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Introduction

Carbon nanodots (C-dots) is  a carbon dominated 
nanomaterial that holding a discrete and quasi spherical 
structure, usually containing oxygen/nitrogen organic 
functional groups (1,2). It was accidently discovered through 
the purification of single-walled carbon nanotube fragments 
during electrophoresis in 2004 (1). Over the last decade, 
C-dots attracted much attention in the areas of bioimaging, 
biosensing, and drug delivery (3-10). Notably, C-Dots are 
being developed as fluorescent contrast agents for optical 
bioimaging (8). Most C-dots are prepared with passivated 
surface with potential for being further functionalized with 
other organic and inorganic moieties, and their unique 
and tunable photoluminescence properties are considered 
to provide a platform to circumvent the disadvantages of 
other fluorescent nanomaterials in related applications (11). 
Although semiconductor quantum dots (QDs) including 
CdS, CdSe, CdTe have been considered as complementary 
candidates of fluorochrome and fluorescent proteins, the 
most serious drawback is the toxic heavy metal elements 
that usually present in semiconductor QDs, as these heavy 
metal elements can potentially generate toxicity (12,13).

Worldwide research statistics for C-dots

We looked at the research publication statistics on C-dots 
from 2004 up till 2014. The Web of ScienceTM search 
engine was used for investigating publication trend of C-dots 
in each year, by using the multi-field syntax string “Carbon 
dots” or “Graphene Quantum Dots (GQDs)” with a 
timespan from 2004 to 2014. All titles, authors, affiliations, 
and abstracts were then manually retrieved and analyzed. 
The trend in publishing topics on molecular imaging was 
also looked at the top imaging journal Radiology which 
publishes comprehensive topics of imaging related clinical 
and experimental studies.

A few clear patterns are evidently demonstrated (Figures 1-3).  
The number of publications from China mainland authors 
increased exponentially during this period. Till 2014 
China authors contributed 47% of the total publications, 
by far surpassed USA which is the undisputed leader in 
science and technology in recent decades. Other major 
players in pharmaceutical research including Britain (with 
GlaxoSmithKline and AstraZeneca), Germany (with Bayer), 
and Switzerland (with Novartis and Hoffman La-Roche), 
France (with Sanofi) also had a relatively small contribution 
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to the publications. Another issue is that publications by 
China authors on pharmacology and toxicology lagged far 
behind publications on chemistry and material science, 
indicating that research is not solidly moving toward the 
direction of application (Figure 3). On the other hand, 
there has been a downward trend in publishing molecular 
imaging related topics in journal Radiology (Figure 4).

Key obstacles for clinical translation

The difficulties of clinical translation of nanoparticles had 
been highlighted (14). Many fundamental questions about 
nanoparticles remain largely unanswered, including how they 

are in vivo distributed, how they are taken up by the cells, 
and eliminated in the body. For biomedical imaging, the 
preferred route of delivery is intravenous injection. However, 
the average size of capillary pores in normal tissues is only 
~5 nm. Thus small molecules equilibrate rapidly between 
intravascular and extravascular spaces, but nanoparticles 
do not. Depending on the organic coating surrounding 
nanoparticles, nonspecific adsorption of plasma proteins, 
mostly albumin, can also increase effective hydrodynamic 
diameter. The majority of clearance for small molecules 
and nanoparticles injected into the bloodstream is through 
either hepatobiliary or renal route (14). Renal filtration of the 
blood is mediated by the glomerular basement membrane 
where the physiologic pore size is ~5 nm in diameter. The 
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Figure 3 Chemistry and material science is playing a predominant 
role in C-dots research in China, with very little contribution to 
pharmacology and toxicology. C-dots, carbon nanodots.

Figure 2 Share of publications on C-dots and its nanocomposites 
by countries during 2004-1014. C-dots, carbon nanodots.

Figure 1 Yearly publication in C-dots and its nanocomposites from 
2004 to 2014 by countries. PRC here refers to Mainland China. 
In USA, if the first author or corresponding author of a paper is a 
Chinese then this paper is designated as USA (Chinese authors). 
(A) There is an exponential growth of publications from Chinese 
authors working in China mainland. (B) A disconnection between 
Chinese authors working in USA and Chinese authors working in 
China mainland is noted. C-dots, carbon nanodots.
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physicochemical properties of nanoparticles in serum, such 
as dispersity, shape, flexibility, and surface charge will also 
determine whether a nanoparticle can be renally filtered. 
Nanoparticles larger than the renal filtration threshold 
will have only three possible fates: metabolism to clearable 
components, excretion by the liver into bile, or uptake 
in the reticuloendothelial system therefore resulting in 
long residence times in the body. Nanoparticles can also 
sometimes evade detection by the body’s immune system, and 
under rare circumstances cross the brain blood barrier (15). 
Even when containing only carbon, certain nanoparticles 
have been shown to introduce unexpected biological toxicity. 
In particular, nonbiodegradable nanoparticles that accumulate 
in certain organs, mostly in the reticuloendothelial, can 
cause potential harm including immune-mediated toxicity, 
teratogenicity and carcinogenicity (14-19). For the safety 
concern, “Choi Criteria” were proposed to guide clinical 
translation of nanoparticles, namely, degradability minimal 
non-specific tissue uptake and smaller than 5 nm with renal 
clearance (14).

