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Introduction

Esophageal carcinoma (EC) is among the most fatal 
malignancies in the world, with a 5-year survival rate 
of less than 10% (1). EC’s are classified as esophageal 
adenocarcinomas (EAC) and esophageal squamous cell 
carcinomas (ESCC), according to the histologic subtype 

of tumor cells (2). ESCC is especially prominent in 
China, where it accounts for approximately 88.8% of 
all esophageal cancer cases (3). Surgical resection is the 
most common treatment for respectable ESCC (4), and 
postoperative adjuvant chemotherapy, radiotherapy, 
and chemoradiotherapy are also routinely practiced (5). 
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Although radiotherapy has significantly improved the 
median survival period the recurrence rate of ESCC 
remains high (6,7). Therefore a better understanding 
of tumoral radiosensitivity is urgent needed to develop 
strategies and further personalize radiation treatments. 
Thus, we performed whole-exome sequencing (WES) 
on paired tumors collected before and after radiotherapy 
from 11 patients with ESCC. Comprehensive analysis the 
somatic mutations, the driver genes mutations, the copy 
number variations (CNVs), the mutational signatures, the 
tumor’s clonal composition, and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway between pre- and 
post-radiotherapy samples in our cohort.

In recent years, several genes have been found to play 
an important role in radiosensitivity. Genetic alteration 
of cluster of differentiation 59 (CD59) expression 
modulated the radiosensitivity of esophageal cancer cells 
to ionizing radiation (8). The downregulation of the high 
mobility group box 1 (HMGB1) gene could effectively 
inhibit proliferation, increase radiosensitivity, impair 
deoxyribonucleic acid (DNA) damage-repair abilities, 
reduce autophagy, and increase apoptosis rates in ESCC 
cells after irradiation (9).

Most of the previous studies exploring the molecular 
mechanisms underlying radiotherapy resistance have been 
limited to one or several specific biomarkers by in vitro 
experiments, and none are currently used in the prediction 
of radiosensitivity in clinical practice (10). The genomic 
landscape of ESCC has been characterized (11,12), 
revealing that pathogenesis is caused by a large number of 
genomic alterations through single-nucleotide variations 
and/or copy number losses. However, the changes of 
mutational processes in ESCC across the whole-genome 
due to radiotherapy remain unknown. Though a similar 
study identified ESCC mutational heterogeneity by Single-
cell whole-exome sequencing (scWES), scWES inevitably 
encounter much more experimental error and analysis error 
than WES. In the current study, we performed WES of 11 
matched pre- and post-radiotherapy ESCC tumors from 
Chinese individuals. We examined the single-nucleotide 
variants (SNVs) spectrum, mutational/trinucleotide context, 
and copy-number aberrations in this cohort. We aimed to 
comprehensively evaluate the impact of radiotherapy on the 
exome landscape and possibly identify potential actionable 
targets to increase sensitivity and avoid unnecessary toxicity 
of ESCC radiotherapy.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.

org/10.21037/jtd-20-2450).

Methods

Patients 

ESCC tumor samples and adjacent, histologically normal 
tissue samples from 11 patients before and after radiotherapy 
were collected in Shandong Cancer Hospital from 2015 
to 2017. We acquired the written informed consent from 
these patients. Three of them received surgery, and 10 of 
them received chemotherapy, and only one patient received 
Nimotuzumab. All the patients received radiotherapy. All 
samples were subjected to hematoxylin and eosin staining 
and histopathological examination to separate the normal 
cells from the tumor cells (Figure S1). The isolated normal 
cells were used as matched normal controls. Only one 
normal control was selected for each patient.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013),  and was 
approved by Shandong Cancer Hospital and Institute 
(Approval ID: SDTHEC201604003).

DNA extraction and Next-generation sequencing

The genomic DNA were extracted from the archived 
formalin-fixed paraffin-embedded (FFPE) samples of 
11 pairs ESCC tumor tissue and matched normal tissue 
according to the manufacture’s instruction (K182001, 
Invitrogen™ PureLink™ Genomic DNA Mini Kit, 
China). Then, qualified DNA were sonicated to an average 
size of 200 base pairs (bp) (range, 100–500 bp) (13). The 
targeted DNA fragments were captured pull-down. Exon-
wide libraries were created using the xGen® Exome 
Research Panel (Integrated DNA Technologies, Inc., 
Illinois, USA) and TruePrep DNA Library Prep Kit V2 for 
Illumina (#TD501, Vazyme, Nanjing, China), and paired-
end sequence data was generated using Illumina HiSeq 
machines. 

