by Loudon and colleagues in the 1960s 

(33,34). Again, due to limitations of technology at the time, 
equipment was bulky, and patients confined to a single room 
for the duration of monitoring, which in this case was up to 
10 hours. The final recordings, also analysed by ear, similarly 
represented only certain portions of the full recording period, 
during which sounds meeting pre-specified amplitude and 
frequency criteria had triggered the audio capture apparatus. 
This inability to record for the full duration of the monitoring 
period presumably led to the omission of a proportion of 
coughing events with both systems.

In 1988 Salmi et al. made the first attempt at the 
automation of cough frequency monitoring (35). The 
researchers’ apparatus recorded cough sounds via a 
microphone and body movements with a static charge-
sensitive mattress. Coughs had to breach specified acoustic 
and movement thresholds to be automatically identified. 
The method was evaluated by comparison to cough counts 
from a researcher simultaneously observing the patient in 
real time during the recording period. In 7 patients, the 
machine detected 809 cough events, of which 794 were true 
positives, showing a sensitivity of 99.0% and specificity of 
98.1%. The method was, however, extremely restrictive to 
subjects. They were required to remain sitting or lying in 
bed isolated in a single hospital room, told to avoid sudden 
movements and loud noises, and to remain facing away 
from the pillow. Presumably in part because of this, the 
system does not seem to have been developed any further.

The 1990s and early 2000s saw advances in technology 
which enabled the development of ambulatory devices (36).  
MP3 recording, digital storage, miniaturisation of 
microphones, and developments in battery technology 
facilitated the ability to record and capture high quality data 
continuously over prolonged periods (37). 

Processing the recorded information however remained 
the main limiting step owing to a reliance on manual 
assessment. Counting coughs by ear from prolonged audio 
sequences is not only laborious and time-consuming, 
but auditory fatigue may lead to miscounting and errors; 
ideally a subset of recordings should be counted twice, 
by more than one observer, to determine consistency and 
quality control. Any steps towards full automation of cough 
counting would therefore be highly attractive. 

Principles of automatic cough detection

Most previous studies focusing on cough detection have 
used a conventional approach to audio signal processing 
(Figure 2), applying techniques used in automatic speech 
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recognition. The core of this strategy involves three steps: 
silence removal, feature extraction and classification. 
However, different methods have been proposed for these 
steps, and there is currently no standardised methodology 
for automatic cough detection. 

Cough signal capture

The most studied signal for cough evaluation is sound, 
acquired by means of microphones. Other investigated 
m o d a l i t i e s  i n c l u d e :  e l e c t r o m y o g r a p h y  ( E M G ) , 
electrocardiography (ECG), nasal thermocouple sensors, 
effort belts, and accelerometry (21), individually or together 
(38-42). Microphones can be classified as contact, and non-
contact (43,44). Non-contact microphones are either worn 
on the outer clothing or placed in the subject’s vicinity and 
detect fluctuations in air pressure which are converted into 
electrical signals by transduction. Contact microphones 
are attached to the skin surface and use piezoelectric 
transducers to sense audio vibrations through direct physical 
contact. Although less sensitive to ambient noise than non-
contact microphones, their high sensitivity is prone to noise 
from movement artefact (45). 

An array or combination of microphones may enhance 
the spatial filtering selectivity of recordings and improve 
cough discrimination, particularly in noisy environments 
(46,47).

A cough sound can be described as a non-stationary 
signal and, as discussed, separated into three component 
phases: the explosive phase, intermediate phase, and voiced 

phase (Figure 1). A cough lasts on average 350 ms, with a 
first peak of mean frequency c. 400 Hz, a secondary peak 
of highest continuous frequency c. 4,000 Hz (48), and 
frequency components of sound spread up to 20 kHz (49).  
To properly characterize cough events the complete 
capture of all details from the audio signal is necessary. 
A range of sampling frequencies for the acquisition of 
the audio signal has been suggested, from 8 kHz (50) to  
48 kHz (51). The frequency response of the microphone 
must be within the sound frequency range of the coughing 
events. In addition, the selection of a sampling rate must 
consider the highest frequency component of the cough 
sounds; as stated by the Nyquist sampling theorem, 
components above half the sampling rate must be filtered 
out to avoid aliasing (52). The sampling rate will impact on 
the volume of data acquired; lower rates reduce hardware 
and data storage requirements, as well as time needed to 
carry out automated analysis, which are highly relevant for 
the development of practical applications.

