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Early and appropriate hemodynamic resuscitation is of 
paramount importance for survival in septic shock patients. 
Mortality and morbidity severity are dependent on its 
adequacy (1,2). Despite of attainment of the resuscitation 
goals, many septic patients ultimately develop multiple 
organ dysfunction syndrome (MODS) and die, suggesting 
that other players are involved in the pathophysiology of 
the syndrome (3,4).

Mitochondria are the powerhouses of the cells. 
Approximately 98% of the available oxygen to the cells are 

used by these organelles, whose most important function is 
the generation of energy through the Krebs cycle. Besides 
energy generation, mitochondria are responsible for heat 
generation and thermoregulation, intracellular calcium 
homeostasis, production of reactive oxygen species (ROS) 
that are involved in immunity and signaling pathways, 
and biosynthesis (e.g., cortisol, hypoxia-inducible factors, 
vascular endothelium growth factor). They also regulate cell 
death mechanisms (necrosis and apoptosis) (5).

Mitochondrial dysfunction occurs early in sepsis and 
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has a central role in MODS development. MODS severity 
and recovery of mitochondrial function are associated 
with survival (6,7). Factors indirectly related to oxygen 
delivery (DO2) seem to contribute to this dysfunction. 
It has been proposed that inflammatory signaling leads 
to oxidative phosphorylation impairment and abated 
mitochondrial activity (8). Minimal or absent ultrastructural 
and histopathologic alterations were observed in organs 
of patients with sepsis-associated MODS, suggesting 
that the abnormality is primarily functional rather than 
structural, and potentially reversible. In this way, MODS 
may represent an adaptive, protective and reactive response 
to overwhelming inflammation triggered by systemic 
infection (9). The activation of a “danger response” pathway 
in cells drives a reduction in cellular activity beyond the 
level of maintenance of basic cellular integrity. Under this 
condition, cells suppress some energy-dependent activities 
in favor of those that are essential for cell survival. Reduced 
cellular metabolism could increase the chances of cell 
survival, and thus organs, when confronted with such a 
devastating injury. Evidence of myocardial “hibernation” 
recently reported in experimental animal models of sepsis 
corroborates this theory (10). Acute kidney injury, reduced 
hepatic synthesis function and cholestasis, and reduced 
pulmonary Na-K ATPase activity frequently reported in 
septic patients may represent organ dysfunction consequent 
to this adaptive cellular response.

Adequate hemodynamic resuscitation is not 
enough for survival

In recent years, many improvements in hemodynamic 
optimization in sepsis and septic shock have been made. 
Early and aggressive, but not excessive fluid resuscitation 
has been recommended (11). The role of albumin in septic 
fluid resuscitation has been clarified (11-13). Data regarding 
the effects of the class and intensity of inotropes treatment 
on the hemodynamic and microcirculatory parameters are 
increasing (14,15). Extracorporeal life support for treatment 
of the refractory cases has been recommended and saved a 
significant number of lives (16). 

In parallel, improvement in monitoring has allowed for 
a better adjustment of the therapy, minimizing the hazards 
of both over and under-treatment. Methods of non-invasive 
cardiac output monitoring, such as echocardiography 
and ultrasonic cardiac output monitor (USCOM) are 
available bedside and have their use incorporated in many 
intensive care units worldwide (17,18). Improvement in 

microcirculatory monitoring has revealed that profound 
derangements may be present in septic patients; timely 
reversal of these abnormalities impacts positively on the 
outcomes (19). Central venous oxygen saturation, lactate 
clearance and arterial-venous CO2 gradient has helped 
treatment (20,21). 

Notwithstanding these notable advances, current sepsis 
mortality rates still remain high. The reported mortality 
rates from studies focusing on early resuscitation in 
septic shock in adults are in the range of 18.2% to 30.5%  
(22-25). For children, in-hospital mortality rate for severe 
sepsis was estimated at 10.3% (26). Mitochondrion-target 
therapy is being regarded as a reasonable and promising 
strategy to prevent, mitigate or reverse MODS and 
reduce sepsis mortality. This intervention might be named 
“metabolic resuscitation”.

Metabolic resuscitation as a possible, safe and 
effective strategy

A few clinical trials and a larger number of experimental 
investigations have reported improved mitochondrial 
activity and positive effects on the outcome driven by 
pharmacological and nutritional management strategies. 
Although preliminary, the results point to the need of 
advances in research.

