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Introduction

Malignant pleural effusion (MPE), defined by the 
identification of malignant cells or tumor tissue in the 
pleural space, is a severe medical issue as it underlines 
advanced malignancy. MPE is a distinct form of metastatic 
disease; about 80% of MPEs are caused by pleural 
metastases originating from adenocarcinomas of the lung, 
breast and ovary or by lymphomas. Mesothelioma is the 
commonest type of primary pleural tumor and is associated 
with MPE in more than 90% of cases (1-3). MPE affects 
500-700 people per million population every year, an 
incidence similar to that of lung cancer (4,5).

The incidence of MPE and the associated healthcare 
costs are expected to rise in the future as the lifespan of 
cancer patients increases. Despite the progress in cancer 

treatments, MPE remains refractory to current treatment 
approaches and is associated with high morbidity and 
mortality. The life expectancy depends on the origin of 
the primary tumor and is approximately 4 months for 
lung cancer patients (2). The most common presenting 
symptoms of MPE are dyspnea, cough, fatigue, weight 
loss and pleuritic pain (6). These symptoms often impact 
on quality of life. There is thus an urgent need for better 
treatment for MPE.

Current management of MPE

The ideal management of MPE would effectively control 
fluid reaccumulation and provide long-term relief of patient 
symptoms and distress, have limited side effects, improve 
quality of life, be well tolerated, be minimally invasive, 
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incur low healthcare costs and can be hence delivered on an 
outpatient basis. Current treatments fail to fulfil the above 
criteria and merely offer palliation of symptoms, without 
improving life expectancy let alone offering a cure. The aim 
of currently-available treatment for MPEs is to optimize 
respiratory function and quality of life.

Thoracentesis

Therapeutic thoracentesis is often the first approach in 
the management of MPE to determine the symptomatic 
benefits from fluid removal. Thoracentesis avoids 
hospitalization and can provide short-term symptom 
relief; however pleural fluid and related symptoms recur in 
many patients within 30 days (7). A considerable number 
of patients does not benefit from thoracentesis because 
dyspnea is often caused by concomitant morbidities (8,9). 
Complications from thoracentesis include pneumothorax, 
vasovagal reactions, cough, infections and chest pain. 
Repeated thoracentesis should only be applied to those of 
poor general condition and short life expectancy, those with 
a slow rate of fluid accumulation or those unsuitable for 
pleurodesis or indwelling catheters (2,7,10).

Pleurodesis

Pleurodesis is usually the method of choice in the 
management of recurrent symptomatic MPE (11). Patient 
selection is critical for successful pleurodesis. Improvement 
of symptoms from thoracentesis and a life expectancy 
>2-3 months are often advocated for patient selection for 
pleurodesis (6,12). However, no accurate clinical or biochemical 
criteria exist to help select suitable candidates (13).

Pleurodesis aims at obliterating the pleural space to 
prevent the fluid accumulation. The procedure involves 
mechanical- or chemical-induced pleural inflammation, 
resulting in pleural fibrosis and fusion of the visceral and 
parietal pleura (5). Chemical pleurodesis employs the 
instillation of a chemical irritant into the pleural space. A 
number of sclerosing agents have been cited in the literature 
including talc (considered most effective) (2,7,11,14,15), 
chemotherapeutic drugs, biologic agents, antibiotics and 
recently silver nitrate and povidone iodide (6,14-18).

Common side effects from pleurodesis include pain and 
fever, but serious complications of reexpansion edema, 
persistent air leak, acute respiratory distress, pneumonitis, 
local infections and hypotension can occur (10). Pleurodesis 
is also associated with prolonged hospitalization and 

significant healthcare costs (3) and does not guarantee 
permanent control of fluid reaccumulation. Studies have 
shown that fluid reaccumulation occurs in 36% of patients 
by day 17 post-pleurodesis (19). This figure increases to 
50% of patients at 6 months after pleurodesis, despite 
guideline implementation (20). In one study, 19% of 
patients with successful pleurodesis died after a median time 
of 61 days (19). Better prognostic predictors for successful 
pleurodesis are needed.

