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Introduction

The use of statistics in surgical literature has increased 
over the last few decades (1). The P value has been in use 
for nearly a century (2). P values are found in virtually 
all scientific literature and are used by researchers and 
clinicians to show the statistical significance of relationships 
between two groups for a specific variable (3). 

The P value is the probability of rejecting or failing to 
reject the null hypothesis (H0) (4). H0 is the hypothesis that 
there is no difference between two groups for a specific 
variable. The “P” in P value stands for probability. A P value  
is calculated as the probability that an observed effect as large 
or larger if H0 is true. The P value measures the strength of 
evidence against H0 (5). The smaller the P value, the stronger 
the evidence against H0. For example, a recent trial evaluating 
extended postoperative antibiotic prophylaxis for elective 
thoracic surgery calculated a P value of 0.26 comparing  
patients receiving an extended antibacterial prophylaxis and 
those receiving standard preoperative prophylaxis only (6).  
This P value can be interpreted as a 26% chance that 
there would be results this extreme or more extreme if 
there was no difference between receiving the extended 
antibiotic prophylaxis as compared to the standard 
prophylaxis regimen in this study. The authors conclude 

that “extended postoperative antibacterial prophylaxis 
for patients undergoing elective thoracic surgery requiring 
tube thoracostomy did not reduce the number of infectious 
complications compared with preoperative prophylaxis 
only” (6). If the study calculated a P value of 0.01 for the 
difference in infectious complications between the two 
groups, a 1% chance that there was a observed difference 
that happened randomly between the treatments if there is 
not a true difference in infectious complications, researchers 
would reject the H0 and state that there is a statistically 
significantly difference in infectious complications between 
the two groups. A P value should be compared to an a priori 
determined alpha (α) level in order to conclude statistical 
significance to reject the H0 and state that there is a difference 
between groups. It should be noted that a P value should 
not be simply dichotomized as to above or below the α level, 
but should be interpreted as part of the entire research study 
process which includes sample size, participant selection, and 
measures of both treatment and outcome (7). 

Setting an α level

α level is the amount of type I error you are willing to 
accept. It should be determined a priori, that is before 
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enrolling study participants of collecting data. The most 
commonly used α level is 0.05, as proposed by Fischer, 
however there may be some situations where the α level is 
smaller or larger (2). A type I error is where the H0 is falsely 
rejected, or that researchers state that there is a difference 
when in truth there is not. There may be some situations 
where researchers need to be more certain that there is a 
difference between groups, such as if a new untested and 
potentially harmful treatment is meaningfully better than a 
simple, noninvasive treatment with demonstrated efficacy 
and safety, as was the case in a recent study evaluating vaccine 
safety (8). This study utilized an α level of 0.01 for some of 
their analyses. Other situations where a modified α level may 
be justified include (I) assessment of effect modification by a 
third variable on the relationship between the treatment and 
outcome or (II) adjustments for multiple comparisons within 
the same study. In nearly all biomedical research, the α level 
for primary analyses is nearly always 0.05.

When assessing for effect modification, which is 
the impact of a third factor on the treatment-outcome 
relationship, it is increasingly acceptable to relax the α level 
to a higher value, typically 0.10 or 0.15, but in some instances 
as high as 0.20. As an example, the third variable could be 
the impact of age on the relationship between extended 
antibiotic prophylaxis as compared to standard pre-surgical 
antibiotic prophylaxis. If the researchers believe that older 
patients are more likely to respond to an extended treatment 
regimen as compared to younger patients, then they would 
assess for effect modification of age on the relationship 
between prophylaxis and infectious complications. This 
relaxation of the acceptable level of type I error for the effect 
modification should be based on how willing the researchers 
are to conclude that a third variable, in this example age, has 
a meaningful effect on the relationship between extended 
prophylaxis and infectious complications.

Multiple comparisons are commonly performed in a 
single biomedical research study. There is debate about the 
application and level of statistical adjustment of statistical 
significance when multiple comparisons are made within 
a single study (9,10). Multiple types of adjustment for 
multiple comparisons exist, and include Bonferroni, Sidak, 
Dunnett, Holm and others. While each adjustment is for 
a specific type of test or situation, all operate in generally 
the same way, to lower the likelihood of committing a 
type I error. It is considered best practice to adjust for 
multiple comparisons and therefore be more conservative 
in conclusions, however there is no uniform agreement on 
when to adjust or what type of adjustment best.

Regardless of the application, a P value is a tool to help 
interpret findings from biomedical research and determine 
if practice can be improved.

Statistical versus clinical significance

Fisher suggested 5% (α=0.05) level could be used for 
concluding that fairly strong evidence exists against H0, 
that is 1 out of 20 times you will be wrong and by random 
chance there is no difference between your groups, but 
the data you have suggests that there is (2). It has become 
scientific convention to say that P>0.05 aren’t strong 
enough to reject the H0 (11), however the P value was no 
intended as an absolute threshold. Strength of evidence is 
on a continuum and simply noting the magnitude of the P 
value doesn’t suffice. A P value may show that a relationship 
between two effects is statistically significant where the 
magnitude of the difference between the effects is small. 
While this difference may be statistically significant, it may 
not be clinically significant. 

