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Introduction

Lung cancer is the most common cancer worldwide, with 
1.59 million people estimated to have died from lung cancer 
in 2012 (1). In spite of the steady increase in survival rate 
for most cancers, advances have been slow for lung cancer. 

The 5-year survival rate for lung cancer is merely 18%, as 
at least half of the cases are diagnosed at an advanced stage 
when a cure is not possible (2). Therefore, an accurate 
and timely diagnosis of lung cancer is essential in order to 
identify patients who are still in the early, treatable stage of 
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the disease.
In recent years, there has been an increasing interest 

in finding a diagnostic method for lung cancer that is 
minimally invasive, free of radiation and accurate in 
detecting lung cancer at its early stage. This is because 
the National Lung Screening Trial (NLST) (3) conducted 
on 53,454 study subjects demonstrated that the chest 
tomography (CT) scan and chest X-ray imaging are 
associated with very high false-positive results in detecting 
lung cancer in early stages (96.4% for low-dose CT scan; 
94.5% for chest X-ray). Furthermore, one person out of 
2,500 people screened by chest imaging will die of radiation-
induced cancer (4). To address this issue, previous studies 
show that using the pattern of endogenous volatile organic 
compounds (VOCs) in the exhaled breath for the detection 
of lung cancer is one of the promising solutions. Cellular 
metabolisms produce VOCs, such as alcohols, alkanes, etc., 
that will be carried in the bloodstream. Subsequently, the 
VOCs diffuse into the alveolar air in the blood-gas interface 
quickly in the lung because of their low solubility in the 
blood, and they are exhaled out of the lung (5). Therefore, 
analysing the composition of VOCs in exhaled breath 
can provide a window into the biochemical process of the 
body and detect altered metabolism, particularly in cancer 
cells. This method has a few advantages: it is non-invasive, 
potentially inexpensive and it is very easy to obtain exhaled 
breath (6,7). Compared to biomarkers in serum, the breath 
contains a less complicated mixture of VOCs. Moreover, 
breath testing provides direct and real-time monitoring, 
and has the potential of detecting lung cancer when it 
is still localised as VOCs markers are transmitted to the 
alveoli to be exhaled at the onset of the disease. Another 
important advantage is the presence of lung cancer tumour 
is not masked by other diseases since every disease has its 
own volatiles fingerprint. Even the VOC signatures in the 
exhaled breath of patients with different types of cancer 
such as lung, breast, colorectal and prostate cancers mostly 
do not overlap (8). For these reasons, in recent years, there 
has been an increasing interest in the field of analysing the 
exhaled volatile compounds and exhaled breath condensate 
(EBC), known as breathomics, in order to find the non-
invasive biomarkers for respiratory diseases (9).

Alkane compounds in the breath are reported to be one 
of the significant biomarkers for lung cancer identification. 
In 2003, Phillips et al. (10) reported that after gas 
chromatography-mass spectrometry (GC-MS) analysis of 
the exhaled breath, a predictive model employing only nine 
alkane compounds in the exhaled breath was sufficient to 

give adequate discrimination between lung cancer patients 
and healthy controls. Analysis of headspace of the in vitro 
lung cancer cell lines and healthy lung tissues using GC-
MS confirmed that the concentration of expired alkane 
compounds differed between diseased and healthy state (11). 
The increased level of alkane compounds in the breath 
from the lung cancer patients is associated with the elevated 
oxidative stress in the lung neoplasms which promotes the 
peroxidation of polyunsaturated fatty acids (PUFAs) and 
produces greater amount of saturated hydrocarbons such as 
pentane and heptane (12). 

Besides lung cancer, it is known that long term cigarette 
smoking plays a significant role in the pathogenesis of 
chronic obstructive pulmonary disease (COPD), and several 
non-invasive oxidative stress biomarkers in the exhaled 
breath had been investigated to detect the development 
of COPD (13). Thus far, it is still unknown whether the 
differentiation between patients with COPD, a population 
with an increased risk of developing lung cancer, and 
patients with lung cancer based on the level of alkane 
compounds is possible. Dragonieri et al. (14) observed 
that patients with these two different smoking-related 
diseases have different smellprints and an electronic nose 
with pattern recognition algorithm can separate the VOCs 
smellprints. However, in their study, the specific VOCs 
which differed between COPD patients and lung cancer 
patients remain unclear since an electronic nose does not 
give quantitative measure of the concentration of each VOC 
in the smellprints (15). 

