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Human aortic aneurysmal disease

An aneurysm is a permanent dilation of the blood vessel 
that is lethal if it progresses to dissection and rupture. 
Aneurysms of the aortic wall are subdivided anatomically 
into those occurring above or below the diaphragm—
thoracic aortic aneurysm (TAA) and abdominal aortic 

aneurysm (AAA), respectively. AAAs are associated with 
advanced age, male gender, smoking, atherosclerosis and 
hypertension (1,2). The pathology of AAA is characterized 
by atheromatous plaques, inflammatory cell infiltration in 
the medial and adventitial layers, loss of vascular smooth 
muscle cell (VSMC) and extracellular matrix (ECM) 
destruction (3). In addition, AAAs are not associated with 
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any single gene mutation or genetic locus, suggesting 
that it is a complex disorder involving numerous genetic 
and environmental factors. In contrast, TAAs often have 
a strong hereditary link, but are not closely associated 
with specific cardiovascular risk factors. Pathologically, 
TAAs involve destructive matrix remodeling and elastin 
fragmentation, VSMC proliferation, and relatively less 
inflammatory infiltrates (4). Genetic syndromes that give 
rise to TAAs include connective tissue disorders such as 
Marfan syndrome (MFS) and Ehlers-Danlos syndrome, and 
disorders of cytoskeleton proteins (familial Thoracic Aortic 
Aneurysm and Dissection) (4). 

Experimental models

Over the past 15 years, multiple chemically induced 
models of AAA—including elastase perfusion, CaCl2, and 
angiotensin II (Ang II) infusion—have been developed to 
explore the pathogenesis of human disease (5). In the Ang 
II model, Ang II is delivered via mini osmotic pumps into 
hyperlipidimic (LDLR -/- or ApoE -/-) mice over a period 
of 7 to 28 days. This model mimics multiple salient features 
that are found in human AAA including aortic medial 
degeneration, infiltration of macrophages, T cells and B 
cells, and thrombus formation. A different model of Ang II 
infusion into normolipidemic mice produces AAA at a lower 
frequency. In the Ang II model, monocyte infiltration is 
associated with extensive intramural hematoma formation; 
interestingly, these hematomas form in the absence of 
detectable intimal dissections in the early stages of the 
disease. Also interesting in this model, dissection of the 
supra-renal aorta occurs shortly after Ang II infusion before 
bone fide aneurysmal dilation (6). Periaortic application of 
CaCl2 also leads to medial degeneration and adventitial 
remodeling but does not promote thrombus formation 
or dissection. In the study by Son and colleagues (7), a 
hybrid model was utilized that involved periaortic CaCl2 
application followed by Ang II infusion to induce more 
consistent aortic pathology. 

Granulocyte macrophage colony-stimulating 
factor in the pathogenesis of Ang II + CaCl2-
induced aneurysms

Son and colleagues provide evidence that granulocyte 
macrophage colony-stimulating factor (GM-CSF) plays 
an essential role in the pathogenesis of aortic wall dilation, 
intramural hematoma formation, and aortic wall dissection 

induced by stimuli that induce vessel wall inflammation. 
In this study, heterozygous Kruppel-like transcription 
factor 6 (KLF6)-deficient mice developed an exacerbated 
aortic dilation in response to the CaCl2 + Ang II challenge. 
Additional findings included increased adventitial fibrotic 
deposition, marked infiltration of macrophages, and 
increased expression of matrix metalloprotease-9 (MMP-9) 
and IL-6, a well-recognized cytokine independently shown 
to be necessary for Ang II-induced aortic dissections (8). 
This present study provided compelling genetic data to 
support the functional implication of KLF6 as an inhibitor 
of both GM-CSF and IL-6 expression in activated aortic 
macrophages. 