Indwelling pleural catheters (IPCs)

IPCs allow ambulatory drainage of fluid according to 
patients’ symptoms. Insertion of indwelling catheters is 
accepted as a second-line treatment when pleurodesis is not 
recommended or failed. However, recent studies indicate 
that indwelling catheters provide the same benefits as 
pleurodesis in controlling patients’ symptoms with significantly 
less hospitalization time (21-23). Over 90% of patients 
remain asymptomatic for at least 30 days (24) following 
IPC insertion. Furthermore, up to 70% of patients with 
IPCs can develop spontaneous pleurodesis (25); otherwise 
sclerosants can be instilled through the catheter. IPCs 
provide efficient symptom control with minimal invasion, 
and provide an excellent tool for longitudinal clinical 
research. Placement is simple and safe and can often be 
performed as a day case with local anesthesia. Complications 
from IPCs, including infections, clogging or dislodgement 
of the catheter, are generally well tolerated by patients and 
easily managed (22,26-28).

Rationale for targeted therapies against MPE

Successful treatment of MPE represents an ongoing 
challenge in clinical practice. Because of the inadequacies of 
thoracentesis, pleurodesis and IPCs, additional therapeutic 
approaches have been tried, including surgery, systemic 
therapy, gene therapy, chemotherapy and intrapleural 
immunotherapy (29,30). This plethora of management 
options however has not shown proven benefits. Pleurodesis 
for example does not treat the primary tumor and offers 
merely transient relief of MPE-associated breathlessness. 
Chemotherapy can be employed in certain occasions as a 
first line treatment for the primary tumor, however many 
tumors, e.g., mesothelioma, are chemoresistant (31) and 
many patients are not fit for aggressive chemotherapy. 
Moreover, talc pleurodesis is associated with long 
hospitalization time as it has been shown that the patients 
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can spend up to 6.1% of their remaining lifespan in the 
hospital during the procedure and a median of 18 days 
in hospital including subsequent admissions (22,32). 
Discomfort and morbidity from MPE constitute an 
additional human cost for these patients.

Development of novel, effective, personalized treatment 
for individual patients is impaired not only by the lack of 
reliable predictors of patient outcome and survival but also 
by our incomplete understanding of basic biologic aspects 
of cancer metastasis to the pleural space and effusion 
development. For example, current treatment for lung 
cancer is guided by mutation status of key oncogenes like 
epidermal growth factor receptor (EGFR) or Kirsten rat 
sarcoma viral oncogene homolog (KRAS), a downstream 
factor of the EGFR pathway. Recent studies suggest that 
tumor cells metastasizing to the pleural space constitute 
a cell population disparate to the primary tumor, as 
evidenced by the significant discordance in EGFR mutation 
status between the primary tumor and cancer cells in the 
effusion (33). These findings suggest that MPE is not 
merely a complication of the primary malignancy but could 
represent a different cancer phenotype. This notion in turn 
raises new important questions in the field of MPE. The 
possible genetic and phenotypic differences between cancer 
cells from the effusions and from the primary neoplasms 
should be addressed. Expression profiles of cancer cells in 
effusions should be unveiled which would be a crucial factor 
in guiding therapeutic decisions and monitoring tumor 
response. Answers to these questions will likely result in 
therapeutic innovations for patients with MPE.

A key area of focus for MPE research should be to 
develop drugs targeting fluid formation, taking however into 
consideration the heterogeneity of the various tumors and 
how it can impact drug efficacy. A thorough understanding 
of the pathobiology of MPE is key to the development 
of novel therapy specifically targeting mechanisms that 
promote the production of MPE.

Current concepts in MPE pathobiology

Pleural fluid normally enters the pleural space through the 
systemic capillaries of both the parietal and the visceral 
pleura and is removed by lymphatic drainage through 
the stomata of the parietal pleura, by absorptive pressure 
gradients through the parietal pleura and by cellular 
mechanisms (34). A well-established mechanism in the 
pathogenesis of MPE is attributed to tumor-associated 
blockade of local lymphatic outflow resulting in the 

impairment of effective pleural fluid absorption (35). The 
blockade of the lymphatic network is observed due to 
tumor dissemination in the parietal pleural stomata and 
mediastinal lymph nodes, thus obstructing drainage of the 
fluid from the pleural cavity (36). However, blocking fluid 
removal from the pleural cavity cannot be the only cause 
leading to MPE formation, as it has been shown that even 
though many tumors cause lymphatic obstruction, not all of 
them induce MPE formation (35,36). These recent findings 
have challenged the classic view for MPE pathogenesis 
and have demonstrated that MPE formation constitutes a 
complex biological phenomenon incorporating interactions 
between tumor cells and the host vasculature, the immune 
system and other host cells in the pleural microenvironment 
(Figure 1) (37).

