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Introduction

Pompe disease, or glycogen storage disease type II (GSDII), 
or acid maltase deficiency, is a rare autosomal recessive 
disease caused by a deficiency of the lysosomal enzyme acid-
alpha glucosidase (GAA). This leads to an accumulation 
of glycogen in smooth, skeletal and respiratory muscles, 
and cardiac myocytes. Depending upon the residual GAA 
activity, it manifests in one of two forms. Infantile onset 
Pompe disease (IOPD), caused by absent GAA, presents 

with cardiomyopathy, respiratory failure and/or muscle 
hypotonia within the first year of life (1). These patients are 
unlikely to survive beyond 18 months (2). Late-onset Pompe 
disease (LOPD), caused by reduced rather than absent 
GAA, presents with a milder form, any time from 1 year to 
adulthood. Although milder, LOPD is progressive and can 
lead to severe disability and respiratory insufficiency (3).  
In contrast to IOPD, which is characterized by severe 
cardiomyopathy, less than 10% of LOPD patients suffer 
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from significant cardiovascular dysfunction (4-7). LOPD has 
an estimated prevalence of 3.9 per million (8). This review 
will focus on the pathophysiology, clinical presentation and 
treatment of respiratory insufficiency and sleep-disordered 
breathing (SDB) in LOPD.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/jtd-cus-2020-007).

Methods

Literature for this narrative was identified using the 
following terms in Medline and Embase: “adult”, “late-
onset”, “Pompe”, “acid maltase”, “glycogen storage disease 
type II”, “respiratory” and “pulmonary”. There were no 
restrictions on dates or study design. English language 
articles were included.

Epidemiology

LOPD appears to be evenly distributed between males 
and females (8-11). Median age at diagnosis is 38 years, 
while median age at death is 56 years (10). Most patients 
will present with a lower limb girdle and truncal muscle 
weakness pattern (12). One-third of patients present 
with respiratory symptoms as their first manifestation of 
the illness (8). Approximately half will suffer respiratory 
involvement during the course of their illness (11,12) and 
30–40% of patients will require treatment with ventilation 
(8,9,11,13-15), of which the majority will receive non-
invasive ventilation (NIV). Importantly, in untreated 
LOPD, the most common cause of death is respiratory 
failure (16,17).

Pathophysiology of LOPD

In healthy individuals, glycogen degradation takes place 
via two pathways: a cytoplasmic path and a lysosomal 
path (Figure 1). Glycogen is deposited in lysosomes by 
autophagic vacuoles, where acid maltase (α-1,4-glucosidase, 
or GAA) hydrolyses it to glucose-1-phosphate. This is 
then isomerised to glucose-6-phosphate, which is then 
dephosphorylated to release free glucose, which can exit the 
cell. In LOPD, mutations in the GAA locus (chromosome 
17q25.2–q25.3) result in defective acid maltase, which is 
unable to hydrolyse glycogen. Glycogen therefore builds up 
in the lysosomes, predominantly in muscle tissue (skeletal, 
smooth and cardiac) (18). The cytoplastic pathway remains 

unaffected in LOPD. Biopsies of the arrector pili muscle of 
LOPD patients have demonstrated that glycogen remains 
deposited in the lysosomes (glycogenosomes) associated 
with space-occupying autophagic vacuoles, in fibroblasts 
of endomysial capillaries and the smooth muscle cells 
of intramuscular arterioles and small arteries (19). The 
progressive accumulation of glycogen eventually leads to 
rupture of the lysosome, which causes leakage of hydrolytic 
material into the cytoplasm of the myocytes, impairing their 
contractile function (20). Although classically described 
as a condition causing proximal myopathy and respiratory 
muscle weakness, a systematic review of data from clinical 
trials has demonstrated that LOPD is a multi-system 
condition affecting the neurological, vascular, cardiac, 
ophthalmological, gastrointestinal and genitourinary 
systems, as well as the musculoskeletal and respiratory 
systems (21).