Keep in mind that the α level is an arbitrary cut-point. 
Scientific and clinical context is critical in differentiating 
statistical significance from clinical significance. A P value 
alone conveys little information about a study’s results (12) 
and even precise P values don’t show anything about the 
magnitude of effect, the differences in variables between 
study groups (12). The use of confidence intervals provides 
researchers with a range of values rather than an arbitrary 
“significant vs. non-significant” value (12). Studies have 
advocated for the use of confidence intervals to show a 
range of values that are considered for a sample (13,14). 
However, the use of a P value is helpful in addition to a 
confidence interval and ideally both should be presented. 

Reporting of the actual P value, not a categorized P>0.05 
or P≤0.05 is important. A P value of 0.051 is nearly the same 
to a P value of 0.049, however the first has traditionally been 
disregarded when in fact it may be clinically significant, but 
have study design elements which negatively affected the  
P value. Consideration of low P values (e.g., P<0.10) as 
“trending toward statistical significance” may be clinically 
relevant for improving practice, particularly in smaller studies.

Study design elements which can impact a P value

Multiple study design elements can have an impact on the 
calculated P value. These include sample size, magnitude of 
the relationship and error. Each of these elements may work 
independently or in concert to invalidate study results.
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Error and its effect on P value

There are two types of error that can impact a P value: 
(I) random error and (II) systematic error (3,7,15). Random 
error is defined as variability in data that is not readily 
explained, essentially random noise both above and 
below the “true” value. A random error is not considered 
a bias but rather occurs random across the entire study 
population and can distort the measurement process. An 
example of random error may occur when measuring the 
height of a study population. The each individual height 
measure may randomly differ (up or down) from the true 
height depending on the way it was held, how it was read, 
or the researcher who took the measurement. If the way 
the measuring tape was held differently was random, 
then the resulting errors will be random. The more study 
participants are included in these measurements, the 
smaller the effect of error will become. Random error 
biases the true relationship towards the H0 of what is 
being studied, or makes it less likely to find statistically 
significant associations. If, for example, a researcher finds 
no statistical differences between two groups and random 
error is present, that random error may have caused the 
true relationship to be biased toward the null. Random 
errors are best avoided in the study planning phase and by 
including a large sample size. The larger the sample size 
of the study population the less likely it is to have random 
error present (see Figure 1). 

Systematic error is a bias and can alter the observed 
association in either direction, therefore making a 
result “statistically significant” when it truth it is not, or 
deleteriously impacting a true relationship to appear to be 
statistically insignificant. Three major types of biases need 
to be considered: (I) selection bias; (II) information bias; 

and (III) confounding. 
Selection bias may be present when individuals have 

different probabilities of being included in the study sample. 
For example, subjects may be more likely volunteer to 
participate in new investigational drug to treat their disease 
if they have failed past treatments or have advanced disease 
and would be more likely to report successful treatment. 
These issues may equate to study population that has a 
built in predisposition for a specific outcome and may make 
a study statistically significant, when in truth there is no 
difference in treatments. This can also work in the other 
direction, where participants are more likely to report 
a treatment as being not successful based on their past 
experience.

Information bias involves a systematic tendency for 
subjects selected for inclusion in the study to be erroneously 
placed in different exposure/outcome categories which 
can lead to misclassification. The most common type of 
information bias is recall bias. Asking study subjects to recall 
information from the past may lead to biased information 
if there is a stigma or reason why someone would over or 
under report the truth (e.g., reporting more exercise than 
what actually occurs or underreporting smoking history or 
drug use because of societal pressures). Information bias 
might be introduced by the interviewer phrasing study 
questions differently with each study subject.

Lastly, confounding can mask, inflate or deflate the 
true estimate of the exposure outcome relationship (3). 
Confounding is present when a third variable is related to 
both, the exposure and the outcome.

Systematic errors can either falsely raise or falsely lower 
the estimate of risk. For example, if researchers measure 
the weight of a study population and the scale measures 
everyone 2 pounds heavier. The data distribution of the 
weight measurements would shift in one direction and be 
overestimated systematically. Increasing the sample size will 
have no effect on this systematic bias (Figure 1). 

Sample size and magnitude of effect

A P value is also affected by sample size and the magnitude 
of effect. Generally the larger the sample size, the more 
likely a study will find a significant relationship if one exists. 
As the sample size increases the impact of random error is 
reduced. Additionally, the overall variability is decreased, 
and measures become more precise for a population as 
a whole. This increased precision allows for detection 
of smaller and smaller differences between groups. The 

Figure 1 Relationship between study size and the effect on random 
and systematic error (adapted by Rothman 2002).
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magnitude of differences between groups also plays a role. 
If there is a large magnitude of difference then it will be 
easier to detect (16). If there are two studies with equal 
sample sizes which are free of error measuring two different 
relationships, the relationship with the larger magnitude of 
effect (e.g., difference between groups) will have a small P 
value as compared to the study with the smaller magnitude 
of effect.

Conclusions

P values are a useful tool for interpreting research findings 
and continuing to improve medical practice. However, P 
values should be considered as a spectrum, not a binary 
significant or non-significant metric. Similarly, issues 
such as sample size, magnitude of effect, and potential for 
random error, systematic error and confounding should all 
be considered in tandem with the P value itself.
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