Increased vascular permeability leading to enhanced fluid 
production through excessive plasma leakage is now a well-
documented event observed with MPE (38). Recent studies 
have highlighted the role of pleural tumor foci in rendering 
the pleural vessels hyperpermeable. It has been shown that 
tumor cells secrete a surplus of several vasoactive mediators 
which contribute to the development of MPE by increasing 
blood vessel leakiness. Such mediators include vascular 

Figure 1 MPE pathogenesis. Tumor-host interactions are key 
regulators of MPE formation. Tumor-elaborated vasoactive and 
inflammatory signaling, dictated by cancer cell genetic status, 
drives host-derived, MPE-related manifestations like angiogenesis, 
vascular hyperpermeability, and inflammation and host cell 
recruitment in the pleural microenvironment, ultimately leading to 
MPE development. MPE, malignant pleural effusion.
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endothelial growth factor (VEGF) and angiopoietins (38,39). 
Interestingly, vasculature-associated mediators, namely 
endostatin, which impair MPE formation have also been 
described (40,41). Newer evidence incriminates host cells, in 
addition to tumor cells, in producing vasoactive mediators, 
as it has been shown that host-elaborated transforming 
growth factor-β (TGF-β) induces production of VEGF by 
mesothelial cells, thereby contributing to MPE formation (42).

A breakthrough in the study of MPE formation was 
accomplished by the advent of immunocompetent mouse 
models of MPE (43,44). These mouse models permitted 
the identification of additional tumor-elaborated MPE-
triggering signaling molecules, which were found to be 
proinflammatory mediators like interleukin (IL)-6, tumor 
necrosis factor (TNF), chemokine ligand 2 (CCL2) 
and secreted phosphoprotein-1 (SPP1, also known as 
osteopontin) (45-48). These molecules promote MPE 
formation in more than one way, as they are potent 
inducers of vascular hyperpermeability, angiogenesis and 
inflammation. In addition, signaling cascades originating 
from the aforementioned factors result in the recruitment 
of host inflammatory and mesothelial cells to the pleural 
space which in turn secrete CCL2, SPP1, VEGF and 
other molecules like IL-5, further promoting MPE 
development (42,44,48).

Host cells attracted to the pleural space by tumor-
elaborated signaling include granulocytes, monocytes, 
macrophages, mast cells, lymphoid cells and, possibly, 
other bone marrow-derived cells such as endothelial and 
fibroblast progenitors. These cells interact with tumor cells 
and likely favor the local manifestation of angiogenic and 
inflammatory events, important for MPE pathogenesis 
(29,37,47). It is becoming clear that the current view for 
MPE pathobiology should include tumor-host cross-
talk in the pleural space which dictates the occurrence of 
vasoactive signaling, host cell recruitment and activation, 
vascular leakage, angiogenesis, inflammation and tumor 
dissemination and ultimately MPE formation.

Blocking angiogenesis to halt pleural fluid 
formation

Our improved understanding of MPE pathobiology has led 
to the identification of new therapeutic targets. VEGF, one 
of the most important factors of angiogenesis and vascular 
permeability, has been one of the first molecules targeted 
in the clinic as there is extensive evidence linking VEGF 
expression with tumor progression and MPE pathobiology. 

Many studies have demonstrated that increased expression 
levels of VEGF in primary tumors are associated with 
enhanced angiogenesis in the tumor and poor survival for 
patients with non-small cell lung cancer (NSCLC) and 
MPE (49,50). VEGF expression levels are increased in 
MPE irrespective of the underlying primary neoplasm, as 
shown in cases of MPE from metastatic breast or lung cancers 
as well as mesothelioma (51-53). VEGF expression levels 
have also been assessed as a diagnostic tool in MPE (54). 
Experimental mouse models have further established the 
important role of VEGF in MPE development. Using 
a nude mouse model it has been shown that VEGF 
expression levels, either in the MPE or after injection 
of the recombinant protein, correlated proportionately 
with vascular permeability. Pretreating the mice with a 
VEGF receptor (VEGFR) antibody reduced the observed 
increase in vascular permeability (53). Additional studies 
incriminated tumor-elaborated VEGF as a critical factor 
for the induction of pleural fluid formation, by favoring 
vascular hyperpermeability after injection of human 
non-small cell lung adenocarcinoma cell lines in nude 
mice (38). VEGF-mediated MPE development was also 
described after autocrine IL-6 induced activation of signal 
transducer and activator of transcription (Stat) 3 in lung 
adenocarcinoma (45).