Respiratory failure in LOPD is classically attributed 
to accumulation of glycogen in the respiratory skeletal 
musculature, causing weakness; the diaphragm appears to 
be affected most severely. To understand why diaphragm 
weakness leads to respiratory failure, we can use the load-
capacity-drive framework (22). Separately or in unison, 
reduced respiratory muscle capacity, reduced neural 
respiratory drive and increased load on the respiratory 
system will result in hypoventilation (Figure 2).

Respiratory muscle capacity is a measure of inspiratory 
respiratory muscle strength and endurance. In LOPD, 
glycogen accumulation in the respiratory skeletal muscle 
cells impairs their contractile function, leading to respiratory 
muscle weakness. As the most significant contributor to 
inspiration, a decrease in diaphragm contractility will lead 
to reduced muscle capacity and resultant hypoventilation.

Respiratory load is the combination of resistive load 
(airways resistance to airflow), elastic load (inversely 
proportional to compliance) and threshold load (intrinsic 
positive end-expiratory pressure). In LOPD, cough 
effectiveness is diminished. An effective cough requires 
an intact inspiratory phase in which the diaphragm and 
external intercostal muscles will contract, creating a negative 
pressure around the lung. This forces air into the lung, 
equalising the pressure and stimulating glottis closure. This 
requires effective bulbar function. This phase is followed 
by an expiratory phase, in which expiratory muscles will 
contract to increase the pressure inside the lung, opening 
the glottis and forcing air out through the larynx. This 
requires effective expiratory muscles (22). LOPD causes 
weakened inspiratory and expiratory muscles leading to 
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an ineffective cough. Case reports also suggest LOPD can 
cause bulbar dysfunction (23-25). In a cohort of LOPD 
patients, those who did not require daytime ventilatory 
support had mean cough peak of 225 L/min, while those 
that required daytime support has mean cough peak flow 
of 84 L/min (26). Cough peak flow between 160 and  
270 L/min has been demonstrated in Duchenne muscular 
dystrophy to be associated with reduced cough effectiveness 

during a respiratory tract infection (27). Thus, almost all 
LOPD patients are likely to suffer from a less effective 
cough during intercurrent lower respiratory tract infection. 
Intercurrent infections can be particularly troublesome; 
excessive secretions and atelectasis will increase the resistive 
load, increasing the likelihood of ventilatory failure.

Clinical and radiological assessment suggest that most 
LOPD patients, including those with early features of 

Figure 1 Cellular processing of glycogen and the role of acid maltase in the conversion of glycogen to intracellular glucose.

Figure 2 The effect of pathophysiological changes of LOPD on load-capacity-drive and their contribution to the development of 
hypoventilation. LOPD, late-onset Pompe disease.

Cell membrane

Glycogen

Glycogen

Glucose-1-
phosphate

Glucose-6-
phosphate

Glucose-1-
phosphate

Acid 
maltase

lntracellular 
Glucose

Extracellular 
Glucose

Glycogen 
phosphorylase

Autophagic vacuoles

Phosphoglucomutase

Glucose-6-
phosphase

Cytoplasm

Lysosome

Glucose 
transporter-2

Hypoventilation

Increased load
Macroglossia
Secretions (ineffective cough)
Bulbar dysfunction
Cardiac myopathy
Possible airway smooth muscle cell dysfunction

Reduced capacity
Respiratory muscle weakness

Reduced drive
Blunted hypercapnic response
Possible neuronal accumulation of glycogen



S238 Shah et al. Respiratory failure and sleep disturbance in late-onset Pompe

© Journal of Thoracic Disease. All rights reserved. J Thorac Dis 2020;12(Suppl 2):S235-S247 | http://dx.doi.org/10.21037/jtd-cus-2020-007

the disease, have tongue muscle weakness and associated 
macroglossia, due to glycogen accumulation, and that this 
can be independent of any impact on the facial muscles 
(28,29). This may cause airway obstruction, particularly 
during sleep, increasing resistive load.

