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ABSTRACT
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For patients with identical clinical-pathological characteristics or the same stage of lung cancer, great uncertainties 
remain regarding how some patients will be cured while other patients will have cancer recurrence, metastasis, or 
death after surgical resection. Identification of patients at high risk of recurrence, those who are unlikely to respond 
to specific chemotherapeutic agents, is the rationale for measuring specific biochemical markers. Thus, main investi-
gational studies nowadays are focused in identifying molecular markers of recurrence, beyond pathologic stage, after 
surgical treatment and factors that can predict a benefit from adjuvant chemotherapy in poor prognosis subgroups, 
to individualize treatments. Advances in genomics and proteomics have generated many candidate markers with po-
tential clinical value. Gene expression profiling (GEP) by microarray or real-time quantitative reverse-transcriptase 
polymerase chain reaction (qRT-PCR) can be useful in the classification or prognosis of various types of cancer, 
including lung cancer. A number of prognostic gene expression signatures have been reported to predict survival in 
non-small cell lung cancer (NSCLC). In this review, we focus on the role of GEP in early-stage NSCLC as predic-
tive and prognostic biomarker and its potential use for a ‘personalized’ medicine in the years to come.
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Review Article

Introduction

The incidence of lung cancer in 2007 is estimated to be 
213,380 with 160,390 deaths in the U.S. It will contribute to 
31% of male and 26% of female cancer-related deaths and 
is the largest cause of cancer-related mortality in both men 
and women. Non-small-cell lung cancer (NSCLC) accounts 
for approximately 75% of all cases of lung cancer, which is 
one of the most common tumors affecting humans in the 
world (1). The current standard of treatment for patients 
with stage I NSCLC is surgical resection (2-4), despite the 
observation that nearly 30 to 35 percent will relapse after 
the initial surgery and thus have a poor prognosis (5,6), 
similarly, as many as 66% of stage II and 75% of stage IIIA 
patients will develop recurrence and die as a result of their 

disease within 5 years of resection (3,4), indicating that 
a subgroup of these patients might benefit from adjuvant 
chemotherapy. Thus, the ability to identify subgroups of 
patients more accurately may improve health outcomes 
across the spectrum of disease.

Although other clinical and pathologic markers have 
prognostic significance (7-10), the clinic-pathologic staging 
system has been the standard for determining NSCLC 
prognosis (8). But this classification scheme is probably 
an imprecise predictor of the prognosis of an individual 
patient. For patients with identical clinical-pathological 
characteristics or the same stage of lung cancer, great 
uncertainties remain regarding how some patients will be 
cured while other patients will have cancer recurrence, 
metastasis, or death after surgical resection. Identification 
of patients at high risk of recurrence, those who are 
unlikely to respond to specific chemotherapeutic agents, is 
the rationale for measuring specific biochemical markers. 
Thus, main investigational studies nowadays are focused 
in identifying molecular markers of recurrence, beyond 
pathologic stage, after surgical treatment and factors that 
can predict a benefit from adjuvant chemotherapy in poor 
prognosis subgroups, to individualize treatments. This 
ability to identify subgroups of patients more accurately 
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may improve health outcomes across the spectrum of 
disease. The study of molecular factors that influence drug 
responsiveness is also a potentially promising approach 
to decrease treatment toxicity and costs by avoiding the 
administration of ineffective therapy to patients destined 
not to benefit (11).

Advances in genomics and proteomics have generated 
many candidate markers with potential clinical value 
(12). Gene expression profiling (GEP) by microarray or 
quantitative real-time reverse-transcriptase polymerase 
chain reaction (qRT-PCR) can be useful in the classification 
or prognosis of various types of cancer, including lung 
cancer (13-15). A number of prognostic gene expression 
signatures have been reported to predict survival in 
NSCLC. In this review, we will focus on the role of GEP 
in NSCLC as predictive and prognostic biomarker and its 
potential use for a ‘personalized’ medicine in the years to 
come.