Many therapeutic interventions targeting angiogenesis 
and vascular permeability have been undertaken against 
experimental MPE. Blockade of VEGF signaling by 
the VEGFR tyrosine kinase phosphorylation inhibitor 
PTK787 reduced MPE formation by inhibiting vascular 
permeability (55). Treatment with ZD6474 (vandetanib), 
another VEGFR tyrosine kinase inhibitor with some partial 
activity against EGFR tyrosine kinase, reduced tumor 
vascularization and proliferation and significantly impaired 
MPE development in nude mice injected with NSCLC 
cells (56). Bevacizumab (avastin), a humanized VEGF 
monoclonal neutralizing antibody, was also reported to 
exert promising effects when administered in high dosages 
in patients with malignant effusions (57). On the other 
hand, treatment of mice with experimental MPE from 
lung adenocarcinoma using temsirolimus, a drug reported 
to inhibit tumor angiogenesis by reducing synthesis of 
VEGF (58), did not curtail effusion formation (59).

The efficacy of bevacizumab in patients with NSCLC 
has been extensively evaluated in many clinical trials, 
which showed that the drug, in combination with 
chemotherapy, can improve survival of patients with lung 
adenocarcinoma (60). There are also ongoing phase II 
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clinical trials designed to assess the effect of intrapleural 
administration of bevacizumab for MPE in patients with 
NSCLC (ClinicalTrials.gov identifiers: NCT02054052 
and NCT02005120). Conversely, a recently completed 
clinical trial (ClinicalTrials.gov Identifier: NCT00402896) 
investigating the effects of ZD6474 on the volume of MPE 
in patients with NSCLC concluded that the patients did not 
benefit significantly from the treatment (61) but the effect 
on effusion was not defined.

Angiopoietins pose other potent regulators of MPE 
formation as they play critical roles in angiogenesis, 
tumor-associated angiogenesis, vascular permeability 
and inflammation (62-66). It has been shown that pleural 
expression levels of angiopoietin are increased in patients 
with MPE (67). In a mouse model of experimental MPE 
from lung adenocarcinoma cells, angiopoietin signaling 
through the tyrosine kinase receptor Tie2 was blocked by 
the systemic administration of a soluble form of the same 
receptor. The results of this study indicated that blockade 
of the angiopoietin/Tie2 axis reduced MPE formation, 
impaired pleural tumor dissemination, attenuated vascular 
hyperpermeability and tumor angiogenesis and decreased 
recruitment of inflammatory cells to the pleural cavity (39). 
In a recent study, an angiopoietin 2-specific inhibitor was 
administered in an experimental mouse model of MPE 
together with recombinant human endostatin. The authors 
concluded that the two drugs exerted synergistic effects in 
controlling MPE formation, tumor growth, inflammation, 
tumor angiogenesis and vascular hyperpermeability (68). 
Beneficial effects of human recombinant endostatin on 
experimental MPE were also reported independently (41). 
Further studies are needed in order to evaluate the 
therapeutic application of these interventions in clinical 
practice.

Targeting driver oncogenes against MPE

MPE accumulation appears to correlate with specific 
mutat ions  which  can  determine  the  therapeut ic 
regimen [(69); see also review article in this issue by 
Agalioti et al.]. Clinical data show the presence of different 
mutations in pleural metastatic sites compared to the 
primary tumors (37). For example, EGFR mutations are 
more common in the pleural fluid whereas KRAS mutations 
are more frequent in primary tumors (50,70).