Neural respiratory drive is the control of the rate and 
work of breathing from the respiratory centre in the 
medulla, in response to pH and PaCO2. This control is 
transmitted via the spinal cord. Without adequate drive 
and transmission of neural information to the respiratory 
muscles, there will be an inadequate ventilatory response 
to increased PaCO2 and subsequent ventilatory failure. 
Patients with LOPD can present with a hypercapnia 
that is out of proportion with the degree of respiratory 
muscle weakness. A single study has demonstrated that 
LOPD patients demonstrate an inadequate increase in 
the occlusion pressure during the first 0.1 s of inspiration 
(P0.1) in response to rising CO2 (30). P0.1 is a measure of 
respiratory drive (31,32). Although an isolated study, it is 
consistent with other reports of diminished hypercapnic 
response in patients with neuromuscular weakness (33,34). 
This blunted response to hypercapnia, which is effectively 
an inadequate increase in respiratory drive will result in an 
inadequate increase in alveolar ventilation and therefore 
progression to hypercapnic failure, particularly during acute 
illness.

There is increasing interest in a causative contribution 
from respiratory neuronal accumulation in LOPD (35), 
however a recent study demonstrated no difference in 
diaphragm motor evoked potentials between LOPD 
patients and healthy controls (36). In addition, there 
is emerging evidence for airway smooth muscle cell 
involvement, although this has only been demonstrated in 
animal models and IOPD so far (37). In response to these 
pathophysiological changes, to prevent respiratory muscle 
fatigue, these patients may adopt a rapid shallow breathing 
pattern (38). While this may be energy-conserving, it does 
not provide adequate ventilation and will eventually lead to 
ventilatory failure.

Investigating respiratory function in LOPD

LOPD presents insidiously with non-specific symptoms. 
The diagnosis of LOPD often occurs several years after 
the onset of the first symptoms (39). Patients will initially 
report complaints suggestive of progressively reducing 
muscle strength, such as a difficulty with physical exercise, 
difficulty climbing stairs or standing from a chair. This is 

likely to be associated with muscle aches and tiredness. A 
small proportion will report respiratory symptoms such as 
breathlessness or frequent chest infections and symptoms 
of SDB such as snoring, daytime headaches and excessive 
daytime somnolence. They may also report weight loss, 
due to difficulty swallowing (40). Clinical examination is 
likely to reveal features of proximal myopathy (waddling 
gait, Gowers’ manoeuvre, lumbar hyperlordosis, weakness 
of the shoulder girdle muscles, scapula winging). Arterial 
blood gas analysis may demonstrate daytime hypercapnia in 
patients with advanced disease, although this is more likely 
to be present during sleep in patients presenting earlier (41).

LOPD can be screened for using a dried blood spot-
based GAA activity assay, which has a high sensitivity and 
specificity for Pompe when used in patients with clinical 
features suspicious of Pompe (42,43). The diagnosis is then 
confirmed by GAA activity testing in fibroblasts, or genetic 
testing for GAA mutations. Previously, muscle biopsy to 
identify glycogen accumulation in lysosomes was used to 
diagnose LOPD, but this has largely been replaced by GAA 
activity testing (44).

Pulmonary function tests are a key component of the 
evaluation of a patient with LOPD, and can be used to 
predict the need for nocturnal or 24-hour ventilation (45).  
The relationship between vital capacity (VC) and 
respiratory muscle weakness is important to consider, 
when interpreting pulmonary function tests in LOPD. De 
Troyer et al. (46) demonstrated a curvilinear relationship 
between VC and maximal inspiratory pressure (MIP). In 
mild disease (with preserved MIP 60–80%), changes in MIP 
will not result in significant changes in VC, while in more 
advanced disease (MIP <40%), large changes in VC will be 
attributed to small changes in MIP. It is therefore important 
to measure both respiratory muscle strength and lung 
volumes, and also important to appreciate this curvilinear 
relationship when interpreting data on neuromuscular 
disease, including LOPD.