The purpose of this study is to investigate the ability of 
a simple alkane sensor to differentiate the exhaled breath 
of lung cancer patients, patients with COPD and people 
without pulmonary disease. We hypothesize that there 
are significantly different levels of alkanes in the mixture 
of exhaled VOCs between patients with lung cancer and 
people without lung cancer.

Methods

Part 1 of the study: fabrication of the chemiresistor-based 
alkane sensor

Chemiresistor-based alkane sensor
A chemiresistor-based sensor consists of a chemiresistive 
film made up of organic compounds or semiconductor 
metal oxides that responds to the presence of VOCs by 
changing the resistance of the sensor (16,17). By measuring 
the change in resistance of the sensor, the concentration of 
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the VOCs can be measured indirectly. In our study, we used 
a monomer composite to fabricate the chemiresistive film 
because it is cheap, operative under room temperature (17) 
and it can detect a mixture of alkanes in the presence of 
saturated water vapour (18). The composite film consisted 
of conductive carbon particles interspersed in an insulating 
monomer matrix. On exposure to VOC gases, the VOC 
diffuses into the monomer composite causing the composite 
to swell, which then causes the dispersed conductive carbon 
particles in the composite to move further apart from each 
other. As a result, the resistance of the sensor changes. The 
chemical sensor is similar to the widely used commercial 
e-nose, Cyranose 320, which has shown to have high 
between-day and within-day reproducibility (19). 

Fabrication of sensor
Tetracosane and carbon powder were used to create the 
chemiresistive film of the sensor. Tetracosane is a C20 
alkane crystalline that has high affinity to alkane gas 
compounds because of structural similarity while carbon 
powder endows conductivity to the film. Both the sensor 
materials were deposited on to the electronic circuit board 
in a mass ratio of 1:1 by spreading carbon powder on top of 

the melted tetracosane and subsequently cooling the matrix. 
Figure 1 shows the prototype of the sensor inside a 125 mL 
Vitagen® container used as the breath sampling apparatus.

The VOC mixture in human breath contains alkanes 
and other polar molecules such as alcohol and aldehyde 
which are in parts per billion (ppb) concentration (20). 
Santonico et al. (21), who calibrated two commercially 
available electronic noses with three VOCs that are present 
in the exhaled breath, stated that it is important to perform 
instrumental calibrations for gas sensors in terms of 
sensitivity, resolution and limit of detection to ensure high 
quality of the data obtained in real clinical practice. To test 
the sensitivity and specificity of our sensor, the sensors were 
exposed to different concentrations (10 ppb to 100 ppm) of 
heptane, ethanal and ethanol, which were prepared using 2 L 
static dilution bottles and were injected using a gas-tight 
syringe into the 125 mL bottle at intervals of 3 seconds to 
simulate normal breathing. The baseline resistance (the 
resistance value shown before the sensor was exposed to 
the VOCs) was recorded and the resistance value of 
the sensor shown in the digital multimeter, which was 
connected to the electrodes on the sensor, was recorded 
at intervals of 3 seconds for 7 minutes. The percentage 
change in baseline resistance to the maximum resistance 
(known as sensor peak output) and time taken from baseline 
resistance to maximum resistance (known as time to peak) 
were calculated.

Figure 2 shows that scatterplot of both the sensor peak 
output and the time to peak against the concentrations of 
heptane vapour in logarithm scale. Two Pearson product-
moment correlation tests were run individually to determine 
the relationship between the peak output as well as the 
time to peak and the concentration of heptane. There were 
strong, positive correlations between the two dependent 
variables generated by the sensor and the heptane 
concentration, both of which were statistically significant 
(peak output: r=0.978, n=35, P<0.0005; time to peak: 
r=0.980, n=35, P<0.0005). This is reasonable as there were 
more analytes so it would generate larger sensor output and 
would take longer time to reach the peak resistance. The 
range of detection for alkanes is 20 ppb to 80 ppm, which is 
considered sufficient to detect the combined concentrations 
of all alkanes in the exhaled breath (20). The sensitivity of 
the sensor was a 4.368% change in resistance per log(ppb) 
for the peak output and 106.1 s per log(ppb) for the time to 
peak value. It is also found that the sensor was single-use. As 
expected, the sensor did not respond to ethanol and ethanal 
because polar ethanol and ethanal molecules would not be 