Windowing and silence removal

Cough sound signals are commonly split into signal 
segments using a moving window, so that all subsequent 
analyses are performed on each segment (53). Prior 
to extracting information from the cough signal, pre-
processing of the audio data is necessary with the aim of 
removing sources of noise that obscure its evaluation. In 
general, cough events are segmented and separated from 
other noise sources, a method known as silence removal (54). 

Figure 2 Scheme of analysis for automatic cough detection. EMG, electromyography; ECG, electrocardiography; MFCC, Mel-frequency 
cepstral coefficients; STFT, short-time Fourier transform; ANN, artificial neural network; DNN, deep neural network; KNN, K-nearest 
neighbours; SVM, support vector machines; HMM, hidden Markov models.
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Silence removal methods can be performed manually or 
using automated methods such as standard deviation, short-
term energy, and zero-crossing (54). Standard deviation 
is the measure of dispersion of signal segments. A lower 
standard deviation refers to segments of low activity while 
higher standard deviation indicates segments with potential 
cough activity. Short-term energy represents the signal 
power. A low signal power is related to silence periods while 
a high signal power indicates a potential cough activity. 
Zero-crossing rate represents the number of times the 
signal crosses to zero. The higher the zero-crossing, the 
greater the amount of noise. 

As suggested by Cohen-McFarlane et al., one step 
forward to improve silence removal and segmentation 
methods could be to implement an adaptive approach that 
improves the ability of separating background noise from 
audio activity (54). Nonetheless, these silence removal 
methods have limitations and work best in quiet ambient 
conditions, but lead to poorer segmentation in the case of 
low signal-to-background levels.

Feature extraction

Mel-frequency cepstral coefficients (MFCC) and their 
variations have been the most widely-used features for 
cough detection (41,55-65). MFCC, which are widely used 
in automatic speech recognition, represent the envelope of 
the short-term power spectrum of a sound signal. Spectral 
shape features may also help to differentiate cough from 
other sounds, particularly speech; compared to speech, 
cough sounds have a closer similarity to noise, and therefore 
have a wider spectrum.

Cough detection algorithms to date have included 
several distinct spectral features. Spectral flatness 
(41,50,66) represents how flat the spectrum of a signal 
is or how similar to noise a sound is; spectral centroid 
(41,50,66,67) concerns the weighted mean of the spectrum, 
usually higher in cough sounds than in other sounds; 
formant frequencies (50,56,59,64) are spectral peaks at the 
resonant frequencies associated with cough generation; 
and spectral kurtosis (59,64,67-69) measures how peaked 
the spectrum is. 

Cough sounds are more noise-like than other sounds, 
and therefore are more complex. Accordingly, different 
measures of complexity of cough sound signals have 
also been proposed for cough detection, such as zero-
crossing rate (41,45,54,56,57,59,64,66) or different entropy 
measurements (56,57,67,68).

Other features have been used for cough detection. 
These  may  inc lude :  the  non-Gaus s i an i ty  s core 
(56,57,59,64,70), quantifying the deviation of a signal from 
a Gaussian model, the value of which is typically high 
in cough sounds; log-energy (59,61,64), relating to the 
amplitude of cough signals; and Hu moments, a technique 
of weighted averaging widely used in image processing 
and recently proposed in the signal processing field for 
speech emotion recognition (67,71,72). Usually, these and 
other features are combined to form the input data set for 
classification. However, there is no consensus standard for 
the optimum set of acoustic features for cough detection. 

Classification

Classification techniques aim to categorise sounds into 
cough and non-cough events. Artificial neural networks 
(ANN) are algorithms that attempt to simulate the 
behaviour of the human brain, and have been applied to 
attempt to differentiate between cough and non-cough 
events (56), cough segments and swallow signals, rest states 
and different non-cough artefacts (73), and to differentiate 
between cough, speech and noise (74). Recently, with 
advances in deep learning techniques, new approaches to 
cough detection have been proposed (55,62,75). These 
approaches do not require feature extraction prior to 
classification, but the short-time Fourier transform or 
spectrogram of the cough sound signal is passed directly to 
a deep neural network within which feature extraction is 
performed automatically, thus facilitating the processing of 
cough sound signals.