Techniques for gene expression profiling

GEP (i.e., the systematic identification and characte-
rization of those genes activated or expressed in a cell) can 
be conducted on different levels depending on the specific 
research objectives. This could involve analysis of DNA, 
mRNA, and/or protein as a measure of gene expression. 
A variety of techniques that have been used to profile the 

genome and to assess gene activity at the mRNA or protein 
level (Table 1).

Microarray-based molecular profiles
Both genetic changes within a precancerous cell and 

epigenetic changes in the tumor microenvironment are 
thought to promote tumorigenesis (16-18). In particular, 
it is now well accepted that alterations in the expression 
levels of certain genes strongly correlate with and are 
considered causative for cancer (19). These changes in gene 
expression are reflected by quantitative changes in mRNA 
levels. Detecting these changes was traditionally done by 
identifying single genes of interest and assaying mRNA 
expression by techniques such as PCR and Northern 
blotting. In 1995, Schena et al described a GEP technique 
adapted from Southern blotting that used strands of cDNA 
spotted onto a piece of glass to examine multiple mRNA 
expression levels at once (20). Known as a microarray, 
this technology was quickly developed into a tool that 
could be used to take a genome-wide snapshot of mRNA 
transcription levels within a tissue of interest in a single 
experiment (21).

qRT-PCR–based molecular signatures
In response to the concern that microarray-based 

profiles are difficult to translate into a clinical setting, 
several recent efforts have focused on developing qRT-PCR

Tab 1: Examples of Analytical Procedures Used for Genomic and GEP
A. Genome (DNA)

• DNA sequencing
• DNA profiling/genotyping (e.g., mutations, single-nucleotide polymorphisms, repeated sequence, etc.)
• Gene mapping

B. Transcriptome (mRNA)
• Northern blot
• Nuclease protection assay
• Reverse transcription–polymerase chain reaction (RT-PCR)
• In situ hybridization/tissue arrays
• Differential display PCR
• cDNA/expressed sequence tag (EST) libraries
• Serial analysis of gene expression (SAGE)
• DNA microarrays

C. Proteome (Protein)
• Separation: chromatography, electrophoresis, mass spectrometry
• Immunoassays: radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), Western blot, immunocytochemistry
• Function/activity assays: enzyme activity, binding affinity, etc.
• Combined techniques: high-performance liquid chromatography/mass spectrometry (LC/MS), electrophoresis/ mass 
spectrometry, protein tagging/mass spectrometry, tissue arrays/immunocytochemistry, protein chips/SELDI-TOF mass 
spectrometry
• Protein microarrays
• Direct mass imaging
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–based molecular signatures. It is unlikely that every gene 
in the molecular profiles obtained by microarray analysis 
has equal relevance with respect to prognosis. Ideally, a 
handful of genes could be isolated that convey close to the 
same prognostic information as microarray-based gene 
signatures. The disadvantage would be that only a small 
number of such genes could be tested by the current gold 
standard assay for gene expression, qRT-PCR. However, 
qRT-PCR has significant advantages to microarray-based 
assays, including widespread availability, cost, simplicity, 
reproducibility, and ability to use stored paraffin-embedded 
versus snap-frozen tissues (22-24). In addition, the limited 
number of genes in qRT-PCR–based signatures allows 
these signatures to be validated with protein expression by 
immunohistochemistry (25).