Figure 1 An alkane sensor inside a breath-in prototype. The 
sensor consisted of a chemiresistive film (black spot on the small 
piece of printed circuit board) and a printed circuit board with 
copper wires soldered on it. The chemiresistive film was made up 
of tetracosane and carbon powder and was deposited on top of the 
circuit board within an area of 5 mm × 10 mm, connecting two 
copper electrodes on the circuit board. Two copper wires were 
soldered to the electrodes to enable a digital multimeter to measure 
the resistance of the chemiresistive film. The breath-in apparatus 
was a 125 mL empty Vitagen® bottle. A drinking straw was fixed at 
the opening of the bottle to allow transfer of exhaled breath to the 
sensor.
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absorbed into the non-polar chemiresistive film.
The response of sensor towards water was investigated 

by dropping water drops onto the sensor. It was found that 
there was no change in the resistance for the ten sensors 
tested, demonstrating that the sensor has zero sensitivity 
to water. The reason is because of the hydrophobicity of 
both the tetracosane and the carbon powder. Therefore, the 
saturated level of water vapour in the exhaled breath would 
not induce sensor response.

Part 2 of the study: clinical testing of the chemiresistor-
based alkane sensor

Study design
In this cross-sectional study, patients with newly diagnosed 
treatment-naïve advanced lung cancer, ex- or current 
smokers with COPD and healthy never-smokers were 
asked to exhale through a drinking straw into the breath-
in apparatus with the chemiresistor sensor attached to its 
inside bottom. The sensor peak output (percentage change 
of baseline resistance measured before exhalation to peak 
resistance) and the time taken for the baseline resistance 
to reach peak resistance were measured. The study was 
approved by the University of Malaya Medical Centre 
Ethics Committee and was conducted according to the 
Good Clinical Practice (GCP) Guidelines. All the study 
subjects gave their written informed consent.

Study population
The study population included a total 37 subjects who were 

divided into three groups according to their lung health 
status: patients with non-small cell lung cancer (NSCLC), 
patients with COPD and non-smokers without known 
pulmonary disease. All the subjects were adults matched 
for age 40 to 85 years old. Thirty study subjects (10 lung 
cancer patients, 10 COPD patients and 10 controls without 
lung disease) were recruited from the University of Malaya 
Medical Centre while the other seven were recruited from 
in KPJ Specialist Hospital, Ipoh and during a lung health 
screening programme in two other specialist clinics. 

The lung cancer group comprised 12 patients with 
newly diagnosed, histologically confirmed, treatment-naïve 
NSCLC who were either current, ex- or never smokers. 
One of the lung cancer patient had pulmonary fibrosis, 
one had old pulmonary tuberculosis and another had co-
existing COPD. The rest did not have any other lung 
diseases. The cause of pulmonary fibrosis was not studied 
and the pulmonary tuberculosis was previously treated and 
remained inactive at the time of testing. Spirometry testing 
was not performed for all the lung cancer patients. The 
clinical characteristics of patients with NSCLC are shown 
in Table 1. 

The COPD group consisted of 12 patients who were 
current or ex-smokers. The diagnosis of COPD was based 
on the demonstration of a fixed airflow obstruction with a 
ratio of post-bronchodilator forced expiratory volume in 
the first second (FEV1) to forced vital capacity (FVC) of 
less than 0.7. All COPD patients were on the appropriate 
inhaled medication. The controls group consisted of 
13 subjects, each with a negative history of respiratory 

Figure 2 Scatterplots of sensor peak output (left) and time to peak (right) against concentrations of heptane in logarithm scale. There is a 
positive and linear correlation between the peak output as well as the time to peak and the concentration of heptane. The curves at the top 
right of both the scatterplots indicate that the sensor was at close proximity to sensor poisoning as the concentration of the heptane vapour 
was beyond their range of detection, which was between 20 ppb to 80 ppm.