The hidden Markov model (HMM) is a statistical 
technique successfully used for speech recognition. HMMs 
represent the spectral properties of a time-varying pattern of 
cough and have been employed for the automatic detection 
of cough events in ambulatory patients with respiratory 
diseases (65). In addition, hybrid models combining ANN 
and HMM (74), and DNN along with HMM (62) have 
been proposed to enhance the performance of cough 
detection by taking into account temporal variations in the 
cough signal.

Logistic regression classification is a kind of predictive 
analysis algorithm that assigns observations to a discrete 
(e.g., binary) set of classes. This technique has been used for 
the diagnosis of pertussis by evaluating cough and whoop 
sounds (76), and to separate cough and non-cough events 
(50,77). Other interesting applications make use of support 
vector machine, an algorithm that it is suitable for the 
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analysis of small data sets and that has being employed to 
improve automatic a croup diagnosis system (78).

Linear discriminant analysis (LDA) is a technique used 
for dimensionality reduction increasing separation between 
classes allowing classification tasks. LDA has been employed 
to obtain the best probable separation between cough and 
non-cough events (56). 

The accelerated progress being made in the field of 
classification algorithms should allow more accurate and 
efficient classification between cough and non-cough 
events. The associated reduction in the computational cost 
could facilitate implementation in ambulatory scenarios, for 
example with incorporation into widely-available mobile 
devices as discussed below.

A major limitation when comparing different methods 
for automatic cough detection is that the datasets used in 
different studies are not the same, with main differences in 
type and position of microphones, recording conditions, 
study subjects and types of non-cough sounds included. 
Since these aspects influence the performance evaluation 
of methods, it is difficult to directly compare different 
approaches to automatic cough detection. 

Modern cough monitors

The ideal ambulatory cough monitoring system would 
be easily portable, compact, minimally-intrusive to the 
patient, and probably operate over no less than a 24-
hour period to take account of diurnal variations in 
cough frequency (79). Such a device should reliably and 
consistently detect all coughs and distinguish them from 
all non-cough sounds, other respiratory movements, and 
ambient noise (i.e., high sensitivity and specificity), operate 
in a patient’s own environment, function across a range of 
subjects, types of cough sound, in health, and in different 
diseases, and provide a fully automated analysis of the 
collected data. Ideally, cough monitors should also work in 
noisy environments and not mistake the coughs of other 
individuals for those of the subject of interest. 

As discussed, the miniaturisation of electronic devices 
and the digitalisation of recording technology has led to 
wearable cough monitors capable of recording continuously 
for 24 hours or longer during daily activities. Despite 
various recent attempts at developing automated or semi-
automated cough frequency monitors, some of which 
are described below, only two systems have been widely 
adopted in cough research: the Leicester Cough Monitor 
(LCM) and the VitaloJAK™ (37). 

The dextromethorphan trials

In 2001 Pavesi et al. published a meta-analysis of 6 trials 
investigating the antitussive effect of dextromethorphan. 
Amongst 710 patients, cough reduction was demonstrated 
using cough frequency data collected by a portable 
computerised cough acquisition and analysis system, in 
the patient’s own environment. The device consisted of a 
contact microphone, attached to the suprasternal notch, 
detecting audio and vibration signals. Data was collected by 
a frequency modulation transmitter, worn in a belt pouch, 
and sent wirelessly to the hardware within the patient’s 
home. Subjects could move freely within a 100-metre radius 
of the computer collecting the data. The system employed 
fully computerised acquisition of data but relied on manual 
counting of audio and visual displays.

Three hours of continuous cough recording was 
undertaken after treatment was initiated in each subject. 
Cough bouts, components, effort, intensity and latency 
were all measured. The antitussive effect of a single dose 
of dextromethorphan was demonstrated, and consistent 
results achieved by the cough counting system, showing for 
the first time the feasibility of portable cough monitors to 
evaluate treatment. Additionally the study showed cough 
frequency rather than intensity was a more responsive 
measure (80). 