Sequence alignment and variant calling 

The sequence data was aligned to the human reference 
genome [National Centre for Biotechnology Information 
(NCBI) build 37] using Burrows-Wheeler Aligner  
(BWA) (14). Sambamba was employed to sort and remove 
polymerase chain reaction (PCR) duplicates (15). Base 
quality score recalibration (BQSR) was performed using 
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the genome analysis toolkit (GATK) 4.1.2 (16). The panel 
of normal samples was first created with Mutect2 (16), 
and subsequently used for mutation analysis of paired and 
uncontrolled samples. The sequencing data of matched 
normal samples were utilized to exclude both germline 
mutations and sequencing artifacts during detection 
of somatic mutations, which could increase the true 
positive rates of the calling. Somatic mutation calling was 
performed using Strelka2 (17), Mutect2, and VarDict (18).  
Somatic mutations present in at least two of these three 
aforementioned software programs were selected as high-
confidence mutations. The single-sample mode of Mutect2 
and VarDict was used for samples without normal tissues 
(library construction of the three normal samples failed due 
to the low concentration of DNA), and the intersection 
was then calculated. The variant data was annotated using 
ANNOVAR (19). Somatic mutations were converted to 
mutation annotation format (MAF) and visualized using R 
package maftools (20). Gene mutation rate was calculated 
by the number of tissues with mutation gene divided as the 
total number of all tissues. Driver gene fold enrichment 
was analyzed as previously described (20). Copy number 
variations (CNVs) were called using CNVkit (21) with the 
binary alignment maps (BAMs) after BQSR and germline 
mutations from VarDict. CNVs were exported to SEG 
format, and GISTIC2 (22) was used to identify regions 
that were significantly amplified or deleted across samples. 
Mutational signatures were analyzed using Mutational 
Patterns (23). 

Phylogenetic analysis of tumor samples

The reads supporting alternate and reference bases of each 
of the SNVs from the paired tumor samples were calculated 
using GATK’s module CollectAllelicCounts. The variant 
allele frequencies of each of the SNVs and the allelic-specific 
somatic copy numbers from CNVkit were subsequently 
utilized as input to the SciClone clustering algorithm (24). 
Regions with somatic copy number alternations and loss of 
heterozygosity (LOH) were excluded. Phylogenetic trees 
were constructed using R package ClonEvol (https://www.
ncbi.nlm.nih.gov/pubmed/28950321).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis

To understand the biological mechanisms of radiotherapy 
in ESCC, KEGG pathway analyses were performed using 

ClusterProfiler, which is an R package for functional 
classification and enrichment of gene clusters using 
hypergeometric distribution (25). 

Statistical analysis	

The SPSS Statistics 22.0 package, and ggpubr package (26) 
in R (27) were employed to correlate clinical and biological 
variables using Fisher’s exact test or a non-parametric test 
when necessary. The progression-free survival (PFS) and 
overall survival (OS) were calculated using the Kaplan-
Meier method, and differences in the variables were 
compared using the log-rank test. Data is shown as the 
mean ± standard deviation (SD), and a two-tailed P value 
<0.05 was considered statistically significant.

Results

Patient characteristics 

For this study, we collected 22 formalin-fixed paraffin-
embedded (FFPE) tumor samples from 11 EC patients 
before and after radiotherapy. Their baseline characteristics 
are summarized in Table S1. The most common tumor 
locations were middle thoracic (54.5%, n=6). All patients 
were male, and the median age was 61 years (range between 
51–76). The total radiation dose ranged from 54–64.8 Gy, 
and the radiation schedule was similar with an arrangement 
of 1.8–2 Gy/fraction per day, 5 times/week.