Scatterplot of sensor peak output against 
concentration of heptane

S
en

so
r 

pe
ak

 o
ut

pu
t/

%

1.00          2.00          3.00          4.00           5.00
Heptane concentration (log ppb)

20.00

15.00

10.00

5.00

0.00

Scatterplot of time to peak to concentration 
of heptane

Ti
m

e 
to

 p
ea

k/
s

1.00          2.00         3.00          4.00          5.00
Heptane concentration (log ppb)

500.00

400.00

300.00

200.00

100.00

0.00



2776 Tan et al. Alkane sensor for lung cancer diagnosis

© Journal of Thoracic Disease. All rights reserved.   J Thorac Dis 2016;8(10):2772-2783jtd.amegroups.com

symptoms, no history of smoking and absence of any 
known pulmonary disease. Four subjects in the control 
group were taking oral hypoglycemic anti-diabetic (OHA) 
medications. The characteristics of these two groups are 
shown in Table 2.

Breath analysis
The study subjects were not allowed to smoke or take any 
alcoholic beverage within 12 hours of the breath collection. 
The baseline resistance of the sensor was recorded before 
the experiment started. The study subject was then asked to 
exhale tidally through the drinking straw into the 125 mL 
bottle containing the chemiresistor sensor 200 times. There 
was no breath holding during exhalation. The resistance 
of the sensor during expiration was recorded at intervals of 
30 seconds.

Unlike other studies that investigate the diagnostic 
ability of an electronic nose, the exhaled breath of the 
subject was immediately transferred to the sensor without 
passing through any VOC-filter mouthpiece or drying 
chamber or preconcentrator to remove the water vapour 

in the exhaled breath.

Statistical analysis
The sensor peak output (percentage change of the baseline 
resistance to the sensor peak resistance) and the time to peak 
(time taken for the resistance value to reach the maximum 
change) were calculated from the data collected. The ability 
of the sensor to discriminate the exhaled breath between 
the patients with lung cancer, patients with COPD and 
control subjects without lung disease was investigated by 
using one-way multivariate analysis of variance (MANOVA) 
followed up by post-hoc test on the dependent variables: 
sensor peak output and time to peak. In preparatory to 
MANOVA, the data was tested with multiple statistical 
techniques using IBM SPSS Statistic 24 to ensure that the 
data met all the assumptions that are required for a one-way 
MANOVA to produce a valid result, which can be found 
in a supplementary appendix online. Receiver operator 
characteristic (ROC) curves were then plotted to analyse 
the sensitivity and specificity of the sensor in diagnosing 
lung cancer.

Table 1 Clinical characteristics of the lung cancer patients

Patients number Age (years) Gender Histology Staging Smoking status Pack-years Medication

1 57 Male Adenocarcinoma 2B Never smoker – None

2 41 Female Adenocarcinoma 4 Never smoker – None

3 67 Male Squamous cell 
carcinoma

4 Ex-smoker 168 MDI

4 77 Male Squamous cell 
carcinoma

3A Ex-smoker 86 OHA, anti-HPT

5 56 Male Squamous cell 
carcinoma

3B Current smoker 54 None

6 65 Male Adenocarcinoma 4 Ex-smoker 27 Aspirin, statin, 
anti-HPT

7 55 Male Adenocarcinoma 4 Never smoker – None

8 54 Female Adenocarcinoma 4 Never smoker – OHA

9 42 Male Adenosquamous 
carcinoma

4 Current smoker 8 None

10 76 Female Adenocarcinoma 4 Never smoker – None

11 63 Female Adenocarcinoma 2B Ex-smoker 56 None

12 78 Male Adenocarcinoma 3B Ex-smoker 121 MDI

MDI, metered dose inhaler; OHA, oral hypoglycemic anti-diabetic medication; anti-HPT, antihypertensive drug.
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Results