Lung developmental pathways in lung cancer

Current paradigms suggest that lung carcinomas arise 
from pluripotent stem and progenitor cells capable of 
differentiation into one or several histologic cell types. 
These paradigms suggest that lung tumor cell ontology is 
determined by the consequences of gene transcriptional 
activation and/or repression events that recapitulate 
embryonic lung development (26,27). The hypothesis 
that lung cancer arises from aberrant expression of genes 
involved in lung development is supported by gene 
expression studies demonstrating similarities between 
signatures obtained f rom human lung tumors and 
signatures characteristic of normal lung development. 
In an analysis of 32 NSCLC specimens and 7 normal 
specimens, unsupervised hierarchical analysis segregated 
tumors on the basis of histologic type and differentiation 
(28). Supervised clustering analysis of tumors identified 
numerous genes with known important function in 
embryonic lung development. Comparison of human lung 
tumor histology classifiers with genes temporally activated 
during mouse lung development reveals that genes 
expressed by large cell carcinoma (LCC) are similarly 
expressed during the early pseudoglandular and canalicular 
stages of lung development, while those expressed by 
adenocarcinoma mirror those expressed during the later 
terminal sac and alveolar stages. In addition to highlighting 
the expression of proliferation-associated genes by LCC 
and of differentiation-associated genes by adenocarcinoma, 
these results suggest a recapitulation of developmentally 
regulated pathways in lung tumors. In addition, Glinsky 
and colleagues reported that a gene signature of ‘stemness’ 
derived from BMI-1–regulated genes in normal stem 
cells is associated with metastasis and survival in several 
tumor types, including NSCLC (29). Taken together, these 
observations suggest that poor differentiation is linked to 

molecular parameters of early development representing 
lung stem and progenitor cell programs, and that gene 
signatures of these phenotypes are important for lung 
cancer differentiation, progression, and clinical outcome.

Predicting response to treatment by gene expression 
profiling

GEP has been used to predict response to treatment. The 
first clinical study of microarray as a predictor of benefit 
from chemotherapy in NSCLC used tissues from 133 
patients enrolled in the JBR.10 study. JBR.10 is a North 
American phase III Intergroup trial led by the National 
Cancer Institute of Canada Clinical Trials Group (NCIC 
CTG), in which 482 patients with completely resected 
stages IB and II—excluding T3N0-NSCLC were randomly 
assigned to receive four cycles of adjuvant cisplatin plus 
vinorelbine or observation alone (30). Chemotherapy-
treated patients enjoyed a significant survival advantage 
(HR, 0.70; P=0.03), although a significant interaction with 
stage was seen, with benefit limited to stage II patients. 
By use of a supervised analysis, a 15-gene signature 
that correlated with survival, and was independent of 
stage, histology, age, and sex was derived from patients 
in the observation group (HR 15.02, 95% CI 5.12–
44.04; p<0.0001). In the high-risk group, treatment with 
vinorelbine plus cisplatin conferred significant survival 
benefit compared with observation alone (0.33, 0.17–
0.63; p=0.0005), whereas in the low-risk group, patients 
who received this chemotherapy regimen had shorter 
survival compared with observation alone (3.67, 1.22–
11.06; p=0.0133). This interaction was highly significant 
(p=0.0001) (31). If the 15-gene signature is validated 
by further testing, it may improve the current method 
for deciding which patients should receive adjuvant 
chemotherapy. 

Staunton et al. used DNA microarrays to measure gene 
expression in the NCI-60 panel (a collection of 60 human 
cancer cell lines) (32-34). By combining the untreated 
gene expression profile of each cell line together with 
information about each cell lines’ chemosensitivity profile, 
they were able to predict drug sensitivity in an independent 
test set of cell lines. A subsequent study by Potti et al. 
(35) repeated and built upon Staunton’s work. Potti and 
colleagues used molecular profiles from cell lines to 
establish sensitivity to chemotherapy. The signature that 
predicted response to individual agents was then further 
validated in cell lines, but also in clinical samples from 
patients with other tumor types (35). The usefulness of 
this approach is that one tumor sample can be interrogated 
for response to many agents on the basis of cell-line 
derived signatures. For example, a relationship between 
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docetaxel resistance and deregulation of the PI3-kinase 
pathway was observed. Using a panel of 17 NSCLC cell 
lines a significant association was found between docetaxel 
resistance and sensitivity to a PI3-kinase inhibitor 
(LY-294002), suggesting its use as a second-line therapy 
(36).