The mutational landscape of ESCC samples pre- and post-
radiotherapy

We performed WES on pre- and post-radiotherapy paired 
samples from 11 patients to identify somatic alterations 
in ESCC. The mean coverage depth for the tumor and 
normal samples were 196× and 126×, respectively. The 
median number of genes with non-synonymous mutations 
in the pre- and post-radiotherapy samples was 474 and 
507, respectively. The average tumor mutation burden 
(TMB) was similar between the pre-radiotherapy group 
(12.5 mutations/Mb) and the post-radiotherapy group 
(13.3 mutations/Mb) (Wilcoxon rank-sum test, P=0.102) 
(Figure S2A). There were no differences in the number of 
SNVs, the average ploidy, the proportions of amplifications, 
deletions, and LOH regions between the two groups 
(Wilcoxon rank-sum test, P>0.05) (Figure 1). However, 
more insertions/deletions (indels) were observed in post-
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radiotherapy samples compared to pre-radiotherapy 
samples (P=0.014). Among the patients, the indels of patient 
7 (P07) varied the most (Figure S2B), and the TMB of P07 
was considerably higher after radiotherapy (Figure S2A), 
implying that this particular patient had significant genomic 
variations due to radiation. P07 was considered an outlier 
by box plot (Figure S3A). After removing P07, the total 
number of indels still increased markedly after radiotherapy 
(P=0.0093) (Figure S3B).

We identified several of the most frequently mutated 
genes including Tenascin-N (TNN), Mucin 16 (MUC16) 

and Obscurin (OBSCN), in addition to widespread 
heterogeneous alterations (Figure 2A, http://fp.amegroups. 
cn/cms/3a54761e061a9714e70c298177e8da76/jtd-20- 
2450-1.xlsx). Compared with the pre-radiotherapy samples, 
the mutation rate of Ephrin-A2 (EPHA2) was significantly 
reduced (Fisher’s exact test, P=0.035), while the mutation 
rates of KIAA1614 and RNA Exonuclease Homolog 1 
(REXO1) were significantly increased (Fisher’s exact test, 
two P values were 0.035) (Figure 2B). We also found 30.4% 
(7.9–52.1%) of SNVs were pre-radiotherapy-specific, 
39.6% (15.7–78.2%) of SNVs were postradiotherapy- 

Figure 1 Genomic architecture in pre- and post-radiotherapy samples. (A) Total number of SNVs, (B) total number of non-synonymous 
indels, (C) average ploidy, (D) percentage of exome with amplifications (defined as copy number ≥2× the average ploidy), (E) percentage of 
exome with deletions (defined as copy number ≤0.5× the average ploidy), and (F) percentage of the exome with LOH. The mean ± 1 SD are 
highlighted in each case. *, P<0.05. SNVs, single-nucleotide variants; LOH, loss of heterozygosity.
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samples (Figure 2C). Although the number of SNVs showed 
no differences among the three groups (Kruskal-Wallis, 
P=0.61) (Figure 2D) .We assessed the mutation frequency 
of driver genes to compare the overall mutational landscape 
of the pre- and post-radiotherapy samples in ESCC (28). 
The result showed that the mutation rates of driver genes 
were similar in the two groups, except for EPHA2 (Figure 
3A). The pan-cancer driver genes were enriched in the 
shared group (29) (Figure 3B). This suggested that the 
driver gene mutation occurs before radiotherapy, while only 
a few additional driver genes are altered during or after 
radiotherapy.

Copy number variations

Genomic CNVs were analyzed to further explore 
radiotherapy-related molecular events. CNVs amplifications 
were most commonly detected with chromosome regions 
7q22.1, 11q22.2, and Yq12, and the most frequently deleted 
chromosome region in pre-radiotherapy samples was 
1q21.3 (Figure 4). No significant CNVs were detected in 
post-radiotherapy samples. However, chromosome regions 
with CNVs did not harbor any driver genes, indicating that 
CNVs occurred in passenger genes.

Phylogenetic analysis 

The clonal evolution analysis identified two modes of 
clonal composition among nine patients. One mode 
showed similar clonal compositions between pre- and 
post-radiotherapy, typically represented by P05 (Figure 
5A,B). On the basis of mutation clustering results, 
we inferred the identity of five clones with distinct 
sets of mutations (clusters) in the pre-radiotherapy 
tumor. Four clusters were found in both pre- and post-
radiotherapy samples. One cluster, which presented 
only in pre-radiotherapy samples, was eliminated under 
the evolutionary force after radiotherapy. Most shared 
clusters implied that these tumor cells were not sensitive 
to radiation. This pattern was also identified in four other 
pre- and post-radiotherapy pairs (P03, P04, P09, and P12) 
(Figure S4A,B,C,D).