Two anomalous results (one from a COPD patient 
and one from a healthy control) were removed before 
MANOVA was carried out. Interestingly, the MANOVA 
showed a statistically significant difference between the 
three groups of study subjects on the linear combination 
of sensor peak output and the time to peak value, Pillai’s 
Trace =0.393, F=3.909, df = (4, 64), P=0.007, partial 
η2=0.196. It revealed that different lung health status of the 

study subjects had significant effect on the time to peak 
resistance value [F(2, 32) =6.116; P=0.001; partial η2=0.267] 
and the peak output [F(2, 32) =3.614; P=0.004; partial 
η2=0.184]. Post-hoc Tukey Honest Statistical Difference 
(HSD) analysis showed the mean values for time to peak 
were statistically different between lung cancer patients and 
control subjects without lung disease (P=0.001) and between 
lung cancer patients and COPD patients (P=0.006) but 
not between COPD patients and control subjects without 

Table 2 Clinical characteristics of COPD patients and controls without lung disease

Subject number Age (years) Gender Group Medication Smoking Status Pack-years

1 55 Male COPD BD MDI, theophylline Ex-smoker 68

2 74 Male COPD BD MDI, theophylline Ex-smoker 100

3 63 Male COPD BD MDI, aspirin Ex-smoker 71

4 76 Male COPD BD MDI Ex-smoker 30

5 78 Female COPD BD MDI Ex-smoker 62

6 73 Female COPD BD MDI Never smoker –

7 76 Male COPD BD MDI Ex-smoker 106

8 71 Male COPD BD MDI Ex-smoker 90

9 82 Male COPD BD MDI Ex-smoker 64

10 73 Male COPD BD MDI Current smoker 106

11 51 Male COPD BD MDI Ex-smoker 134

12 49 Male COPD BD MDI Ex-smoker 67

13 42 Female Control None Never smoker –

14 46 Female Control None Never smoker –

15 43 Female Control None Never smoker –

16 47 Female Control OHA Never smoker –

17 54 Female Control OHA Never smoker –

18 59 Female Control None Never smoker –

19 45 Female Control OHA Never smoker –

20 54 Male Control None Never smoker –

21 41 Male Control None Never smoker –

22 59 Male Control None Never smoker –

23 45 Male Control None Never smoker –

24 51 Female Control None Never smoker –

25 53 Male Control Anti-HPT Never smoker –

COPD, chronic obstructive pulmonary disease; BD MDI, bronchodilator metered dose inhaler; OHA, oral hypoglycemic anti-diabetic 
medication; anti-HPT, antihypertensive drug.
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lung disease (P=0.778). Likewise, the mean peak output 
was statistically different between lung cancer patients and 
control subjects without lung disease (P=0.007) and between 
lung cancer patients and COPD patients (P=0.016), but not 
between COPD patients and control subjects without lung 
disease (P=0.963).

On average, the sensor peak output for lung cancer 
patient group (n=12) was 4.45 [95% confidence interval 
(CI): 2.57–6.33], for the COPD patient group (n=11) was 
1.68 (95% CI: 1.00–2.36) and for the control group without 
lung disease (n=12) was 1.44 (95% CI: 0.54–2.34). For the 
group of patients with lung cancer, the mean time to peak 
of the sensor was 205 s (95% CI: 138–272). The time to 
peak resistance value was 76 s (95% CI: 18–134) for the 
COPD patients group and 50 s (95% CI: 22.62–77.38) for 
the group of control subjects.

ROC curve analysis on the three classifiers, namely the 
combination of both sensor peak output and time to peak, 
sensor peak output alone and time to peak alone, showed 
the combination of both independent variables was the 
best classifier with an area under curve (AUC) of 0.8567 
as shown in Figure 3. An AUC of 0.8567 means that the 
combination of the sensor peak output and the time to peak 

could provide an excellent discrimination of lung cancer 
from both COPD patients and people without lung disease. 
Therefore, the sensor has a potential for clinical application. 
When a 2.20% sensor peak output and a 90-s time to peak 
were used as the cutoff value for detection of lung cancer, 
an optimal diagnostic accuracy was obtained which had a 
sensitivity of 83.3% and a specificity of 88.0%. 

The most striking result to emerge from the study is 
that chronic tobacco smoking did not affect the diagnostic 
accuracy of the sensor. The sensitivity and specificity for 
identifying lung cancer patients from people with a smoking 
history (n=17) were 85.7% and 80%, respectively while 
that from the non-smoker population (n=20) were 80% and 
93.3%, respectively using the aforementioned threshold.