There is potential  for treatment of MPE to be 
personalized according to the mutation status of the pleural 
tumor cells identified by DNA analysis, which may have 

prognostic implications. Identifying the driver mutations 
may open up possibilities of new treatments. When such 
mutations are not found, a more general chemotherapy 
protocol can be predilected. Particular mutations of the 
EGFR gene can induce growth and spread of the tumor. In 
these cases, targeted tyrosine kinase inhibitors (TKIs), like 
erlotinib and gefitinib can be used as an alternate approach 
to chemotherapy (71). Several studies indicate that EGFR 
positive pleural metastases have a similar response to 
TKI therapy as seen in other EGFR positive metastatic 
sites. EGFR gene exon 19 deletions, exon 21 mutation 
L858R, exon 21 mutation L861Q and exon 18 mutation at 
amino acid location 719 are the most common mutations 
associated with increased response to TKIs (72,73). The 
most common EGFR mutations associated with lack of 
response or resistance to EGFR TKIs are exon 20 mutation 
T790M, exon 20 mutation S768I, and identified insertions 
in exon 20 (74). Unfortunately, almost all patients who 
initially respond to an EGFR-TKI subsequently develop 
resistance and experience progression of the disease. 
Secondary mutations in EGFR (T790M, D761Y, and 
L747S) appear to be responsible for the majority of cases of 
acquired resistance to EGFR-TKIs (75,76).

The rat sarcoma (RAS) oncogene product is considered a 
major target for anticancer therapy. Our group has studied 
the role of aminobiphosphonates, such as zoledronic 
acid (ZA), in an experimental model of MPE, as this 
drug class is known to exert indirect antitumor effects. 
In experimental MPE, ZA showed beneficial effects by 
limiting the expression of pro-inflammatory and angiogenic 
molecules as well as the activity of the small GTP proteins 
RAS and RhoA (77). The first human study of ZA in 
MPE was recently published but its inconclusive results 
as to the treatment effect of ZA could be due to study 
design limitations (78). Another multicenter observational 
study comparing patients receiving the drug or not was 
terminated prematurely due to reduced patient recruitment 
(ClinicalTrials.gov Identifier: NCT00099541) (37).  
On the other hand, a recent study showed that a small 
molecule inhibitor, namely deltarasin, targets the 
membrane localization of KRAS, thus inhibiting oncogenic 
RAS signaling, and suppresses the in vitro and in vivo 
proliferation of human tumor cells that are dependent on 
oncogenic KRAS (79). This drug and other small molecule 
inhibitors may provide a novel opportunity to suppress 
oncogenic RAS signaling in experimental MPE. Inhibition 
of KRAS may be a more effective therapy for MPE.

The search for tumor transcriptional programs triggering 
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MPE formation also identified nuclear factor (NF)-κB 
activation as an important component of the ability of lung 
adenocarcinoma cells to induce MPE development. NF-κB 
serves as a key signaling pathway linking inflammation with 
cancer (80,81). NF-κB activity in lung adenocarcinoma 
cells was central to their ability to cause MPE formation, 
as disruption of NF-κB signaling in these cells resulted 
in decreased tumor burden and reduced volume of MPE 
(43,82). NF-κB promotes secretion of tumor-elaborated 
TNF participating in an autocrine loop to sustain 
NF-κB activity (46). CCL2 expression in adenocarcinoma 
cells was also found to depend on NF-κB activation (47). 
These studies rendered NF-κB a novel therapeutic target. 
To this end, a recent study employed bortezomib, a 
proteasome inhibitor, to disrupt NF-κB activation in lung 
adenocarcinoma cells and reported beneficial effects against 
experimental MPE (83).

The EML4 (echinoderm microtubule-associated protein-
like 4)-ALK (anaplastic lymphoma kinase) fusion oncogene, 
which is generated from a small inversion within human 
chromosome 2p leading to the expression of a chimeric 
tyrosine kinase, can drive the growth of some NSCLC (84). 
Crizotinib is a targeted drug that blocks EML4-ALK 
translocation-induced signaling (85) and is more effective 
than standard chemotherapy in patients with NSCLC 
showing this abnormality. Crizotinib is generally well 
tolerated and could be rapidly triaged in patients with MPE. 
Other specific abnormalities, such as mutations in the 
ROS-1 and RET genes are being studied and may lead to 
specific treatments for human MPE in the future.

Inhibition of tumor cell inflammatory signaling

It is clear that pleural malignant cells initiate an inflammatory 
crosstalk with host cells (pleural macrophages, lymphocytes, 
pleural mesothelial cells and endothelial cells) as well as 
with bone-marrow and lymphatic system-accrued cells 
(mononuclear cells, neutrophils, lymphocytes) which 
results in a wide accumulation of inflammatory and 
vasoactive mediators in the pleural space. These tumor- 
and host-originated inflammatory signals increase the 
vascular permeability leading to MPE formation. We and 
others have discovered different tumor or host derived 
chemokines and factors which play a significant role in 
MPE development (37,44,46). For example, host-derived 
IL-5 and tumor-derived TNF promoted experimental MPE 
and preclinical evidence supported the efficacy of IL-5 and 
TNF blockade against MPE formation (44,46).