The other mode showed completely different clonal 
compositions between pre- and post-radiotherapy, typically 
represented by P10 (Figure 5C,D). One mutation cluster 
was identified in the pre-radiotherapy tumor, and the 
other was found in the post-radiotherapy tumor. Only 

one small cluster (cluster 1) containing five mutations was 
shared in both samples. It is likely that cluster 2 mutations 
have evolved to become the dominant clone by gaining 
radiotherapy-specific mutations, while cluster 3 mutations 
almost disappeared after radiotherapy. We suspect that 
cluster 2 mutations in this clone provided a strong selective 
advantage after radiotherapy. Clonal evolution analyses 
revealed that pre- and post-radiotherapy tumors exhibited 
entirely distinct evolutionary processes. This pattern was 
also observed in three other pre- and post-radiotherapy 
pairs (P02, P06, and P11) (Figure 4E,F,G).

Mutational spectrum and mutational signatures during 
radiotherapy

The six subtypes of base substitutions (C > A, C > G, C > T, 
T > A, T > C, and T > G) were unevenly presented in the 
SNVs (Figure 6A). C > T was the most common substitution 
in ESCC (44.4% in pre-radiotherapy and 44.8% in post-
radiotherapy), consistent with the previous report (30). 
Signatures 1 and 6 were identified as dominant in both pre- 
and post-radiotherapy samples (Figure 6B). Some mutational 
signatures differed in the pre- and post-radiotherapy of 
the same patient, such as patient 3 (P03), with dominant 
signature 1 (in pre-radiotherapy) and dominant signatures 
4 and 6 (in post-radiotherapy). However, the comparison of 
average mutational spectra and signatures for the 11 pairs of 
pre- and post-radiotherapy samples did not exhibit any clear 
differences (Wilcoxon rank-sum test, P>0.05).

KEGG pathway enrichment analysis

We divided SNVs into shared SNVs, pre-radiotherapy-
specific SNVs, and post-radiotherapy-specific SNVs 
to explore the functional impact of the mutations. We 
subsequently analyzed the KEGG pathway enrichment of 
the altered genes with these SNVs (Figure S5). We found 
that tumor-related pathways, such as the extracellular matrix 
(ECM)-receptor interaction and the Focal adhesion, existed 
in all three groups, and the phosphatidylinositol-3-kinase 
-protein kinase B (PI3K-Akt) signaling pathway existed in 
the shared group. Adherens junction only existed in the 
pre-radiotherapy-specific group, and the Ras-proximate-1 
(Rap1), cyclic guanosine monophosphate-protein kinase 
G (cGMP-PKG), and the mitogen-activating protein 
kinase (MAPK) signaling pathways only existed in the post-
radiotherapy-specific group.
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Figure 3 Genetic alterations of driver genes in pre- and post-radiotherapy samples. (A) Oncoprint of mutations in the top 50 mutated driver 
genes. The percentages on the left and right represent the fraction of pre-radiotherapy and post-radiotherapy samples with mutations in the 
corresponding gene. *, P<0.05. (B) The probability density of driver genes fold enrichment in pre-radiotherapy specific mutations, shared 
mutations, and post-radiotherapy specific mutations. The inset line corresponds to the 25th–75th percentile (interquartile range); the middle 
spot indicates the median. P value, two-sided Wilcoxon rank-sum test.
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Figure 4 Copy number variations in pre- and post-radiotherapy samples. (A) Copy number variations in pre-radiotherapy samples. (B) Copy 
number variations in post-radiotherapy samples. Red line indicates gained CNV with significant difference, blue line indicates lost CNV 
with significant difference. CNV, copy number variation.

Survival analysis by genotype

Survival analysis was conducted for all gene mutations to 
identify the independent prediction factor for outcomes. In 
pre-radiotherapy samples, the mutations of 240 genes were 
associated with shorter PFS, and mutations in 235 genes 
were associated with shorter OS (Log-Rank test, P<0.05) 
(http://fp.amegroups.cn/cms/85cb0833c11f8c36bdd443abb
0fbe39e/jtd-20-2450-2.pdf and http://fp.amegroups.cn/cms
/65f3050e0aee835d1fd060c8218c2d90/jtd-20-2450-3.pdf). 
Several driver genes were found in both tables, including 
asparaginyl-TRNA synthetase (NARS), SIN3 homolog A 
(SIN3A), and tuberous sclerosis 1 (TSC1).

Discussion

ESCC is among the most fatal malignancies worldwide, 
w i th  increas ing  inc idences  and  poor  outcomes . 
Radiotherapy is a well-established treatment for various 
cancer types, including ESCC. In this study, we have 

systematically analyzed whole-exome copy number, SNVs, 
mutation spectrum, and mutational signatures by WES in 
order to establish a more widespread genomic landscape of 
radiotherapy in ESCC. 