Discussion

Unlike in electronic nose studies where principal component 
analysis (PCA) is used to interpret the results generated 
from sensor array, we used MANOVA test to analyse 
our clinical trial data because only a single alkane sensor 
was used per breath test, so there was no need for PCA 
to reduce the dimensionality of the data. Furthermore, 
MANOVA allows us to test hypotheses regarding the effect 
of three different groups of study subjects on the sensor 
peak output and time taken to reach peak resistance. Once 
the statistical difference between the three groups was 
established, post-hoc Tukey HSD test showed where the 
differences between the groups were (22). 

Our study demonstrated that the alkane sensor can 
distinguish the level of alkanes present in the exhaled breath 
of lung cancer patients from that of controls. Furthermore, 
it also showed a good discrimination between patients 
with two different smoking-related lung diseases using 
the combination of the peak output and the time to peak 
resistance. From the study result, lung cancer patients had 
the largest average sensor peak output and time to peak 
values. These results suggest that the exhaled breath of 
patients with lung cancer contained a significantly higher 
level of alkane compounds than that of COPD patients and 
people without lung disease. Our results are in accordance 
with findings from recent studies (11,23). A review on 
chemical pathways for VOCs of lung cancer (12) outlined 
that endogenous alkanes present in our breath are the 
products of peroxidation of PUFAs and the mechanism 
is initiated by reactive oxygen species (ROS) radicals and 
proceeds by a free radical chain reaction mechanism. As 
the oxidative stress in lung cancer cell lines is greater (24), 
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Figure 3 Receiver operating characteristic (ROC) curves for the 
sensor peak output, time to peak resistance and the combination of 
both for the diagnosis of lung cancer. ROC curves were plotted for 
the two parameters of the sensor response, namely the time to peak 
and sensor peak output, and the binary logistic linear combination 
of both of them in distinguishing patients with lung cancer (n=12) 
and people without lung cancer (n=25) who consisted of COPD 
patients and non-smokers without lung disease. The combination 
of time to peak and sensor peak output is the best discriminator 
as its area under graph (AUC) is the highest which is 0.8567, 
followed by time to peak (AUC =0.8317) and sensor peak output 
(AUC =0.7783). AUC of between 0.80 and 0.90 indicates excellent 
discrimination between patients without lung cancer and people 
without the disease. COPD, chronic obstructive pulmonary 
disease.
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there are more ROS such as hydrogen peroxide radicals in 
the cancerous cells for initiation of PUFA peroxidation so 
more alkanes are produced. Peng et al. (23) used solid-phase 
microextraction (SPME)-aided GC-MS to analyse the 
preconcentrated healthy and lung cancer breath and showed 
that out of 12 common alkane compounds found in the 
breath of at least 83% of the patients and in fewer than 83% 
of the healthy subjects, 10 were elevated for lung cancer 
patients. Two alkane compounds (2,3,4-trimethylpentane 
and 2,3-dimethylhexane) were only present in the exhaled 
breath of lung cancer patients. In vitro studies show that 
while some alkane compounds elevate, some decrease in 
the concentration of the headspace of the lung cancer cells 
compared to that of healthy cell lines (11). The proposed 
explanation for these findings is that cytochrome p450 
mixed oxidase activity is induced during carcinogenesis 
so there is hydroxylation of some alkane compounds into 
alcohols (12). However, our results suggest that oxidative 
stress has a more profound effect than the cytochrome p450 
since the concentration of alkane mixture is greater in the 
exhaled breath of patients with lung cancer compared to 
people without it. 

The onset and development of COPD are associated 
with several mechanisms such as increased inflammation and 
autoimmunity that lead to elevated ROS such as superoxide 
radical and hydrogen peroxide in the lung and continued 
presence of oxidative stress (25). An interesting study by 
Poli et al. (26) who used mass spectrometry technology to 
identify the breath signatures of lung cancer patients and 
COPD patients showed that the levels of alkanes were 
statistically different between a group of 36 patients with 
NSCLC and 25 patients with COPD. Our data suggest that 
there is a difference of breath alkane composition between 
lung cancer and COPD and the difference could be because 
of the different biochemical processes and levels of oxidative 
stress in the bronchus and lung tissues. 