The Lifeshirt®

The Lifeshirt® system was a multimodality automated 
cough counting tool comprising respiratory inductance 
plethysmography (RIP) for the non-invasive measurement 
of ventilatory variables, an accelerometer, single channel 
ECG, and a unidirectional throat microphone. The 
device was evaluated in one study of eight subjects with 
chronic obstructive pulmonary disease (COPD) against 
manual counts from video surveillance. The sensitivity and 
specificity of the device for counting coughs was reported 
as 78.1% and 99.6%, respectively (81). There is no other 
published validation data; the company developing the 
product ceased trading and any further work looks unlikely. 
Nevertheless, this technology has influenced other products 
which are discussed below.

The RBC-7, Logan Sinclair LR100 and LR102

The RBC-7 recorded surface EMG and audio cough signals 
with a capacity for over 48 hours of data to an ambulatory 
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device. Additional data from ECG and accelerometer 
supplied information on the subject’s activity. Validation 
included data from 20 subjects and was compared to manual 
counting from tape recordings. No significant difference in 
the number of single coughs recorded by each system was 
detected (correlation coefficient =0.996) (82). However, 
the system was not automated and therefore required full 
manual counts. 

To overcome this operator dependence, modification 
with preset algorithms for data analysis was applied and the 
device re-named the LR100. It was validated in 14 children 
during exacerbations of cystic fibrosis (83). Further work in 
2003 showed the feasibility of objective cough monitoring 
in younger infants and children. The system was shown 
to be well-tolerated and had a mean sensitivity of 81% for 
detecting coughs in comparison to human counts of video 
recordings (84). 

The final update was to the LR102. This comprised 3 
EMG sensors and a contact sound transducer. The EMG 
electrodes were placed across the chest: in the sixth right 
intercostal space, the left mid-clavicular region, and the 
epigastrium. The sound sensor was placed in the second 
left intercostal space. Data analysis was fully automated and 
off-line. Validation examined data collected from 10 adult 
patients with chronic cough. Cough frequency recorded by 
the LR102 and manual counting of video recordings were 
well correlated; r=0.87 for number of cough episodes/hour 
and r=0.89 for number of single coughs/hour. However, 
the LR102 overestimated cough frequency. The mean 
difference between the meter and manual counts was 3.8 
for cough episodes per hour (P=0.04) and 12.5 for single 
coughs per hour (P<0.01). This overestimation was due in 
large part difficulties of the automated system distinguishing 
between cough episodes and other noise. The shortcomings 
of the device have not been addressed and there have been 
no attempts to further develop it (85).

Pulmotrack-CCTM

The fully automated Pulmotrack-CC™ consisted of 
two contact microphones and a pneumogram belt. In a 
validation study by the developers it recorded tracheal and 
chest wall sounds, ambient sounds and chest wall motion 
in 12 healthy volunteers coughing voluntarily over short 
periods in 5 different positions: lying supine, sitting, sitting 
with high level ambient noise, walking and climbing stairs 
for short time periods (5 minutes/position, totalling 25 
minutes per subject). A cough monitoring algorithm was 

applied, and the tool validated against cough counting 
by the developers. The device was reported to have a 
specificity of 94% and sensitivity of 96%. However, during 
stair climbing specificity dropped to 87% with a sensitivity 
of 97%. Correlation with manual counts was strong,  
r=0.94 (86). 

However, subsequent independent assessment of the 
Pulmotrack-CC™ was undertaken using recordings lasting 
up to 20 hours from 10 patients with chronic cough due 
to different chronic respiratory conditions. In this context 
the system was demonstrated to have poor agreement with 
cough counting by a human investigator, with a sensitivity 
of only 26% compared to coughs identified by ear (28). 
Until this lack of consistency is addressed the system cannot 
be reliably used.

The Hull Automatic Cough Counter (HACC) 

The HACC records  sound data  from a  wearable 
microphone over 24 hours. The signal is analysed to 
identify sound, and periods of silence are then omitted. The 
HACC was developed in 33 subjects with chronic cough, 
23 of whom contributed data to determine reference cough 
features, with the remaining 10 subjects used for validation. 
The HACC was able to significantly reduce counting time 
compared to manual systems, taking approximately 1 minute 
35 seconds to provide a count on 1 hour of data. However, 
the false positive rate of the automated system was high at 
almost 20% (sensitivity 80% and specificity 96%) due to 
inability of the system to distinguish surrounding coughs 
from those produced by the subject (53). Comparing the 
HACC to manual counts in 10 subjects demonstrated 
strong correlation (r=0.87, P≤0.001), but the HACC 
consistently did not count around a quarter of cough sounds 
identified by manual counting alone (87). As a result, it has 
not been adopted.