Spirometry tends to demonstrate a restrictive defect, 
more pronounced in males (13), with VC reported as 
approximately 30% of predicted value at the time of 
initiation of home mechanical ventilation (41). A patient-
level data meta-analysis has demonstrated that forced 
VC (FVC) is associated with numerous LOPD outcome 
measures and the progression in FVC is associated with 
changes in exercise tolerance, peripheral muscle strength 
and health-related quality of life (47).

Respiratory muscle strength, evaluated by the MIP and 
maximal expiratory pressure (MEP) are also reduced in 
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LOPD, compared with healthy controls (36). MIP and 
MEP can be reduced to over 50% of predicted values 
(13,41,48) and this reduction is progressive, with a 3–4% 
annual decline in MIP and MEP (13).

Diaphragm weakness is formally assessed using 
invasive measures of transdiaphragmatic pressure (49,50), 
and has been demonstrated to be more pronounced in 
LOPD compared to healthy controls (36,51). This tool 
is not widely available; a useful non-invasive surrogate 
for assessing diaphragmatic weakness is the change in 
spirometric measurements from the sitting to supine 
position (52). In healthy individuals, a healthy diaphragm 
will prevent excessive cephalad movement of the abdominal 
viscera when supine, preserving the lung volume. If the 
diaphragm is weakened, it will not prevent compression 
of lung tissue by the abdominal viscera, resulting in a 
reduction in lung volume (53). In individuals without any 
restrictive impairment, the difference in FVC or slow VC 
from sitting to supine is usually 5–10% (54) and no more 
than 15–20%, while a fall of more than 30% is a marker 
of diaphragmatic weakness/paralysis (55). In LOPD, 
FVC reduces from sitting to supine by more than 25% 
(13,48). It is important to assess supine FVC, as patients 
with diaphragmatic weakness may have a normal sitting  
FVC (56).

Diaphragm dysfunction could also be assessed by 
dynamic respiratory testing (57) as well as CT and MRI 
imaging (58,59). MRI data have demonstrated that the 
pattern of respiratory muscle weakness is predominantly 
diaphragmatic, with sparing of intercostal muscles, as 
measured by antero-posterior chest expansion (59).

Neural respiratory drive can be measured as a marker of 
the work of breathing using various techniques, including 
electromyogram of the diaphragm (60) or parasternal 
muscles (61,62), or the mouth occlusion pressure at 0.1 
second of tidal breathing (P0.1) (32). P0.1 is decreased in 
LOPD patients compared to healthy controls demonstrating 
reduced respiratory drive (63).

Fatigue is an important feature of LOPD that has an 
impact on quality of life and warrants assessment (64).  
Patients with LOPD had a higher fatigue severity 
score (FSS) than control, and those who reported sleep 
disturbance or were receiving ventilatory support had 
higher FSS (65,66).

Sleep disturbance in LOPD

Diaphragm weakness leads to nocturnal hypoventilation, 

which can result in sleep disruption and excessive daytime 
sleepiness (EDS) (67). Although sleep disruption is relatively 
common in LOPD, few studies have been published on its 
prevalence or effects.

A cohort  of  LOPD pat ients  receiv ing enzyme 
replacement therapy (ERT) reported reduced subjective 
sleep quality [measured as Pittsburgh Sleep Quality 
Index (PSQI)] in 45% of patients (66). Sleep quality was 
inversely proportional to exercise tolerance (6-minute 
walking distance test) and motor performance (Rotterdam 
Nine-Item Handicap Scale). EDS was reported by 25% 
of patients and significant fatigue (measured as Fatigue 
Severity Scale) was reported by 72%. Importantly, health-
related quality of life (reported as the physical and mental 
component summary scales of the SF-36 questionnaire) 
was inversely proportional to PSQI. Half of this cohort 
were receiving home mechanical ventilation. There were 
no significant differences in the PSQI between those who 
were receiving nocturnal ventilation and those who were 
not, suggesting that the sleep disturbance observed in 
this cohort was independent of the need for a ventilator. 
Unsurprisingly, patients receiving daytime ventilation in 
addition to nocturnal ventilation reported worse sleep 
quality, more fatigue and lower quality of life scores than 
those receiving nocturnal ventilation alone. In a cohort of 
LOPD patients receiving inspiratory muscle training (IMT), 
sleep quality was assessed before and after the intervention. 
Baseline PSQI demonstrated poor subjective sleep quality 
and this did not change after IMT (68).