KLF6 is a zinc finger transcription factor belonging 
to a 17-member family of DNA binding transcriptional 
regulators initially described as a tumor suppressor gene  
(9-12), but currently recognized as having multiple, 
diverse roles during differentiation and development with 
the capacity to act both as an activator and a repressor of 
transcription. KLF6 is essential for early hematopoiesis 
and vasculogenesis since whole-body KLF6 deletion leads 
to failure of both events and death in utero (13). Identified 
target genes of KLF6 include collagen 1 (14), urokinase 
plasminogen activator (15), TGFβ1 and TGFβ1 type I and 
type II receptors (16). KLF6 directly activates the E-cadherin 
promoter (17), and has been reported to promote adipocyte 
differentiation by interaction with histone deacetylase 3 
(HDAC3) repressing the Delta-Like 1 Homolog gene (18).  
HDAC3 is an enzyme that de-acetylates chromatin-
associated histones that regulate gene expression. This 
association perhaps indicates that KLF6 controls epigenetic 
regulation of cytokine networks in the vessel wall. These 
authors further demonstrated that myeloid-specific deletion 
of KLF6 generated the same phenotype of aortic aneurysm 
and vessel wall inflammation as the whole body heterozygous 
deletion, but interestingly, also included suprarenal aortic 
aneurysms. Elevated aortic wall and blood levels of IL-6 
and inflammatory monocytes (CD11b + Ly6Chi  cells) 
were observed in the myeloid KLF6-deletion mice, clearly 
demonstrating that this experimental model was associated 
with an amplification loop of inflammatory monocytes 
driven, in part, by GM-CSF. 

Aortic macrophages harvested from the myeloid KLF6-
deletion mice, treated with CaCl2 + Ang II, expressed 8-fold 
higher level of GM-CSF mRNA. GM-CSF is a monomeric 
glycoprotein that is a chemotactic and pro-inflammatory 
cytokine inducing activation and maturation of macrophages 
and dendritic cells (19). Previous work has shown that GM-
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CSF is a highly inducible chemokine locally produced in 
the aorta by endothelial cells, fibroblasts, smooth muscle 
cells and macrophages (20). GM-CSF is upregulated by 
IL-1, TNFα and LPS and its transcription is controlled 
by activating transcription factors, NF-κB and activating 
protein 1. Consequently, GM-CSF levels increase in plasma 
associated with atherosclerosis and is enriched in the aortic 
sinuses of atherogenic-prone ApoE-deficient mice (21). GM-
CSF binds to a heteromeric GM-CSF receptor, composed 
of α and βc chains; βc is common to GM-CSF, IL-3 and 
IL-5 receptors. Granulocyte macrophage colony-stimulating 
factor receptor (GM-CSFR) lacks intrinsic kinase activity but 
constitutively associates with Janus kinase 2 (JAK2). JAK2 
autophosphorylation triggers signaling through STAT3, 
STAT5 and MAPK (Figure 1). Interestingly, through a direct 
interaction of GM-CSFRα with the IκB kinase, GM-CSF 
also potentiates pro-inflammatory NF-κB signaling (22).

To further demonstrate a link between GM-CSF and 
aortic dilation and dissection, the authors blocked the 
induced aortic pathology using neutralizing antibodies 
directed against GM-CSF, and reproduced the pathology 
in normal mice by administering GM-CSF together with 
CaCl2 + Ang II. Results of this study provide important 
new information for our understanding of the role that 
both systemic and localized tissue inflammation play in 
these life threatening pathologies of the aortic vessel wall. 
In addition, results of this and other studies (23) point to 
significant differences in mechanisms of aortic dissection 
linked to genetic diseases such as Marfan syndrome, in 
which TGFβ and its downstream intracellular signaling 
molecules Smad2/3 and ERK1/2, have important, causal 
roles in the vessel wall dissections (24,25).

While these authors provide data clearly suggesting that 
GM-CSF may be a key regulatory molecule influencing 

Figure 1 Model of GM-CSF and IL-6 signaling. GM-CSF binding to its receptor, a heterodimer receptor consisting of low-affinity α 
chain and a longer, signal-transducing β chain leads to conformation changes in the receptor complex and phosphorylation of Janus kinase 
2 (JAK2). JAK2 transphosphorylates the β receptor which allows for docking of STAT5 (signal transducer and activator of transcription 5) 
and STAT3. STAT5 and STAT3 are phosphorylated by JAK2, which promotes their homo-dimerization and translocation to the nucleus to 
initiate gene transcription. GM-CSFR activation also initiates MAPK signaling involving ERK1/2. Similarly, binding of IL-6 to IL-6Rα leads 
to dimerization with the signal-transducing membrane protein gp130 and phosphorylation of JAK1. JAK1 transphosphorylates the receptor 
leading to the recruitment and phosphorylation STAT3. This allows STAT3 to homodimerize and locate to the nucleus. Within the nucleus, 
phospho-STAT3 is acetylated by p300/CREB-binding protein (CBP) which stabilizes STAT3/p300/CBP complex and promotes enhancesome 
formation. In addition, STAT3-monoubiquitination on Lys97 promotes binding to BRD4, part of the positive transcription elongation 
factor (pTEFb) complex that includes CDK9, and promotes transcription elongation of target genes. Both GM-CSF and IL-6 converge on 
STAT3 signaling suggesting that this common pathway may be a prime target for inhibiting vascular inflammation. GM-CSF, granulocyte 
macrophage colony-stimulating factor. 
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the development of aortic dilation and dissection in the 
presence of an inflammatory stimulus, and further suggest 
that activation of GM-CSF is independent of the TGFβ-
Smad pathway associated with the Marfan aortopathy, they 
do not develop a mechanistic hypothesis for how GM-CSF 
and inflammation interact to generate an amplification loop 
of more inflammation that ultimately results in the aortic 
wall aneurysms and dissections clearly associated with the 
mortality of this cardiovascular disease. In the remainder 
of this Perspective, we will integrate other evidence for the 
pathogenic mechanism of aortic cytokines and propose an 
integrative model.