Supporting corroborations

Regulatory approvals for nanomaterial-based agents are 
infrequent (14). Virtually all of the materials are organic, 
and the only metal-based agent not administered as a 

microdose is small dextran-coated superparamagnetic 
iron oxide (SPIO) which is composed of Fe, an element 
that in moderate quantities is required for red blood cell 
production. This magnetic resonance imaging contrast 
agent has been extensively studied (20-22). Still, the history 
of marketing SPIO nanoparticles illustrates the difficulties 
of developing nanoparticles for imaging application. SPIO 
for liver imaging was conceptualized when the speed of 
both single-slice CT scan and multiple-slice MRI was 
slow. It was difficult to accurately observe the “wash-
in” and “wash-out” of liver lesion blood flow dynamics 
then. However, spiral CT and later multi-slice CT 
revolutionized liver imaging (23). MRI scan also became 
much faster due to the improved gradient technology 
and fast data acquisition sequence. These techniques 
increased the sensitivity and specificity of small molecular 
agent based dynamic CT and MRI imaging. One recent 
study showed SPIO-enhanced MRI is less efficient than 
small molecular Gadolinium-enhanced dynamic MRI 
in the detection and characterization of hepatocellular 
carcinoma (HCC), due to SPIO-enhanced MRI inability 
to evaluate pathological vascularity of the nodules (24). 
Several recent studies demonstrated that MRI using small 
molecular hepatocyte-specific contrast agent (Gd-EOB-
DTPA, Bayer Healthcare) can provide better diagnostic 
performance for the detection and characterization of 
HCC. Gd-EOB-DTPA-enhanced liver MRI is currently 
emerging as a leading method in this regards (25). 
Together with other reasons, Ferumoxides (Feridex® IV, 
AMAG Pharma/Endorem®, Guerbet) has been withdrawn 
from the market, and Ferucarbotran (Resovist®, Bayer 
Healthycare) being marketed only in limited countries (26).  
For malignant lymph nodes imaging with the SPIO agent 
of Ferumoxtran-10 (AMI-227; Combidex®, AMAG Pharma; 
Sinerem®, Guerbet) particles (27), the pivotal study failed to 
demonstrate a consistent and statistically significant benefit 
in sensitivity and failed to confirm non-inferiority with 
regards specificity (28). Currently only one type of SPIO 
(ferumoxytol, Ferahaeme®, AMAG Pharma) is marketed 
for the treatment of treat iron deficiency anaemia in adult 
patients with chronic kidney diseases, rather than imaging. 

For imaging engineering technology outpacing imaging 
agent, another example is blood pool agent (also known 
as intravascular contrast agent). Their large size prevents 
diffusion through the vascular epithelium and leakage into 
the interstitial space quickly. Blood pool agents remain in 
the circulation for up to an hour, extending the window 
available for imaging, allowing better signal-to-noise ratio 

Figure 4 Number of research papers on the topic of molecular 
imaging published by journal Radiology during 2004-2014, showing 
a downward trend in recent years. (Editorial and reviews were not 
included. As the definition of molecular imaging is not precisely 
defined, this graph excludes clinical studies for established 
nuclear imaging techniques and new MR techniques such as MR 
spectroscopy. However, evaluation of novel nuclear imaging probes 
is included).
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and improved image resolution for small vasculature. The 
first agent approved in this class is gadofosveset trisodium 
(Vasovist®, Lantheus Medical Imaging) (29). Several other 
agents including Gadocoletic acid (Bracco SpA, Italy), 
Gadomelitol (Vistarem®, Guerbet) and P792 Gadomer-17 
(Bayer Healthcare) had been in development but unlikely 
will reach the market. The development of very small SPIO 
particles [VSOP C184, Ferropharm, Germany, (30)] as 
blood pool contrast agent was also stopped. Actually, small 
molecular agents based angiography using multi-slice CT 
or fast MRI reduced the necessity for blood pool contrast 
agent. Therefore for in vivo nanoparticles imaging agent, 
the developer has to compete with both the engineering 
advance of imaging instruments, as well as other smaller 
molecular agents. This makes the challenges even more 
daunting.

For optical imaging probes, the limited penetration 
depth of luminescent or fluorescence contrast is a 
significant obstacle to in vivo application. To quantify signal 
strength of luminescent or fluorescence is also known 
to be problematic (31,32). Optical instruments suitable 
for small animals will not be suitable for human imaging 
except for small superficially located lesions which can be 
easily biopsied or sometime surgically removed. Also note 
while it has been more than 30 years since the concept of 
receptor-specific targeted nanoparticles for cancer imaging 
or treatment was introduced (33), but to date none has 
been clinically approved. In addition, for nanoparticles 
each new functionality elevates complexity (e.g., multi-step 
syntheses, purification and characterization) and cost (e.g., 
lower yields, more costly materials), and regulatory barriers 
arise (e.g., owing to multi-component, heterogeneous 
formulations). As oppose to therapeutic drugs which have a 
long term access to the market for chronic diseases, the low 
commercial returns for diagnostic imaging agents, which 
commonly involve one-time-use in a patient, also hampers 
clinical development.

Conclusions

Development  of  imaging agents  should  have  an 
early involvement of all parties including chemists, 
pharmacologists, toxicologists, clinicians, pharmas, 
regulatory authorities, as well as imaging equipment 
manufacturers (34-36). Cautiously, efforts should be made 
so that C-Dots research activity should not remain a paper-
generating exercise; and the ultimate aim should be the 
clinical translation to help patients.
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