For many years, we have been discover ing that 
expression of certain genes or the presence of certain gene 
mutations has implications in the prognosis of NSCLC 
or response to specific therapy. The improved responses 
seen with the use of tyrosine kinase inhibitors (TKIs; eg, 
erlotinib or gefitinib) in patients carrying mutations in 
the epidermal growth factor receptor (EGFR) gene are 
a good example of an attempt to stratify tumors that are 
more sensitive to these agents (37). We know that no more 
than 10% of the general population will have a response 
to these agents; however, when only selected patients 
who carry gene mutations are treated, the response rate 
to these agents can be as high as 70% (38,39), and now 
we are still trying to define which are the best techniques 
(gene mutation analysis, FISH, or others) to detect these 
mutations and moving these discoveries into our clinical 
practice. Similar efforts to identify predictive markers for 
the EGFR inhibition have been undertaken in the area of 
proteomics (40,41).

Recently, Altorki et al. examined safety and efficacy of 
short-term, preoperative pazopanib (an oral angiogenesis 
inhibitor targeting VEGFR, platelet-derived growth 
factor receptor, and c-kit; 800 mg/d for 2 to 6 weeks) 
monotherapy in 35 patients with operable stage I/II 
NSCLC, and gene-expression profiling was performed on 
77 pre- and post-treatment lung samples from 34 patients. 
They found that several target genes were dysregulated 
after pazopanib treatment, validating target-specif ic 
response and indicating a persistent pazopanib effect on 
lung cancer tissue (42). In further study, they conducted a 
broad profiling of cytokine and angiogenic factors (CAF) 
to investigate the relationship between baseline CAF levels, 
CAF changes during treatment, and tumor shrinkage. 
Plasma samples were collected before treatment and on 
the last day of therapy from 33 patients with early-stage 
NSCLC. Levels of 31 CAFs were measured by suspension 
bead multiplex assays or ELISA and correlated with 
change in tumor volume. Pazopanib therapy was associated 
with signif icant changes of eight CAFs; sVEGFR2 
showed the largest decrease, whereas placental growth 
factor underwent the largest increase. Increases were also 
observed in stromal cell-derived factor-1alpha, IP-10, 
cutaneous T-cell-attracting chemokine, monokine induced 
by IFN-gamma, tumor necrosis factor-related apoptosis-
inducing ligand, and IFN-alpha. Posttreatment changes 
in plasma sVEGFR2 and interleukin (IL)-4 significantly 

correlated with tumor shrinkage. Baseline levels of 11 
CAFs significantly correlated with tumor shrinkage, with 
IL-12 showing the strongest association. Using multivariate 
classification, a baseline CAF signature consisting of 
hepatocyte growth factor and IL-12 was associated with 
tumor response to pazopanib and identified responding 
patients with 81% accuracy. These data suggest that CAF 
profiling may be useful for identifying patients likely to 
benefit from pazopanib, and merit further investigation in 
clinical trials (43).

Predicting survival and recurrence by gene expression 
profiling

GEP has been used to predict response to treatment 
and patients’ outcome (13,31,44-68). Beer et al. analyzed 
the genetic profile in 86 patients with primary lung 
adenocarcinoma, and found that the genes most associated 
with survival were identified to create a risk index based 
on the top 50 genes that separated patients into high-risk 
and low-risk groups. When applying this risk predictor to a 
test data set of 62 stage I patients from another study, they 
were able to predict survival with statistical significance 
difference (P=0.006) (51). This study also identified certain 
patients with stage I along with stage III disease with poor 
prognosis based on gene profile. This demonstrated the 
ability for GEP to identify a patient with poor prognosis 
that is independent of the stage at the time of diagnosis.