Cayetano Cough Monitor

The Cayetano Cough Monitor is a semi-automated 
system comprising a digital recording device and free-
field microphone, recently developed by a Peru-based 
group studying TB (60). The device is reported to have a 
sensitivity of 75.5% in the ambulatory setting, with a false 
positive result of 4 events/hour. The operator must review 
approximately 5% of the total recording time for this 
sensitivity to be achieved (60). Unlike the other monitoring 
systems, the developers chose to count coughing bouts, as 
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described above, rather than individual cough sounds which 
will make comparison with cough frequency measured by 
other devices difficult. This counting method was chosen as 
the monitor was found to have a sensitivity of only 51.4% 
when counting individual cough sounds. The device was 
used to determine cough frequency in pulmonary TB; 97 
adults were enrolled in the study, who contributed 957 
recordings. However, 685 of 1,642 (42%) recordings were 
excluded due to high levels of background noise. The 
researchers are working to resolve this technical limitation 
by incorporating accelerometer-based technology (21).

LCM

In 2008, Birring et al. overcame previous limitations of 
24-hour cough recording by developing and validating the 
LCM. The LCM is a small, lightweight system comprising 
a commercially-available portable digital recording device 
and free-field lapel microphone. The recorded data is 
subsequently analysed using an automated algorithm capable 
of detecting most cough sounds whilst rejecting non-
cough noises (30,65). Operator input is required only for 
calibration as a consistency check to improve the specificity 
of the device, and takes approximately 5 minutes for every 
24-hour recording. Validation was initially undertaken with 
data collected from 15 patients with chronic cough and 
8 healthy volunteers. Reported sensitivity and specificity 
were 91% and 99%, respectively for identification of 
cough sounds, and a median false positive rate of 2.5 
events/patient/hour (30). The LCM was also shown to be 
repeatable over >3 months, and demonstrated a marginal 
improvement in repeatability when compared to manually 
analysed recordings (30).

Further evaluation by an independent researcher from 
another institution compared non-automated cough counts 
in 24 h recordings from 7 patients with idiopathic chronic 
cough to analysis by the machine. Automated and non-
automated cough counts were very similar (mean ± SE: 
23±7, compared to 24±6 coughs/patient/h respectively; 
intra-class correlation coefficient 0.98) (88).

More recent testing of the LCM in 24-hour recordings 
from 20 individuals (8 healthy volunteers and 12 with 
chronic cough) showed a sensitivity of the system of 
83.8% in patients and 82.3% in healthy volunteers, with a 
specificity of 99.9% in comparison to counting by ear (89).

The LCM has been used to obtain outcome measure 
data of cough frequency in a number of studies, including 
randomised controlled trials of gabapentin (90) and 

erythromycin (91) in chronic cough, and inhaled sodium 
cromoglycate in idiopathic pulmonary fibrosis (92). 
The system also been used successfully for measuring 
cough frequency in bronchiectasis (93), sarcoidosis (94),  
COPD (95), and TB (22).

VitaloJAK™

The VitaloJAK™ was developed through collaboration 
between Vitalograph (a medical diagnostic device company) 
and the University Hospital of South Manchester. The 
system uses a combination of a lapel microphone, and 
contact microphone attached to the upper sternum with 
a specially-designed ambulatory recording device worn 
in a belt bag. Rather than generating cough counts by an 
automated process, the VitaloJAK™ software algorithm 
subsequently compresses audio recordings by removing 
all silent periods and the majority of non-cough sounds. 
Experienced operators then listen to the compressed 
recordings, each lasting approximately 1.5 hours per  
24-hour monitoring period. Coughs are detected using an 
audio-visual display. 

There have so far been two published reports on 
the evaluation of the software algorithm in a total of 30 
individuals comprising 24 patients (with chronic cough, 
asthma or COPD) and 6 healthy controls (96,97). The 
developers report an almost zero error rate in transferring 
the original cough sounds to the condensed recording apart 
from in one patient with asthma and apparently muffled 
cough sounds (96). The VitaloJAK™ cough frequency 
detection system has not undergone separate independent 
evaluation.