Another important chemokine that was discovered is 
CCL2. Tumor-derived CCL2 can induce accumulation 
of myeloid cells to the pleural space and is necessary and 
sufficient for mouse MPE formation. Genetic ablation 
of CCL2 expression impaired several key aspects of 
MPE development including pleural mononuclear cell 
recruitment, new vessel formation and vascular leakage (47). 
Newly developed monoclonal antibodies directed against 
murine CCL2 and its murine ortholog CCL12 had identical 
effects with genetic ablation of CCL2 expression (86). 
Intriguingly, CCL2 and CCL12 showed redundancy; 
blockade of either or both of them had identical inhibitory 
effects on mononuclear cells and MPE development. Using 
a novel mouse model of human lung adenocarcinoma-
induced MPE, the authors identify CCL2 blockade as a 
potential therapeutic approach for human MPE.

In addition, SPP1 was found to play an important role in 
MPE formation by promoting cancer cell survival and by 
regulating tumor-associated angiogenesis and inflammation, 
both central to the pathogenesis of MPE (48). SPP1 of host 
origin elicited macrophage recruitment into the pleural 
cavity and increased tumor angiogenesis, whereas tumor-
derived SPP1 curtailed cancer cell apoptosis in vivo. SPP1 
directly promotes vascular hyperpermeability. In addition, 
SPP1 of tumor and host origin differentially affected the 
expression of pro-inflammatory and angiogenic mediators 
in the tumor microenvironment. These results suggest that 
SPP1 of tumor and host origin impacts distinct aspects 
of MPE pathobiology to synergistically promote pleural 
fluid formation and pleural tumor progression. Other 
investigators have also concluded that tumor-derived SPP1is 
significant in MPE formation (87). One of the current goals 
in MPE therapy is to identify the most important immune 
players in MPE and block the crosstalk between tumor and 
host-immune cells. These chemokines and molecular agents 
discussed may present attractive targets for therapeutic 
interventions for patients with MPE.

Immunomodulation against MPE

Host immune cells have been identified as playing a prominent 
role in the pathobiology of MPE. These cells, which can either 
be present or recruited into the pleural space, are yet another 
potential target for MPE therapies. The most significant 
immune cell population present in pleural tumors and 
associated with MPE are macrophages, which have been shown 
to secrete a number of critical factors for MPE formation 
such as IL-6, CCL2 or SPP1 (45,47,48). Macrophages have 
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two distinct phenotypes: M1 macrophages appear to impair 
tumor progression whereas M2 macrophages promote 
tumor progression (88). Interestingly, macrophages can 
be modulated using specific biologic interventions such 
as biphosphonate treatment, as shown in recent studies 
which reported that ZA exerted beneficial effects against 
MPE in part by modulating macrophage function (77,89). 
Furthermore, the use of 5,6-Dimethylxanthenone-4-
acetic-acid (DMXAA, Vadimezan) was shown to modulate 
the activity of tumor associated macrophages and thus 
dramatically augment the effect of immunotherapy (90). 
A similar dual phenotype was recently described in pleural 
neutrophils recruited to tumors: neutrophils, controlled 
by TGF-β, can be discriminated into N1 (antitumor) 
or N2 (pro-tumor) polarizations (91). Myeloid derived 
suppressor cells, recruited to the pleural space by tumor-
elaborated CCL2 and host-derived IL-5, are also 
important for pleural tumor progression via inhibition of 
effector T-cell function and can be effectively eliminated 
by conventional chemotherapy treatments (44,47,92). 
Host-derived IL-5 further attracts eosinophils to the 
pleural space (44). Lymphocytes can also impact pleural 
carcinomatosis as different lymphocyte populations exert 
different tumorigenic functions: CD4+ and CD8+ T-cells 
elicit antitumor effects in the pleural space, in contrast to 
regulatory T-cells which function in a tumor promoting 
way (93). Recent data from our laboratory also attribute a 
critical role to mast cells for MPE development (94). Mast 
cells are chemoattracted to the pleural space by tumor-
elaborated CCL2 and trigger vasoactive effects essential for 
MPE formation. Interestingly, the cKIT inhibitor imatinib 
mesylate, which targets mast cells, was effective against 
experimental MPE.