Guo et al. devised a computational model system 
that redicted the clinical outcome of individual patients 
based on their GEP. A 37-gene signature was created, 
and the authors studied a cohort of 86 patients diagnosed 
with lung adenocarcinoma. The gene signature was then 
applied to predict the survival of the other 84 patients 
with adenocarcinoma. The predictive accuracy of the gene 
signature was 96%. The cluster analysis, using the 37-gene 
signature, aggregated the test patient samples into 3 groups 
with good (mean survival, 66.9 months), moderate (mean 
survival, 27.6 months), and poor (mean survival, 22.4 
months) prognoses (Kaplan-Meier analysis; P < .0005; log-
rank test) (Fig 1). Notably, when the results were reviewed, 
all patients who had grouped together in cluster 1 (good 
prognosis) had stage I disease, with N0 lymph node status 
(no metastasis) and smaller tumor size (T1 or T2) (63).

Landmark studies such as the one conducted by Potti 
et al. from Duke University have identified GEP, which 
predicted the risk of recurrence following surgery from 
a cohort of patients with early-stage NSCLC (52). The 
accuracy was > 70%. The investigators were also able to 
identify a subgroup of patients with stage IA disease who 
were at high risk for recurrence, with a very poor survival, 
and who might be suitable for adjuvant chemotherapy. This 
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is clinically relevant when the current standard of care for 
patients with stage IA disease is just clinical observation 
(no adjuvant chemotherapy is offered) because of a 70% 
chance of 5-year survival. This genetic strategy was 
then validated in two separate cohorts from multicenter 
cooperative group trials: 25 patients from the American 
College of Surgeons Oncology Group Z0030 study and 
84 from the prospective CALGB 9761 trial, this genomic 
strategy had an overall predictive accuracy of 72 and 
79%, respectively. This gene expression profile also was 
applied to 68 patients with stage IA disease, who are not 
usually candidates for adjuvant chemotherapy. Kaplan-
Meier survival curves were generated for the group as a 
whole and for the subgroups predicted to be at high or low 
risk for recurrence by the lung metagene model. Although 
the survival rate for the group was approximately 70% at 
4 years, the survival rate for those predicted to be at low 
risk was 90% and less than 10% for those predicted to be 
at high risk, thus identifying the subgroup of patients with 
stage IA NSCLC at high risk of recurrence, who might 
benefit from adjuvant chemotherapy (Fig 2).

In another important study from Taiwan University 
(13), authors examined the expression of multiple genes 
associated with invasive activity in frozen specimens of 
lung-cancer tissue from 125 randomly selected patients 
who underwent surgical resection of NSCLC and not 
received adjuvant chemotherapy, to identify a gene 
signature that is correlated with clinical outcome.

Sixteen genes were initially identified by analyzing 
microarray data and then confirmed by RT-PCR. From 
these, the authors further identified five genes that were 
signif icantly associated with survival. The levels of 
expression of these five genes were used to construct a 
decision tree to classify patients as having a high-risk gene 
signature or a low-risk gene signature. The five selected 
genes were: dual-specificity phosphatase 6 (DUSP6), 
monocyte-to-macrophage differentiation-associated protein 
(MMD), signal transducer and activator of transcription 
1 (STAT1), v-erb b2 avian erythroblastic leukemia viral 
oncogene homolog 3 (ERBB3), and lymphocyte-specific 
protein tyrosine kinase (LCK).

The authors identif ied 59 patients with high-risk 
gene signatures and 42 with low-risk gene signatures, 
according to gene expression as measured with RT-PCR 
and decision-tree analysis. The five-gene signature was 
strongly associated with OS (sensitivity 98%; specificity 
93%; positive predictive value 95%; negative predictive 
value 98%; and overall accuracy 96%). The presence of 
a high-risk five-gene signature in the NSCLC tumors 
was associated with an increased risk of recurrence and 
decreased OS. With a median follow-up of 20 months, 
the patients with a high-risk gene signature had a shorter 
median OS than the patients with a low-risk gene signature 
(20 months versus 40 months, P<0.001). The high-risk gene 
signature was associated with a median RFS of 13 months, 
whereas the low-risk gene signature was associated with a 

Fig 1. Kaplan-Meier survival analysis of three clusters of patients. 
Average survival time of patients in cluster 1, 66.9 months; 
average survival time of patients in cluster 2, 22.4 months; 
average survival time of patients in cluster 3, 27.6 months 
(P<0.0005, log--rank test) (ref 63).