The VitaloJAK™ has been used to detect cough counts 
in a number of studies in a range of diseases including 
chronic cough, COPD, pulmonary fibrosis, asthma and 
cystic fibrosis (98-102). It has also successfully provided 
positive primary outcome efficacy data in Phase 2 studies of 
gefapixant in unexplained chronic cough (19,20).

Comparing the LCM and the VitaloJAK™ 

The LCM and VitaloJAK™ are the two most widely-used 
cough monitoring systems to date. They have not been 
directly compared, but lead to very similar 24-hour cough 
counts in similar types of patients [e.g., with chronic cough 
(89,103), and acute cough (104,105)]. Both systems can 
record data continuously for 24 hours, with the LCM 
capable of doing so for up to 4 days (106). The LCM 
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requires significantly less operator time. Conversely 
VitaloJAK™, mainly due to the greater human operator 
may have greater accuracy, in terms of correctly detecting 
all cough events, but this is difficult to quantify from 
published data. The VitaloJAK™ has been used in  
children (107) and is safety tested as a medical device, 
although the LCM too could probably undergo the 
necessary adaptation and validation process to demonstrate 
its use in children.

The VitaloJAK™ recording system was designed 
specifically for cough sounds, whereas the audio capture 
equipment of the LCM was developed primarily for 
recording speech. However, as the LCM employs a 
microphone of high frequency response, and digitally 
records sound with sampling rate appropriate to cough 
sounds it is unclear if the bespoke recorder offers any 
advantage (30). The LCM recording is smaller and lighter, 
making it potentially more practical and acceptable to the 
wearer. 

The lack of a chest wall contact microphone might 
make the LCM algorithm potentially more likely to 
overestimate cough counts if other individuals in the 
vicinity are also coughing. However, contact microphones 
have the disadvantage of being highly sensitive to noise 
from movement artefact, as previously discussed (41). 
Furthermore, due to the characteristics of the free-field 
microphone used, and the fact that distant-sounding 
coughs can be filtered out by the operator during the 
calibration phase of audio analysis, the accidental detection 
of background coughs might not be a significant problem 
in clinical use (108). Kulnik et al. tested the LCM on a 
hospital ward in which the wearer of the device and others 
in the background were prompted to cough. An observer 
remained present and counted coughs from both the 
study subject and others in the background in real time. 
Agreement between cough counts of the subjects from the 
LCM and the observer was extremely high [proportion 
of exact agreements 0.92; kappa 0.84, 95% CI: 0.75, 0.93; 
device specificity 91% (95% CI: 0.82, 0.96) for detecting 
the study subject’s cough only] (108). 

The lack of direct skin contact with the LCM might 
make the monitor less noticeable by the wearer, potentially 
important if trying to determine ‘usual’ cough frequency. 
Conversely, as the LCM is easier to remove and replace, the 
wearer might potentially be more tempted to do this during 
a recording period. This might be easily more recognised 
with the VitaloJAK™ system as a lack of recorded data from 
the contact microphone, and the greater human input into 

analysis of recordings.
The relatively low unit cost of the LCM recording 

equipment allows it better feasibility for recordings in the 
home environment. In particular this facilitates sending the 
equipment by mail at the end of a recording period, rather 
than delivering it in person, increasing convenience for both 
study subjects and researchers. The low cost of the LCM 
hardware has also made it well-suited for independently-led 
collaborative non-commercial research, including in TB in 
East London and South Africa (22,109). 

The two systems therefore have different strengths and 
weaknesses and should probably be seen as complementary, 
both having supported significant recent advances in cough 
research (Table 1).

Future directions

At the present time cough monitoring very much remains 
a niche research tool. No well-validated automated cough 
frequency system is currently freely or commercially 
available. Both the LCM and the VitaloJAK™ systems offer 
substantial advances on the only previous alternatives for 
cough counting, but as discussed they have limitations, and 
are currently only accessible through research collaboration 
with the developers. Given the advances in the last two 
decades in computer and mobile technology, including 
in particular in speech recognition, developing a cough 
monitor with the ideal characteristics mentioned above 
should not seem beyond expectations. However, there has 
been very little financial investment in cough counting tools 
to date.