Micronutrients as metabolic resuscitators 

Thiamine

Of particular interest in metabolic resuscitation is thiamine 
(vitamin B1), a water-soluble vitamin that plays an essential 
role in cellular energy metabolism. Thiamine is a cofactor 
for the multienzyme pyruvate dehydrogenase (PDH) 
complex and is essential for converting pyruvate from 
glucose into acetyl coenzyme A for entry to the Krebs cycle 
with subsequent oxidative phosphorylation and generation 
of ATP. If there is thiamine deficiency, pyruvate is converted 
to lactate rather than converted to acetyl-CoA by PDH to 
enter the Krebs cycle, resulting in cellular energy deficit 
and lactic acidosis (27). Thiamine serves also as a cofactor 
for alpha-ketoglutarate dehydrogenase, an enzyme of Krebs 
cycle and for transketolase, a key enzyme for the pentose 
phosphate pathway and the production of NADPH.

Critical illness associated with hypermetabolic states may 
predispose susceptible individuals to the development of 
thiamine deficiency. Conversely, clinicians do not usually 
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identify thiamine deficiency as a source of lactic acidosis in 
severe sepsis/septic shock (28). In the majority of reports 
in the literature on lactic acidosis as a result of thiamine 
deficiency in critically ill patients, a dramatic improvement 
in clinical condition of patients has been shown after 
thiamine administration (29,30). Fatal cases have been 
reported, including one patient who died of refractory 
metabolic acidosis and shock and the diagnosis was reached 
post mortem (31,32).

Starting from the premise that a relative or absolute 
thiamine deficiency state could exist in patients with 
septic shock, Donnino et al. carried out a study to test the 
hypothesis that the administration of thiamine in such 
patients would lead to a reduction in lactate serum levels 
and that this effect would be greater in those with absolute 
thiamine deficiency. The authors measured baseline plasma 
thiamine concentrations in 79 patients with septic shock 
and increased serum lactate (>3 mmol/L). Of these, 28 (35%) 
were thiamine deficient (15 in the thiamine group and 13 
in the placebo group). Thiamine and placebo groups did 
not differ regarding clinical outcome. However, among the 
28 patients with thiamine deficiency, lactate was lower after 
24 hours in the subgroup who received thiamine compared 
to placebo, and survival curves showed a difference in 
time to death between thiamine and placebo groups. 
The hypothesis that thiamine supplementation would be 
effective in decreasing serum lactate for the whole group 
was not confirmed; however, thiamine was effective in the 
subgroup of patients with thiamine deficiency (33). Among 
the limitations of this well conducted study is the small 
sample size for the thiamine deficient group. In addition, 
the impact of the analysis would have greater meaning if 
it had been controlled for inflammatory response (e.g., 
C-reactive protein). Plasma concentration represents only 
a small portion of the total body thiamine (less than 5% of 
the circulating thiamine diphosphate concentration), and 
systemic inflammatory response may result in transiently 
decreased micronutrient concentrations in plasma 
independent of tissue stores (34). Thiamine concentrations 
in whole blood or in red blood cells are likely to be more 
reliable indicators of body stores in the presence of systemic 
inflammation. 

To our knowledge, the study by Donnino et al. was the 
first clinical trial designed to ascertain if the administration 
of intravenous thiamine in patients with septic shock would 
lead to a reduction in lactate (33). It will be important for 
future research to reproduce the results of this study by 
including larger samples of thiamine deficient patients or 

stratifying based on that diagnosis. In practical terms, the 
key messages that can be drawn from this and other studies 
are: (I) we should be aware of the role played by thiamine 
deficiency in lactic acidosis in severe sepsis and septic 
shock states; (II) routine administration of intravenous 
thiamine would be justified during the acute phase of 
critical illness until full enteral intake is reached. Thiamine 
supplementation should be considered particularly for 
patients with risk factors for thiamine deficiency, which 
include malnutrition, alcoholism, chronic wasting diseases, 
renal replacement therapy, hyperemesis gravidarum, 
anorexia nervosa, gastric bypass surgery and refeeding. 
Lactic acidosis resulting from thiamine deficiency is an 
often overlooked but easily treated condition that should 
be suspected in patients of otherwise unexplained elevated 
serum lactate (29). Intravenous formulation of thiamine 
is cheap, extensively available and safe for administration. 
Considering that thiamine deficiency has shown a non-
negligible prevalence in adult and critically ill children, we 
have recommended its supplementation in the presence of 
risk factors (35).

Ascorbic acid, tocopherol, selenium and zinc

Perspectives of supplementation with other micronutrients 
to target sepsis-induced mitochondrial dysfunction 
are emerging from experimental studies. Previous 
treatment of monocytes with dehydroascorbic acid, a 
bio-available isoform of vitamin C, induced an increased 
expression of superoxide dismutase and catalase resulting 
in a cytoprotective antioxidant effect after exposure to 
lipopolysaccharide. Such effect was not evidenced with the 
other isoform (ascorbic acid) (36).