Fig 2. Kaplan–Meier survival estimates for a group of patients 
with stage IA disease from the Duke, ACOSOG, and CALGB 
cohorts and the subgroups predicted to have either a high 
probability (>0.5) or a low probability (≤0.5) of recurrence. P 
values were obtained with the use of a log-rank test. Tick marks 
indicate patients whose data were censored by the time of last 
follow-up or owing to death (ref 52).
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median RFS of 29 months (P=0.002).
According to multivariate regression analysis, the 

high-risk five-gene signature, tumor stage III and older 
age were significantly associated with death from any 
cause among the 101 patients, and the high-risk five-gene 
signature and tumor stage III were significantly associated 
with recurrence of cancer as well (HR for the high-risk 
signature versus the low-risk signature, 1.92; 95% CI, 1.06 
–3.46; P=0.03). In a subgroup analysis of 59 patients with 
stage I or II disease, those with a high-risk gene signature 
had a shorter OS and a shorter RFS than those with a low-
risk gene signature. These results were validated in an 
independent cohort of 60 patients with NSCLC and with 
the use of a set of published microarray data from 86 
patients from a Western population with NSCLC.

The identif ication of f ive genes that are closely 
associated with the outcomes in patients with NSCLC 
has clinical implications. Patients who have tumors 
with a high-risk gene signature could benefit from a 
cisplatin-based adjuvant chemotherapy, whereas those 
with a low-risk gene signature could be spared what 
may be unnecessary treatment. Prospective, large scale, 
multicenter studies are necessary to test this idea. These 
five genes that can predict the clinical outcome in patients 
with NSCLC may also reveal targets for the development 
of therapy for lung cancer. STAT1 causes arrested growth 
and apoptosis in many types of cancer cells by inducing 
the expression of p21WAF1 and caspase (53,54). MMD is 
preferentially expressed in mature macrophages (55). Some 
studies have shown that macrophage activation promotes 
cancer metastasis (56), although the function of the MMD 
protein is unknown. DUSP6 inactivates extracellular 
signal-regulated kinase 2 (also known as mitogen-activated 
protein kinase 1), resulting in tumor suppression and 
apoptosis (57). ERBB3, a member of the epidermal growth 
factor receptor family of tyrosine kinases, can shorten cell 
survival (58). LCK, a member of the Src family of protein 
tyrosine kinases, is expressed mainly in T cells and is one 
of the first signaling molecules downstream of the T-cell 
receptor. It plays a key role not only in the differentiation 
and activation of T cells but also in the induction of 
apoptosis (59). In addition, LCK is expressed in many 
cancers and regulates the mobility of cancer cells (60,61).

Bianchi et al. proposed a qRT-PCR–based 10-gene 
molecular signature for adenocarcinoma (46). They selected 
49 unbiased genes based on a meta-analysis of previously 
published adenocarcinoma microarray data and combined 
this with a biased set of 31 additional genes selected from 
the literature demonstrated to either be important for 
tumorigenesis and/or to represent prognostic lung cancer 
markers. These 80 genes were tested on a training cohort 
of stage I adenocarcinoma patients using a leaveone-out 

validation model yielding a 10-gene signature. In two 
separate validation cohorts of stage I adenocarcinoma 
patients, this 10-gene signature was more accurate than 
stage (IA vs. IB), age, sex, differentiation, or presence 
of a K-ras mutation in predicting survival. In addition, it 
also demonstrated differences in survival when applied 
to separate cohorts of stage IA and stage IB patients with 
adenocarcinoma but, similar to the findings by Chen et al. 
(13), did not demonstrate significant predictive differences 
in stage II or III adenocarcinomas.