Actions of GM-CSF in tissue inflammation driven 
by activated macrophages

GM-CSF is a chemotactic cytokine involved in macrophage 
maturation that is secreted locally by aortic fibroblasts (26), 
and infiltrating monocyte/macrophages and Th17 cells (27).  
The actions of GM-CSF have been most intensively 
investigated in models of lung inflammation, where it 
induces macrophage activation including expression of 
cell adhesion molecules (CD11a and CD11c), promotes 
macrophage polarization and acquisition of phagocytic 
activity (28). In the vasculature, GM-CSF signaling 
produces intimal proliferation and macrophage priming. Its 
function in macrophage recruitment appears to be its major 
initial effect, based on findings that GM-CSF knockout 
mice have lower tissue macrophage populations (29),  
and conversely, GM-CSF overexpression in tissues 
leads to macrophage expansion and tissue inflammation, 
followed later by fibrosis (30). GM-CSF has the interesting 
properties that it is cell-surface bound and associated with 
extracellular matrix (31). These latter properties may 
account for how GM-CSF has local inflammatory effects 
in tissues where it is overexpressed, rather than activating 
systemic inflammation. 

GM-CSF in vascular disease

An increase in GM-CSF production has been observed 
by multiple groups in models of aortic inflammation and 
aneurysm formation. In a rat elastase perfusion model 
of AAA, macrophage density in media and adventitia 
correlated with elevated gene expression of GM-CSF in 
the aortic wall (32). A different model of Smad3 deficiency 
that leads to aneurysm-osteoarthritic syndrome (AOS) is 
associated with an increase in GM-CSF and IL-6 secretion 

from CD4+ T cells (33). The pathogenic role of GM-CSF 
in this model was demonstrated by antibody neutralization, 
which ameliorated aortic inflammation and aortic root 
enlargement. Furthermore, a surgical aortic specimen from 
a patient with AOS demonstrated increased inflammatory 
infiltrates and GM-CSF immunostaining. Our group 
has found increased GM-CSF secretion and phospho-
STAT3, the downstream signaling molecule, in addition to 
IL-6 and MCP-1, in aortas from a hypomorphic fibrillin 
mouse model of MFS (34). Collectively, these data suggest 
that GM-CSF is involved in the development of aortic 
inflammation and likely exacerbates destruction of aortic 
architecture. 