Despite the ease with which the human ear recognises 
coughs (presumably for reasons which have been favoured 
by natural selection), automated cough detection remains a 
challenge. As previously discussed, the approaches taken to 
automatic speech recognition are relevant, but owing to the 
noise-like qualities of cough compared to speech sounds, 
are only part of the solution. Further research focus is 
needed. Algorithms should be personalised to adapt to the 
cough sounds of the subject under observation in order that 
the coughs of others in the vicinity are ignored. 

Future systems should also ideally operate in real time, 
recognising coughs as soon as they occur and ignoring all 
other sounds. In this way capturing sound information 
over the entirety of the recording period would become 
redundant. The currently-used cough monitors discussed 
above have this requirement, creating large digital data files 
for analysis at a later time point. Such an advance would 
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Table 1 Ambulatory automatic and semi-automatic cough counting tools

Device Device Components Automation Reported accuracy Comments

LifeShirt (81) Custom-built 
device

Plethysmography, 
EMG, and 
electrocardiogram

Full Sensitivity 78.1%; 
specificity 99.6%

No longer in production

LR102 (85) Custom-built 
device

3 EMG sensors and 
a contact sound 
transducer

Full ICC, r=0.87 for number of 
cough episodes/hour and 
r=0.89 for number of single 
coughs/hour compared to 
manual counting of video 
recording

Overestimates cough frequency, 
mean difference between the 
meter and manual counts was 
3.8 for cough episodes per hour 
(P=0.04) and 12.5 for single 
coughs per hour (P<0.01)

Pulmotrack-
CC™

 
(86)

Custom-built 
device

Two contact 
microphones and a 
pneumogram belt

Full Sensitivity of 96%; 
specificity of 94% 

Independent validation reported 
sensitivity of 26% compared to 
coughs identified by ear (28)

The Hull 
Automatic Cough 
Monitor (53)

Sony 
TCD-D8 
Walkman 
DAT-recorder

Free-field 
microphone

Partial Sensitivity 80%;  
specificity 96%

False positive rate of the 
automated system, 20%. The 
HACC did not count around 
a quarter of cough sounds 
identified by manual counting 

Cayetano Cough 
Monitor (60)

MP3 digital 
recorder

Free-field 
microphone

Partial Sensitivity 96%; specificity 
94%; but reduces to 75.5% 
in the ambulatory setting, 
with a false positive result 
of 4 events/hour

Measures bouts rather than 
sounds. Sensitivity of only 
51.4% when counting individual 
cough sounds

Leicester Cough 
Monitor (30)

MP3 digital 
recorder

Free-field 
microphone

Partial Sensitivity 91%;  
specificity 99%

False positive rate 2.5 events/
patient/hour and repeatable 
over ≥3 months. Has been used 
in commercial antitussive trials

VitaloJAK™ (97) Custom-built 
device

Free-field 
microphone and 
contact microphone

Partial Sensitivity 99.92% at 
highest data compression

Requires operator training for 
manual counts. Has been used 
in commercial antitussive trials 

not only have the advantage of simplifying data storage, but 
would be potentially very attractive to the individual being 
monitored. Current systems record not only coughs, but 
also speech and other environmental sounds, the nature 
and content of which may be personal and confidential. 
Research participants undergoing cough monitoring 
are made aware of this fact, and it may be a barrier to 
study recruitment. Capturing only coughs and ignoring 
other sounds should increase the acceptability of cough 
monitoring to individuals and regulators alike, and help lead 
to the wider use of cough monitoring in general.

Ongoing developments in cough counting tools, and the 
generation of more data, should go hand in hand with the 
wider application of cough frequency measurement, which 
in turn should lead to further advances in technology. 
Basic questions remain poorly answered in cough research, 

regarding, for example, the epidemiology of chronic 
cough in the general population, the normal range of 
cough frequency in health, and the extent to which cough 
counts vary from day to day within individuals in health 
and in stable respiratory disease. These points are key to 
better definitions of disease, for measuring responses to 
treatments, and for powering clinical trials, and should be 
addressed as cough frequency monitoring becomes more 
commonplace. 