Lau et al. proposed a qRT-PCR–based 3-gene signature 
for NSCLC (45). One hundred twenty-eight candidate genes 
were identified using data from 7 previous microarray 
based profiling studies and assayed by qRT-PCR in 147 
frozen NSCLC samples. Using a statistical method based 
on concordance index and risk scores, a 3-gene signature 
(STX1A, CCR7, and HIF1A) was developed. When 
applied to their own training cohort as well as to two 
cohorts from previously published microarray data sets, 
they demonstrated a statistically significant difference in 
survival between patients with stage I NSCLC classified 
as having either good or poor prognosis. In agreement 
with the above studies, this difference did not hold true for 
patients with stage II disease. They also demonstrated that 
their 3-gene signature was better at predicting survival in 
their training cohort stage I patients than stage, histology, 
or smoking status.

Skrzypski et al. examined the expression pattern of 
29 genes selected by cDNA studies to test their clinical 
prognostic value in early-stage squamous cell carcinoma 
(SCC) of the lung (49). From 2000 to 2004, freshly frozen 
primary tumor specimens were obtained at the time of 
the surgery from 66 SCC patients and gene expression of 
the 29 genes was assessed by quantitative RT-PCR using 
low-density arrays. Expression values were dichotomized 
using the median value as the cutoff. The univariate 
analysis showed 10 genes with prognosis value: PH4 
(P=0.01); macrophage-colony stimulating factor (CSF1), 
which attracts macrophages and induce them to express 
EGF (P= 0.002); EGFR (P=0.05); KIAA0974 (P=0.02); 
ANLN (P=0.02); carbonic anhydrase IX (CA IX), which is 
regulated by hypoxia and plays a role in chemoresistance 
(P=0.007); VEGFC (P=0.03); neurotrophic tyrosine 
receptor kinase 1 (P=0.04); fibronectin (P=0.002); insulin 
receptor (P= 0.03). In the multivariate analysis of survival, 
CSF1, EGFR and CA IX, and tumor size emerged as 
signif icant variables (P=0.005, 0.02, <0.0001, 0.02, 
respectively).

Roepman et al. aimed to develop a gene expression 
prof i le for stage I and stage I I NSCLC, al lowing 
identif ication of patients with a high risk of disease 
recurrence within 2 to 3 years after initial diagnosis. 
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Fig 3. A, Kaplan-Meier curves comparing OS among patients 
with low- and high-risk (all stages) using the four-gene prognostic 
model (all stages); B, comparing disease-free survival (DFS) 
among patients with low- and high-risk scores (all stages); C, 
comparing OS among stage I patients with low- and high-risk 
scores using the four-gene prognostic model; D, comparing 
DFS among stage I patients with low- and high-risk scores; E, 
comparing OS among stage I patients with low- and high-risk 
scores using the 5-gene model published by Chen and colleagues 
(ref 13).
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Whole-genome gene expression microarrays were used to 
analyze frozen tumor samples from 172 NSCLC patients 
(pT1-2, N0-1, M0) from five European institutions, who 
had undergone complete surgical resection. A 72-gene 
expression prognostic NSCLC classifier was developed. 
Based on the classifier score, patients were classified as 
either high or low risk of disease recurrence. Patients 
classif ied as low risk showed a signif icantly better 
recurrence-free survival both in the training set (P < 0.001; 
n = 103) and in the independent validation set (P < 0.05; n 
= 69). It was found that the 72-gene signature was closely 
associated with recurrence-free and overall survival in 
early-stage NSCLC patients and may become a tool for 
patient selection for adjuvant therapy (62).