Effects of GM-CSF on leukocyte effector 
functions

Multiple cell types of myeloid lineage are capable of 
responding to GM-CSF including mature granulocytes, 
monocytes, macrophages and dendritic cell lineages (19). 
In vitro stimulation of monocytes and macrophages elicits 
a robust production of cytokines including IL-6, IL-8,  
TNFα and IL-1, and specific patterns of macrophage 
polarization (35). The study of Son et al. implicated 
aortic macrophages as primary cells secreting GM-CSF, 
suggesting that its autocrine and paracrine actions probably 
result in an exaggerated inflammatory response in the vessel 
wall. More insight into the role of GM-CSF on monocytes 
is derived from experiments involving conditional deletion 
of the GM-CSFR βc from CCR2 + Ly6Chi monocytes 
either before or after onset of experimental autoimmune 
encephalitis (EAE) (36). Removal of βc receptor on Ly6Chi 
monocytes before onset blocked EAE and removal after 
onset reduced autoimmune tissue damage. Furthermore, 
βc receptor seemed dispensable on resident macrophages, 
neutrophils and conventional dendritic cells, suggesting 
βc receptor is most important for monocyte-mediated 
inflammation. The authors further demonstrated that 
βc-receptor-deficient, monocyte-derived dendritic cells 
are not able to produce sufficient IL-1β—a key cytokine 
needed for expansion of pathogenic CD4+ Th cells—due to 
downregulation of apoptosis-associated speck like protein 
containing a CARD (ASC) component of the NLRP3 
inflammasome. In Ang II infused mice, inflammasome 
activation via increased mitochondrial reactive oxygen 
species (ROS) generation was observed in aortic adventitial 
macrophages and bone marrow-derived macrophages (37). 
Deletion of inflammasome components decreased aortic IL-
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1β production, leukocyte recruitment, and AAA formation. 
Taken together, these studies suggest that GM-CSF/GM-
CSFR interaction on recruited monocytes is upstream 
of enhanced cytokine secretion, T cell polarization, and 
leukocyte recruitment to the aortic wall.

IL-6/MCP-1 amplification in vascular 
inflammation

Earlier studies using the Ang II infusion model have shown 
time-dependent increases in IL-6 and MCP-1 secretion 
in the aortic wall (38). Here, IL-6 was also independently 
demonstrated to be necessary for aortic dissection mediated 
by recruitment of circulating monocytes expressing the 
MCP-1 chemokine receptor, CCR2. Genetic deficiency of 
IL-6 resulted in the inhibition of monocyte recruitment 
and MMP-9 expression, preventing the rapid appearance 
of Ang II-induced aortic dissection and aneurysm. 
Similarly, inhibition of monocyte recruitment with CCR2 
deficiency decreased aortic IL-6 and MCP-1 secretion and 
significantly decreased aortic dissection, whereas infusion 
of CCR2+/+ monocytes into CCR2-/- mice restored aortic 
IL-6 and MCP-1 levels along with an increased incidence 
of dissections. In vitro co-culture of aortic fibroblasts 
and monocytes, without direct contact, led to multi-fold 
increases in IL-6 and MCP-1, suggesting that intercellular 
communication between these two cells in the adventitia 
promotes amplified cytokine secretion. It is interesting that 
although IL-6 promotes macrophage maturation, it does 
not have independent chemotactic activity, unlike that of 
MCP-1 and GM-CSF. 

This property suggests that the initial increase in GM-
CSF and MCP-1 secretion in the initial phases of vascular 
response to Ang II infusion likely leads to recruitment of 
circulating monocytes to the adventitia where they interact 
with fibroblasts and amplify cytokine production. Localized 
aortic cytokine production has systemic secondary effects. 
For example, we have observed that IL-6-STAT3 signaling 
leads to Th17 lymphocyte differentiation and a 4-fold 
increase in splenic Th17 population; this expansion is 
mitigated by a STAT3-peptide inhibitor (39). Th17 cells 
producing IL-17 are recruited to the aorta and are known to 
promote aneurysm formation (38-40). The function of the 
spleen is important because this organ serves as a reservoir 
of CD11b + Ly6Chi inflammatory monocytes. Interestingly, 
splenectomy partially protects from Ang II-induced 
AAA formation, probably through this mechanism (41). 
Data from Ang II infusion in IL-6-/- and KLF6-/- mice 

demonstrate that both IL-6 and GM-CSF are necessary for 
the full manifestation of aortic pathology as these cytokines 
amplify aortic cytokine production and promote leukocyte 
recruitment and maturation. 

IL-6 promotes macrophage effector functions

IL-6 promotes monocyte differentiation to macrophages in 
vitro by increasing cell size, developing cytoplasmic vacuoles 
and acquiring surface adherence (8). Macrophage cell surface 
markers such as F4/80 and macrophage-colony stimulating 
factor (M-CSF) receptor are also increased by IL-6 (42). 
Surprisingly, IL-6 deficiency does not alter mature numbers 
of macrophages in vivo, but does make IL-6-/- mice succumb 
to infections by Listeria monocytogenes—a bacterium that 
survives and proliferates in macrophages (43). This suggests 
that loss of IL-6 affects macrophage effector function in vivo. 
In AAA, the MCP-1/CCR2 axis is important for monocyte 
recruitment to the aortic wall where their secretion of MMPs 
leads to elastolysis (38,44). IL-6 has been demonstrated to 
increase transcription of MCP-1 (45) and MMP-9 (46), 
linking it to monocyte recruitment and matrix remodeling. 
In addition, IL-6, in concert with TGFβ, promotes 
differentiation of naïve T cells into IL-17 producing Th17 
lymphocytes (47). IL-17 is a strong inducer of MCP-1 and 
therefore leukocyte recruitment; IL-17A-/- mice are resistant 
to Ang II-induced aortic monocyte accumulation and AAA 
formation (39).