We found that the mutation rate of EPHA2  was 
significantly reduced in the post-radiotherapy samples, 
suggesting that the loss of EPHA2 mutations may provide 
a selective advantage to ESCC cells under radiotherapy 
stress. EPHA2, a receptor tyrosine kinase, is implicated in 
tumor progression and is considered a potential therapeutic 
target in metastatic cancer (31). The deletion of EPHA2 
was found to reverse T-cell exclusion and sensitize tumors 
to immunotherapy (32). Also, our study found that TMB 
was high, indicating that it is rational to apply immune 
checkpoint inhibitors in ESCC patients since they might 
be susceptible to immunotherapy (33). This is especially 
true for patients with deletion of EPHA2. Though, further 
experiments regarding this problem are needed.

The most common mutated driver genes in our study 
included Lysine K-specific methyltransferase 2D (KMT2D), 
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FAT atypical cadherin 1 (FAT1), Notch homolog 1 
(NOTCH1), and tumor protein 53 (TP53), among others 
(Figure 3A and http://fp.amegroups.cn/cms/3a54761e0
61a9714e70c298177e8da76/jtd-20-2450-1.xlsx). High-
frequency mutations in these genes have also been detected 
in previous studies (30,34,35). However, the frequency of 
TP53 mutation in our study (27.3% in all samples) was 
significantly lower than that in previous studies (59.7–93%). 
This may be due to our relatively strict screening criteria; 
somatic mutations in at least two of the three software 
programs (Strelka2, Mutect2, and VarDict) were selected as 
high-confidence mutations. Some low-frequency mutations 
may not appear in our results. On the other hand, the 

sample size in our cohort was small, which may have also 
led to the discrepancy.

The total number of indels was greater in the post-
radiotherapy group compared to the pre-radiotherapy 
group, and was typically seen in two patients (P06 and P07). 
However, differences in the number of indels and CNVs 
were not prevalent in the driver gene. This may indicate 
new mechanisms underlying the interplay between these 
genomic variants and the tumor, which cannot be captured 
by the known driver gene. Additional experiments are 
required to further elucidate this process.

We identified that signatures 1 and 6 were the most 
common mutational signatures in our ESCC samples. 

Figure 5 Clonal evolution analyses of two representative patients. (A) Mutant allele frequency distribution of validated mutations in the pre- 
and post-radiotherapy samples of P05. (B) Evolution tree of P05. (C) Mutant allele frequency distribution of validated mutations in the pre- 
and post-radiotherapy samples of P10. (D) Evolution tree of P10.
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Figure 6 Mutation spectrum and mutational signatures. (A) Mutation spectrum of six transition (Ti) and transversion (Tv) categories. (B) 
Mutational signatures.

Signature 1 exhibits strong positive correlations with age 
in most cancers, including ESCC (36). Signature 6, which 
contributed a large number of substations and small indels 
at repeat sequence, was associated with defective DNA 
mismatch repair (MMR) and was found in “microsatellite 
instability” cancers, including ESCC (36). We also detected 
mutation in DNA MMR genes including MutL Homolog 
1 (MLH1), PMS1 Homolog 2 (PMS2), and MutS Homolog 
6 (MSH6) (http://fp.amegroups.cn/cms/3a54761e061a9
714e70c298177e8da76/jtd-20-2450-1.xlsx), which might 
contribute to signature 6. These results demonstrated the 
importance of DNA MMR deficiency in ESCC. However, 
the comparison of mutational signatures for pre- and post-
radiotherapy did not exhibit any clear difference. KEGG 
pathway enrichment analysis showed that the Rap1, cGMP-
PKG, and the MAPK signaling pathways only existed in 
the post-radiotherapy-specific group. These pathways are 
potentially involved in radiotherapy resistance.

From the clonal analysis of our study, we inferred 
that radiotherapy had two modes of effect on the clonal 
architecture of ESCC. First, almost all clones were present 
in both pre- and post-radiotherapy samples, as was observed 
in five patients (P03, P04, P05, P09, and P12). Second, 
only a small cluster was shared by both the pre- and post-
radiotherapy samples in 4 patients (P02, P06, P10, and 

P11), signifying that the new clone survived and evolved to 
become the dominant clone after radiotherapy. For tumors 
harboring both radiosensitive and non-radiosensitive 
clones, the previously predominant radiosensitive clones 
perished and were replaced by non-radiosensitive clones 
after radiotherapy.