Reed et al. proposed a qRT-PCR–based 2-gene signature 
for adenocarcinoma (48). Pooling microarray analysis of 
NSCLC cell lines in conjunction with correlation mapping 
of genes highly expressed in other tumors produced 14 
candidate genes. These genes were tested by qRT-PCR on 
20 adenocarcinoma samples yielding a 2-gene signature 
(CK19 and EpCAM2). This 2-gene signature revealed 
survival differences in high- and low-risk patients in their 
training cohort (HR, 6.2) and in a separate validation 
cohort (HR, 4.5) by Kaplan-Meier analysis. Raz et 
al. proposed a qRT-PCR–based 4-gene signature for 
adenocarcinoma (50). Seventy-six cancer-related candidate 
genes were selected from 217 genes demonstrated to have 
prognostic significance in previously published studies 
by content experts and literature review. Sixty-one of 
these genes for which reliable qRT-PCR data could be 
produced were assayed using qRT-PCR in a cohort of 
120 adenocarcinoma samples. Cross-validation using 
Cox proportional hazards regression supported a 4-gene 
signature (WNT3A, RND3, LCK, and ERBB3). When 
applied to a cross-validated cohort of 70 patients with stage 
I adenocarcinoma, statistically significant differences in 
OS (87% vs. 38%) and disease-free survival (77% vs. 35%) 
were shown for high- and low-risk patients. This compared 
favorably with the 5-gene signature of Chen et al. (13) (Fig 
3). When applied to the Raz et al cross-validated cohort, 
the signature developed by Chen et al demonstrated 5-year 
OS of 80% and 47%, respectively, for high- and low-
risk patients. Notably, 2 of the genes (ERBB3 and LCK) 
overlapped between the Raz et al and Chen et al signatures.

Identified prognostic classifiers for early-stage NSCLC 
indicated large differences in sample numbers, microarray 
platform, and classifier design. Although a great variety 
of statistical models have been used, the performance of 
the different classifiers is similar with overall accuracies 
between 70% and 80% and a hazard ratio of 3 to 4. The 
overlap in profile genes, however, is limited to only 5 
of a total of 327 genes (Fig. 4) even though it includes 

two studies (63,64) that reanalyzed existing data (51) 
but showed respectively no and three genes in overlap 
(62). Ein-Dor and coworkers (65) demonstrated that 
biological heterogeneity leads to thousands of samples 
being required to identify robust and reproducible 
subsets for most tumor types. These conclusions are 
supported by the finding that thousands of genes display 
intratumor heterogeneity, likely caused by the diversity 
of tumor microenvironments and cell populations (66,67). 
However, Boutros and coworkers hypothesized that 
differing statistical methodologies contribute to this lack 
of overlap (68). To test the hypothesis, they analyzed our 
previously published quantitative RT-PCR dataset with a 
semisupervised method. A 6-gene signature was identified 
and validated in 4 independent public microarray datasets 
that represent a range of tumor histologies and stages. The 
result demonstrated that at least 2 prognostic signatures 
can be derived from this single dataset. They further 
estimated the total number of prognostic signatures in this 
dataset with a 10-millionsignature permutation study. Their 
6-gene signature was among the top 0.02% of signatures 
with maximum verifiability, reaffirming its efficacy. 
Importantly, the analysis identified 1,789 unique signatures, 
implying that their dataset contains >500,000 verifiable 
prognostic signatures for NSCLC. The result appears to 
rationalize the observed lack of overlap among reported 
NSCLC prognostic signatures (68).

Conclusions

GEP has demonstrated a tremendous potential to drive 

Fig 4. Gene overlap between NSCLC prognostic signatures. 
Overlap in genes of recent NSCLC survival signatures is limited to 
5of a total of 327 genes used. Likely, all identified signatures are 
subsets from a larger NSCLC prognostic space (ref 62).
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personalized medicine in the near future when its use 
could be applied as a diagnostic tool, molecular staging 
classification, and more importantly, as prognostic and 
predictive biomarkers. Even patients with early-stage 
lung cancer demonstrate significant recurrence rates and 
lower-than-expected survival rates after surgical resection. 
The development of genomic prognostic models holds 
significant promise in our ability to differentiate among 
those patients who might benefit from additional therapy or 
lesser surgical procedures. However, we need to improve 
this technology in order to get results that are reproducible 
in most instances. Also, the technology must be available 
and be less cumbersome so it can be easily applied into 
common clinical practice.
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