Objective sleep quality, assessed by polysomnography, 
was evaluated in a cohort of LOPD patients during a 
hospital attendance. SDB, assessed by the respiratory 
disturbance index (a composite of more than 10 episodes 
of apnoea, hypopnoea and desaturation per hour of sleep), 
was present in 48% of patients, and this was independently 
associated with diaphragm weakness (69). SDB occurred 
almost exclusively during rapid eye movement (REM) 
sleep, and there was no correlation with body mass index 
or obstructive sleep apnoea (OSA) symptoms. Progression 
from REM-sleep hypopnoeas to continuous nocturnal 
hypoventilation was significantly associated with declining 
inspiratory VC (69), demonstrating that the degree of SDB 
is associated with the degree of respiratory compromise. 
Although there are no screening tools for SDB validated for 
LOPD, the Sleep-Disordered Breathing in Neuromuscular 
Disease Questionnaire (SiNQ-5) is validated for use in 
patients with diaphragm paralysis (70) and could therefore 
be used to screen for SDB in LOPD.
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Tongue muscle weakness (28,29) may also contribute to 
SDB by causing airway obstruction in sleep. A case report 
of a patient who died following weaning failure reported 
the presence of severe OSA, and on autopsy, profound 
replacement of tongue muscle by fibrofatty tissue (71). In 
addition, a recent case report has demonstrated that effective 
treatment of LOPD with ERT allowed the withdrawal of 
ventilator therapy for OSA (72). It is unclear whether LOPD 
contributes to OSA as there are no reports of upper airway 
collapsibility during sleep in LOPD patients.

Management of respiratory failure and SDB

Respiratory management strategies for LOPD aim to delay 
deterioration of respiratory function and prevent death 

due to lower respiratory tract infections. Key elements of 
the management of LOPD by the respiratory team are 
displayed in Figure 3.

The cornerstone of management of respiratory 
failure and SDB in LOPD is NIV. NIV is used to treat 
nocturnal hypoventilation and as the disease progresses, 
daytime hypercapnia. Although there is an absence of 
literature demonstrating the long-term clinical value of 
NIV specifically in LOPD, the use of domiciliary NIV in 
neuromuscular disorder patients with chronic hypercapnic 
failure has a strong evidence base and is well established 
practice (73). Given the lack of literature in LOPD 
specifically, treatment recommendations for NIV are based 
on expert consensus. NIV is recommended when the patient 
exhibits physiologic evidence of nocturnal hypoventilation, 

Figure 3 Components of the multidisciplinary team caring for a patient with LOPD and the roles they perform. LOPD, late-onset Pompe 
disease.
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such as significant daytime hypercapnia and nocturnal 
oxygen desaturation, or symptoms suggestive of nocturnal 
hypoventilation, such as morning headache, dyspnoea or 
fatigue (74).

Mellies and colleagues demonstrated that initiation 
of NIV in LOPD patients normalised overnight gas 
exchange and improved subjective sleep disturbance (41). 
Importantly, NIV appears to improve markers of SDB such 
as the apnoea-hyponoea index, 4% overnight desaturation 
index, mean oxygen and carbon dioxide saturations and 
time spent below 90% oxygen saturation (66,75,76). 
Despite this, polysomnographic markers of sleep quality 
(sleep efficiency, arousal index, percentage of N3 and REM 
sleep) (76) and subjective measures of sleep quality (PSQI) 
and fatigue (Fatigue Severity Scale) (66) did not improve 
following introduction of NIV. Longitudinal studies of 
the effect of NIV on LOPD have not been conducted; 
it is therefore difficult to comment on the value of NIV 
on long-term outcomes but there is clear evidence from 
these observational studies that it improves overnight gas 
exchange.