The identification of the involvement of immune and 
inflammatory mechanisms towards an MPE promoting 
phenotype provides a rationale for the investigation of the 
potential application of immunomodulatory therapeutic 
approaches against MPE. Cancer immunotherapy, the 
notion of stimulating and enhancing the innate responses 
of the immune system against cancer, represents a 
promising cancer treatment approach. Interferons were 
of the first molecules studied in this context against 
MPE. Even though the first studies with interferon 
(IFN) administration were unsuccessful (95,96), more 
recent studies revealed promising results. Specifically, it 
was shown that after intrapleural administration of IFN 
alpha-2b in patients with MPE, no fluid recurrence was 
observed (97). In addition, a phase I clinical trial of repeated 

intrapleural doses of adenoviral vector expressing IFN-beta 
in patients with malignant pleural mesothelioma and MPE 
showed promising results (98). There is also an ongoing 
trial evaluating this approach of adenoviral IFN-beta 
gene transfer in pleural malignancies (ClinicalTrials.gov 
Identifier: NCT00299962). Although the exact mechanism 
of action of intrapleural IFN is not well understood, 
its immunomodulatory properties are likely to play a 
prominent role as IFN-alpha and IFN-beta are known 
to stimulate T cells, natural killer cells and macrophages 
(96,99). Intrapleural administration of IL-2 has also been 
addressed in phase I clinical studies with encouraging 
results which warranted further clinical investigation 
(100,101). A phase I trial is currently evaluating the effects 
of EMD 521873 (Selectikine), an IL-2/anti-DNA fusion 
protein designed to enrich IL-2 in tumor tissue, in patients 
with NSCLC and MPE (ClinicalTrials.gov Identifier: 
NCT00879866). Another immunotherapeutic approach 
is to attempt to provoke a broad immune response using 
nonspecific immunostimulatory agents like the inactivated 
bacterial super antigen (OK-432). Specifically, it has been 
shown that combined pleural treatment with OK-432 and 
IL-2 in patients with MPE decreased effusion volume in 
the majority of the patients (102). A phase II study, where 
patients with MPE were treated intrapleurally with 
OK-432 followed by standard chemotherapy regimen, 
reported improved survival time (103). Of a different 
context, a recent study reported on the significant 
enhancement of tumor immunotherapy by the combining 
blockade of CCL2 signaling with specific monoclonal 
antibodies, as a significant reduction in tumor volume was 
observed (104). These data support the clinical evaluation 
of immunotherapeutic agents as novel treatment of MPEs.

The role of interleukins in the pathobiology of MPE 
has been further elucidated in experimental mouse model 
studies. IL-6 was found to favor VEGF-mediated MPE 
formation through activation of Stat-3 (45). Host-derived 
IL-5 was present in mouse and human effusions and, 
importantly, ablation of host IL-5, either by the use of IL-5 
devoid mice or by exogenous antibody treatment, produced 
a MPE resistant phenotype (44). Furthermore, a synergistic 
effect of IL-12 and IL-15 was described, which exerted 
antitumor activity and had beneficial effects on experimental 
MPE (105). A number of studies have described the 
presence of additional interleukins including IL-10 and 
IL-7 in pleural effusions; however their functional role 
in the phenomenon remains to be elucidated (106-108). 
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Overall, it is becoming clear that the above findings can 
have significant therapeutic implications in the future.

 

Future perspectives

Pleural malignancies constitute a significant medical burden 
and merit coordinated translational research efforts to 
develop new and effective therapeutic modalities. The 
latest staging system for NSCLC upstaged the presence of 
MPE from T4 to M1a descriptor (109), highlighting the 
recognition of the complexity and severity of malignant 
pleural involvement in cancer care.

Major progresses have been achieved towards the 
elucidation of the pathobiology of MPE formation. 
Dissection of the biologic events and tumor properties 
favoring MPE development can yield additional therapeutic 
targets. For example, the identification of transcriptional 
networks essential for the tumor cells’ ability to cause 
MPE, like KRAS and NF-κB signaling, has intensified the 
research efforts towards unveiling the signaling cascades 
at play and discovering additional blocking agents of the 
above signaling pathways. Significant advances in basic and 
translational research are still needed to impact on clinical 
outcome of patients with MPE.
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