Also, we observed that the majority of ESCC genomes 
remained rather stable following radiotherapy. Research 
regarding the genomic effects in EAC of chemotherapy 
revealed no signif icant differences in the overal l 
mutation rate, mutation signatures, specific recurrent 
point mutations, or copy-number events with respect to 
chemotherapy status (37). Therefore, it is possible that 
a considerable number of EC patients are not sensitive 
to radiotherapy or chemotherapy, owing to intensive 
intratumoral heterogeneity. Poor survival would support 
the findings that this cancer is resistant to radiotherapy and 
chemotherapy with remarkable consistency in the genome 
of the primary tumor over time. It is worth noting that any 
of these conclusions are subject to possible change in the 
future should additional findings become apparent through 
analyses of radiotherapy of whole genome sequences in 
ESCC. This is especially true considering that radiation-
induced genomic alterations may occur in the intron 
region, and not in the exon region. On the other hand, 
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gene expression is determined not only by genetic variation 
in the promoter and other regulatory elements but also 
by epigenetic modification of transcriptional activity and 
post-translational modulation (38). Radiation can induce 
genetic and epigenetic changes in cancer cells that confer 
stem-like properties and radioresistance in these cells (39). 
In addition, the methylation status may influence cellular 
radiation response, while WES would not reveal epigenetic 
changes in gene expression. Furthermore, females are more 
sensitive to radiotherapy than males (40), while esophageal 
cancer is more common in men than women (41).  
Considering that all of the cases in our study cohort were 
male, a bias potentially existed, which to some extent also 
affected the results.

We identified that mutations in 240 genes were 
associated with shorter PFS, and mutations in 235 genes 
were associated with shorter OS (log-rank test). However, 
we also noted that all these genes were mutated in two 
patients who had a very short PFS and OS, and the 
reliability of the survival analysis was questionable due to 
the limited number of cases.

In conclusion, we conducted the genomic profile of 
ESCC before and after radiotherapy and identified novel 
radiotherapy-related mutations, which provided potential 
biomarkers for prognosis and targeted therapeutics. 
In the future, we plan to bring into more technology 
advertisement and larger cohort prospective studies to revel 
the molecular mechanisms and genetic alterations in ESCC 
radioresistance.
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Supplementary

Figure S1 Histopathological images of one patient, before (A) and after (B) radiotherapy (HE, ×100).
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Figure S2 TMB and indel genes of each sample. (A) TMB in the pre- and post-radiotherapy samples of each patient. (B) Indel genes of each 
sample. TMB, tumor mutation burden.
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Figure S3 Total number of non-synonymous indels before (A) and after (B) removing P7 by box plot.

Table S1 Clinical demographics of the patients

Patient ID P02 P03 P04 P05 P06 P07 P08 P09 P10 P11 P12

Age at diagnosis (yrs) 58 67 71 54 76 51 64 61 56 52 67

Location Upper Middle Middle Lower Lower Lower Middle Middle Middle Lower Middle

Surgery No No No No No No No No Yes Yes Yes

Radiotherapy regime 1.8 Gy ×  
30 f 

2 Gy ×  
30 f

2 Gy ×  
30 f

1.8 Gy × 
36 f

2 Gy ×  
30 f

1.8 Gy × 
33 f

1.8 Gy × 
33 f

2 Gy ×  
30 f

2 Gy ×  
27 f

2 Gy ×  
30 f

2 Gy ×  
30 f

Pathological TNM T3N1M0 T3N1M0 T3N1M0 T3N3M0 T3N1M0 T3N1M0 T3N1M0 T4N1M0 T4N1M0 T3N1M0 T4N1M0

PFS (months) 5 20 8 8 31 17 7 34 7 18 11

OS (months) 8 25 12 21 40 45 18 34 38 36 20

PFS, progression-free survival; OS, overall survival.
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P=0.014 P=0.0093



Figure S4 Mutant allele frequency distribution of validated mutations in the pre- and post-radiotherapy samples of P03 (A), P04 (B), P09 (C), P12 (D), P02 (E), P06 (F) and P11 (G).
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Figure S5 KEGG pathway enrichment analysis of shared SNVs (A), pre-radiotherapy-specific SNVs (B), and post-radiotherapy-specific SNVs (C). KEGG, Kyoto Encyclopedia of Genes and 
Genomes; SNVs, single-nucleotide variants.
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