The mitochondrial  ant ioxidant  system may be 
overwhelmed during sepsis. Antioxidants targeted to the 
matrix provide better protection than untargeted ones. 
Conjugation of one antioxidant to the lipophilic cation 
triphenylphosphonium (TPP) that concentrates in the 
matrix has been tested as a strategy to reach this goal. Mito-
Vit-E, a TPP-conjugated form of tocopherol (vitamin E), 
protects mitochondria and whole cells from oxidative stress. 
In a septic animal model, it reduced myocardial injury, 
diminished apoptosis and ameliorated cardiac morphology. 
An inferior effect has been obtained for non-targeted 
vitamin E analog (37,38). 

When incorporated to selenoproteins, selenium protects 
the organs and tissues from damage caused by oxidative 
stress (39). Zinc protects against oxidative stress through 
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the antioxidant metalloenzyme copper-zinc superoxide 
dismutase and by regulating metallothioneins that 
have roles in free radical scavenging and inflammatory 
processes. Mertens et al. reported combined suboptimal 
zinc and selenium plasma concentrations in critically 
ill patients that were associated with marked oxidative 
damage to proteins and lipids. In their clinical and 
experimental study, the authors have also shown that, 
in human cultured endothelial cells, higher zinc and 
selenium concentrations improve mitochondrial function 
in conditions mimicking sepsis (40). In critically ill 
pediatric patients, increasing selenium concentrations were 
associated with better outcomes during the ICU stay (41). 
Increased survival and reduced morbidity were associated 
to zinc supplementation in preterm (42). High-dose 
selenium has been shown to decrease mortality in adult 
patients with sepsis, but given the significant heterogeneity 
in the different trials, whether septic patients may benefit 
from selenium and zinc supplementation still deserves 
further investigation (43-45).

Other putative metabolic resuscitators

Several other potential interventions aimed at restoring 
the mitochondrial function in sepsis exist, but their clinical 
benefit still remains to be proven (38,46). Coenzyme 
Q10 (CoQ10) is a component of mitochondrial electron 
transport chain. It acts by carrying electrons from complex 
I and II to complex III. Low CoQ10 levels have been found 
in plasma of patients with septic shock. Oral or nasogastric 
administration of ubiquinol (a reduced form of CoQ10) 
resulted in improved levels of CoQ10 in these patients (47). 

L-carnitine is essential for mitochondrial fatty acid 
ẞ-oxidation. Disruption of mitochondrial electron transport 
inhibits this process, resulting in accumulation of long 
chain acyl-CoA. Palmitoyl-CoA induces the mitochondrial 
inner membrane permeability transition and consequent 
dysfunction. In a pharmacometabolomic study enrolling 
vasopressor dependent septic shock patients, a subgroup 
of patients with favorable response to the treatment with 
L-carnitine (low-ketone group) was identified (48). 

Cytochrome oxidase (CytOx), the terminal oxidase of the 
electron transport chain, is inhibited in the septic heart. In a 
sepsis animal model, caffeine injection restored myocardical 
CytCOx activity, improved cardiac function and increased 
survival of survival compared with saline injection (49). 

Melatonin and its metabolites accumulate in the 
mitochondria and have potent antioxidant properties. 

In a phase I clinical trial melatonin was shown to reduce 
oxidative stress,  inflammation and mitochondrial 
dysfunction in septic patients (50).

Now and the future

Regarding the protective effects on mitochondrial function, 
thiamine supplementation deserves a consideration in septic 
patients at risk of thiamine deficiency. Selenium and zinc 
should be given at the recommended doses from the first 
day of nutritional support, aiming to improve antioxidant 
function; doses around or below the tolerable upper 
intake level (UL) should be sufficient to correct previous 
deficiency. The other interventions seem far from clinical 
routine yet. 

Better identification of groups of patients presumed 
to benefit clinically by a certain intervention directed to 
“mitochondrial resuscitation” are expected to increase 
driven by genomics and metabolomics. Like for other 
therapeutic interventions in septic patients, appropriateness 
will be strongly determined by the time of the intervention. 
Prevention or attenuation of mitochondrial dysfunction 
is preferable to reversing it and therapeutic interventions 
will probably be different according to the stage of the 
dysfunction. Future researches will open new perspectives 
in sepsis treatment that may result in positive clinical trials.
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