Occasionally, a patient will require long-term invasive 
ventilation via trachesotomy. This may be because NIV is 
contra-indicated, if NIV has failed to improve gas exchange, 
the cough remains ineffective despite artificial assistance, 
or the airway cannot be protected (77). In the case of 
ineffective cough, a mini-tracheostomy could be used to 
avoid invasive ventilation (78).

An important element of respiratory care for LOPD 
patients is ensuring effective secretion clearance. A 
wide array of secretion clearance techniques is available, 
depending upon whether the patient needs support in 
mobilising their secretions from distal to proximal airways, 
or expelling secretions from the proximal airways (79). 
None of the techniques have been specifically investigated 
in LOPD, but the pattern of cough muscle weakness is 
similar to the congenital muscular dystrophies and so a 
management approach similar to that adopted in muscular 
dystrophy is likely to be effective (80).

IMT frequently features in the management of 
neuromuscular disease patients, despite equivocal evidence 
for its use (81). In LOPD, IMT appears to have a beneficial 
effect on MIP (68,82,83). This is of particular relevance 
in LOPD. MIP is a measure of global inspiratory muscle 
function, and as the diaphragm is the most significant 
contributor to inspiration, MIP can be viewed as an indirect 
marker of diaphragmatic function (84). However, despite the 
perceived improvement in diaphragmatic function, this did 

not result in an improvement in spirometry, gas exchange, 
sleep quality or health-related quality of life (68,83). 
MIP increased from 38 %predicted to 50 %predicted, 
while baseline sitting FVC was 65 %predicted. Based on 
the curvilinear relationship between VC and MIP (46),  
it is unsurprising that the improvement in MIP did not 
result in an improvement in FVC, as the MIP was not 
improved enough for a significant FVC change to manifest. 
The existing evidence for IMT comes from observational 
studies; there is a need for randomised studies to determine 
the value of IMT on long-term LOPD outcomes, before 
definite recommendations can be made.

Other important measures in the respiratory management 
of a LOPD patient is to ensure the patient is up to date with 
influenza and pneumococcal vaccinations, and to maintain 
high vigilance and treat lower respiratory tract infections 
early and aggressively (44). LOPD patients have reduced 
respiratory reserve to respond to lower respiratory tract 
infections and so are at risk of acute respiratory failure (77). 
In the LOPD patient who suffers from cardiomyopathy, 
cardiology input is also essential to slow the deterioration in 
their cardiac function.

Enzyme replacement therapy

ERT is now offered to patients with LOPD. Recombinant 
alglucosidase alfa is believed to replace deficient lysosomal 
GAA activity to improve muscle function. Systematic 
reviews have reported that ERT is effective at preventing 
deterioration in patients with LOPD (85,86), although 
the data specifically on respiratory function are limited. 
In addition, no studies investigating the effect of ERT on 
sleep outcomes have been identified. A Cochrane review 
on the effect of ERT on LOPD is awaited (87). A recent 
review of the impact of ERT on pulmonary outcomes in 
various lysosomal storage diseases was unable to provide 
any conclusive insights due to the dearth and variability of 
the data available (88).

The majority of data on the value of ERT on respiratory 
function is found in observational registry studies of patients 
receiving ERT (Table 1). The majority reported unchanged 
respiratory function, usually measured as upright FVC 
following varying periods of ERT use (89-92), with only one 
study reporting an improvement in FVC with ERT use (93).  
The impact of ERT on the need for ventilation was 
more variable; one study reported that ERT delayed the 
requirement for ventilation (89), while others reported no 
effect on the need for ventilation (90,94).
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Limited randomised controlled studies have been 
conducted to investigate ERT in LOPD, and a single study 
included pulmonary endpoints. The Late-Onset Treatment 
Study (LOTS) compared patients receiving bi-weekly 
intravenous alglucosidase alfa with placebo, investigating 
%predicted upright FVC as a coprimary endpoint (95). 
They reported that the treatment arm did not have any 
deterioration in %predicted upright FVC whereas the 
placebo arm did. A recent randomised trial investigated 
the impact of the addition of a beta-agonist, albuterol, 
on patients receiving ERT. This reported that albuterol 