Duration of cough monitoring

The optimum duration for measuring cough frequency is 
not defined, but will probably relate in part to the question 
being asked. Clinical trials of new antitussives have recently 
used both 24-hour and daytime cough frequency (19,110). 
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It is not clear which is superior. It has been suggested 
that continuous monitoring for periods of only a few 
hours might be sufficient surrogate to assess daily cough  
frequency (111), but more data are needed. As technology 
now allows, recording periods of 48 h or longer may be 
preferred. This would not only allow more account to be 
taken of normal diurnal and inter-day variations in cough 
frequency, but also of any effect on cough frequency of 
wearing a monitoring device. 

This theoretical effect has long been recognised but 
has not been quantified; cough monitoring may alter the 
subject’s awareness of their cough, leading to fewer or more 
voluntary coughs, or avoiding activities which produce 
more coughing such as smoking (32,112). Wearing a cough 
monitor over longer periods than 24 h might allow the 
subject to become accustomed to the device and not adapt 
behaviour as a result. 

Novel applications

In a proof-of-concept study, Crooks et al. have demonstrated 
declines in cough frequency during recovery from 
exacerbations of COPD. Serial recordings were made with 
the LCM over several weeks in the home environment (113).  
Cough monitoring could potentially be similarly used 
to detect the early phases of COPD exacerbations, 
leading to more prompt interventions to mitigate against 
deterioration. This approach is also being investigated in 
asthma (61,114), and could combine well with telemedicine 
for remote monitoring by health teams (115).

Cough frequency measurement could be a novel 
objective marker of disease severity, and of directly 
monitoring response to treatment. This has been 
investigated in TB (21,116), a disease in which the 
currently-used objective markers of treatment response, 
including weight gain, radiographic improvement, 
and sterilisation of sputum microscopy are limited in 
responsiveness, sensitivity and specificity (117,118). 
Cough monitoring could also impact on the management 
of interstitial lung diseases, also in need of better clinical 
markers of severity and treatment response (119).

Cough frequency has been investigated in the 1960s as 
a marker of infectiousness in TB (120), but only recently 
been shown to be feasible and potentially valuable using 
modern technology (22). Improved identification of the 
most infectious individuals would have clear advantages 
to the control of disease transmission (121). Screening for 
disease in apparently healthy individuals, particularly in 

its early stages has attracted a lot of attention, particularly 
in lung cancer (122,123) and TB (124), and also has 
clear applications for the control of other respiratory  
infections (125). Cough counting tools could lend themselves 
well to screening, cough being a common and early feature of 
respiratory conditions. Cough monitoring would clearly first 
have to become much simplified and more widespread.

Mobile device technology

In early 2020 approximately 45% of the world’s population 
owned a smartphone, up to >90% in some parts of the  
world (126).  Such devices commonly incorporate 
microphones, software and processors of sufficient 
specification to support accurate speech recognition 
systems. The potential adaptation of mobile devices as 
cough monitors therefore is very attractive. 

One such smartphone application is currently in 
development and records, encrypts and transmits data 
to a remote, secure cloud server for automated analysis. 
This system awaits proper validation (127) and others are 
development (71). The continuous transmission of data 
for analysis remotely would circumvent the need to embed 
further signal processing capability for real-time cough 
detection within mobile phones themselves. However, the 
computational cost of running complex processing and 
classification algorithms, and the challenge of low signal-to-
noise ratio for real-time cough detection could potentially 
be overcome with advances and adaptations in machine 
learning algorithms as discussed (71). 

Smart electronic speakers are rapidly becoming 
more present in the home environment, and could also 
potentially adapted to monitor cough (128). The adaptation 
of commonly-owned electronic devices to monitor health 
is already proven, for example in screening for atrial 
fibrillation with a wristwatch (129), and should make cough 
counting technology more widely available, practical and 
acceptable to individuals.

Conclusions

We predict that the recent increased interest in the field of 
cough, accompanied by significant potential breakthroughs 
in new antitussive treatments, and rapid advances in 
mobile technologies and signal processing will lead to 
improvements and the much wider use of cough counting 
tools. Machines may ultimately surpass the human ear’s 
ability to detect cough, perhaps removing any operator 
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dependence of the systems.
With the increasing automation of modern life and 

reliance on technology such devices should have appeal 
not only to clinicians but also to patients alike, allowing 
them increased facility to monitor and manage their own 
condition. For healthcare services, they may have the added 
benefit of providing a remote method for tracking patient 
cohorts, and for screening for disease.
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