Mechanistically, IL-6 binding to IL-6Rα leads to 
oligomerization with the transmembrane gp130 β-subunit. 
This event promotes association of JAK1 with the receptor 
complex leading to autophosphorylation and recruitment 
of STAT3 (Figure 1). Tyrosine phosphorylation of STAT3 
leads to dimerization of the transcription factor and 
translocation to the nucleus. Nuclear STAT3 is modified 
via acetylation and mono-ubiquitination, events necessary 
for strong interaction with enhancer protein complex p300/
CBP (48) and BRD4/CDK9 (49), respectively. Activated 
STAT3/BRD4/CDK9 complex phosphorylates RNA 
polymerase II on the C-terminus initiating transcription 
elongation of target genes (49,50) The STAT3 signaling 
pathway is a shared pathway triggered by both GM-CSF 
and IL-6 making its exploration in the development of AAA 
of substantial importance.

Conclusions

Based on these data, we know the progression of aortic 
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disease from initial injury to dissection or dilation is a 
complex interaction between innate inflammation of 
resident stromal cells with recruitment of circulating 
macrophages and lymphocytes, in much as the same 
way in the development of complex atherosclerotic 
plaques (51). We propose a sequential two-hit model for 
aortic disease, beginning with a local injury, followed by 
adventitial cytokine amplification. This initial injury induces 
production of monocyte chemotactic factors (MCP-1, GM-
CSF) by resident vascular cells (endothelium, fibroblasts, 
smooth muscle cells), responsible for recruitment of Ly6Chi 

monocytes via CCR2 engagement (Figure 2). Once Ly6Chi  
monocytes are recruited, IL-6 and GM-CSF stimulate 
production of ROS and acquisition of phagocytic activity. 
As the disease progresses, infiltrating Ly6Chi  monocytes 
promote dramatic increases in cytokine production, MMP 
secretion, Th17 lymphocyte recruitment and fibrotic 
adventitial expansion. These events occur concurrently with 
intimal dissection and medial rupture causing aneurysmal 

dilation (Figure 2). The work of Son et al. has shown that 
both IL-6 and GM-CSF are under tonic inhibition by 
KLF6; the known interaction of KLF6s with HDAC3 may 
provide mechanistic information for how IL-6/GM-CSF are 
tonically suppressed, perhaps through the epigenetic actions 
of HDAC3. Importantly, these studies indicate an intricate 
interplay between the vessel wall, innate and adaptive 
immune cells and adventitial fibrosis. More work will be 
required to establish whether targeting JAK-STAT pathway 
will block both IL-6- and GM-CSF-mediated inflammation 
and inhibit AAA formation. 

Acknowledgements

None.

Footnote

Provenance: This is an invited Perspective commissioned 

Figure 2 Two hit model for Ang II-induced vascular inflammation and aneurysm formation. 1, after an initial insult of Ang II and CaCl2, 
aortic fibroblasts and resident macrophages are activated leading to secretion of chemokines GM-CSF and MCP-1 in addition to secretion 
of pro-fibrotic cytokine IL-6; 2, circulating Ly6Chi monocytes are recruited to the adventitia where they interact with fibroblasts and amplify 
cytokine/chemokine secretion. GM-CSF secreted by aortic monocyte/macrophages acts in an autocrine and paracrine manner stimulating 
the production of IL-1β and IL-6 and their downstream target MCP-1. In addition, IL-6 promotes MMP-9 production leading to aortic 
wall remodeling and aortic dilation. Systemic effects of aortic IL-6 include Th17 lymphocyte polarization; Th17 home to the abdominal 
aorta where they compound inflammation by producing more GM-CSF and IL-17. Excessive activation of MMPs and destabilization of 
extracellular matrix leads to intramural hematomas and eventually to aortic dissection. GM-CSF, granulocyte macrophage colony-stimulating 
factor; MMP, matrix metalloprotease.
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