resulted in an increase in supine FVC and forced expiratory 
volume in 1 second (FEV1) when compared to ERT alone, 
although these were secondary endpoints (96). This result 
was unexpected by the authors of the study, but may reflect a 
beneficial effect on airway smooth muscle cells; this remains 
to be elucidated. Safety and efficacy studies for two novel 
ERT, reveglucosidase alfa (97) and avalglucosidase alfa (98),  
have reported no deterioration in %predicted MIP, MEP 
of FVC during the follow-up period. Thus, there may 
be some benefit from ERT on pulmonary function, but 
without more randomised studies specifically investigating 

Table 1 A summary of pharmacological studies in LOPD that reported respiratory outcome measures

Author Intervention Respiratory assessment Outcome Type of outcome

van der Ploeg et al., 2010 Alglucosidase alfa FVC %predicted Increase of 1.2% (P=0.006) Coprimary

MIP %predicted No effect Secondary

MEP %predicted Increase of 3.2% (P=0.04) Secondary

Strothotte et al., 2010 Alglucosidase alfa FVC %predicted No effect Observational

Schneider et al., 2013 Alglucosidase alfa VC No effect Observational

FEV1 No effect

MIP No effect

Peak cough flow No effect

Anderson et al., 2014 Alglucosidase alfa FVC %predicted No effect Observational

Stepien et al., 2016 Alglucosidase alfa Upright FVC %predicted No effect Observational

Supine FVC %predicted No effect

SNIP No effect

Overnight NIV dependence Increase of sample by 18% 
(statistical significance not reported)

van der Meijden et al., 2018 Alglucosidase alfa Requirement for NIV No effect Observational

Byrne et al., 2017 Reveglucosidase MIP %predicted Statistical significance not reported 
(phase I/II study)

Observational

MEP %predicted

FVC %predicted

Pena et al., 2019 Avalglucosidase FVC %predicted Statistical significance not reported 
(phase I/II study)

Observational

MIP %predicted

MEP %predicted

Koeberl et al., 2020 Albuterol in addition 
to alglucosidase alfa

Upright FVC %predicted No effect Secondary

Supine FVC %predicted Increase 10% (P=0.004)

Upright FEV1 %predicted No effect

Supine FEV1 %predicted Increase 8% (P=0.01)

LOPD, late-onset Pompe disease; FVC, forced vital capacity; MIP, maximal inspiratory pressure; MEP, maximal expiratory pressure; VC, vital 
capacity; FEV1, forced expiratory volume in 1 second; NIV, non-invasive ventilation.
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pulmonary function, it is difficult to make any conclusive 
recommendations. Nevertheless, the value of ERT is 
recognised on other non-respiratory elements of LOPD 
and so LOPD patients presenting to the respiratory clinic 
are likely to be receiving ERT during the course of their 
disease.

Summary

LOPD is a rare glycogen storage disease that can lead to 
SDB and ventilatory failure. Glycogen accumulation in 
myocyte lysosomes leads to respiratory muscle fatigue, most 
pronounced in the diaphragm. Patients typically present 
with progressive muscle weakness, but this can be insidious 
and it can take many years for a diagnosis of LOPD to be 
confirmed. Investigations are likely to reveal inspiratory 
muscle weakness. Patients will suffer from significant sleep 
disturbance and SDB almost exclusively during REM 
sleep. The cornerstone of treatment for ventilatory failure 
and SDB in LOPD is domiciliary NIV, however over 
50% of LOPD patients will not receive NIV. Although 
pharmacological agents are available for LOPD, there are 
little data to demonstrate any benefit on respiratory or sleep 
outcomes. There is a need to conduct randomised studies 
and analyse observational registry cohorts to determine the 
impact of pharmacological agents on respiratory function 
and SDB.
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