It is surprising that our post-hoc test showed that both 
the parameters were indistinguishable between the COPD 
group and the group of subjects without lung disease since 
Aghdassi et al. (27) had demonstrated that smokers had a 
higher level of oxidative stress and lipid peroxidation than 
non-smokers. Nonetheless, both the mean time to peak 
and sensor peak output for COPD patients were higher 
compared to that for group of subjects without lung disease. 
A possible explanation for this might be that the resolution 
of the sensor was insufficient to pick up the difference in 
alkane levels in the breath of COPD patients and subjects 
without lung disease.

Another important finding of our study is that tobacco 
smoking did not jeopardize the diagnostic accuracy of 
the sensor. This result is consistent with the finding that 
the most common breath VOCs associated with tobacco 
smoking are not alkane compounds (28). Besides, age was 
not an indirect mediator of the predictive value of the 
breath alkane in detecting lung cancer albeit oxidative 
stress is often linked with age. Our study did not detect any 
evidence to suggest that the magnitude of sensor response 
varied with age. This could be because the age distribution 
in the study subjects in our experiment was not wide enough 
and the sample size was small. Phillips et al. (29) showed 
that the difference in alkane levels is only apparent when 
the age difference is over 40 years. 

In our study, the patients and the controls were well-
characterized by standardized guidelines. Treatment-naïve 
lung cancer patients were chosen to participate in our study 
to ensure that drug treatment would not affect the accuracy 
of the result and secondly, to study the performance of 
the sensor in diagnosing suspected lung cancer before 
diagnostic and treatment intervention. For breath analysis, 
the exhaled breath was not sampled or stored in collection 
bags for later analysis, instead, the levels of exhaled alkane 
compounds were measured on-site directly and immediately 
so the decomposition or the loss of VOCs by diffusion would 
not take place (30,31). Study subjects exhale 200 times to 
ensure sufficient period of time for the sensor to reach 
peak resistance, as our preclinical experiments showed that 
it could take up to 500 s to generate sensor peak output. 
Besides, the breath-in apparatus was partially sealed. This 
allowed the later exhaled breath from the study subject 
into the container to constantly replace the earlier exhaled 
breath. In other words, the earlier exhaled air would be 
‘forced’ out of the container by the later breaths. Since 
anatomic dead space air was exhaled for the initial few 
seconds (32), exhaling for more than 5 minutes would 
provide sufficient period of time for the sensor to be in 
contact with and detect alkanes in the air from deeper parts 
of the airway, which is the alveolar air. However, if the 
expiratory flow rate of the study subjects was standardised, 
we could estimate the time (t) needed to wash out the dead 
space and discard the first t seconds of the exhaled air (32), 
which would increase the reliability of the data. There was 
no breath holding during exhalation. It has reported that 
breath holding would significantly raise the VOCs level due 
to accumulation of VOCs in the airways (33).

Tidal breathing, which was the breathing manoeuvre 
used in this study, was considered the most reliable 
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methodology (31). The study subjects participating in our 
study were encouraged to ventilate normally and naturally 
in the study, and breath samples were obtained from a 
series exhalation. However, there could be occurrence of 
irregular breathing patterns and random fluctuations in 
breathing frequency and intensity could occur, which means 
controlling their expiratory flow rate was impossible (31). 
Since several studies have pointed out that expiratory flow 
rate can alter the level of VOCs in the exhaled breath of 
people without lung cancer (33,34), the effect of different 
expiratory flow rates on the diagnostic accuracy of the 
sensor should be further studied and the diagnostic accuracy 
of controlled flow rate should be compared with tidal 
breathing.

In our study, we deliberately did not use a VOC-filter to 
reduce the complexity of the breath collection and analysis 
system. If a VOC-filter was used, VOC-filtered room 
air would be needed to set the baseline resistance of the 
sensor (14,33). Our preclinical experiments showed that 
concentrations of alkanes in ppb range of concentration, that is 
the concentration of alkanes in the exhaled breath (20), would 
still trigger sensor response even if VOC-present room air 
was used to set the baseline resistance. In fact, a few studies 
deliberately did not use a VOC-filter for their breath tests 
and still found the electronic noses could identify the 
breath-prints accurately (35-37). Our patients were studied 
in a typical air-conditioned clinical environment, similar 
to the study by Chapman et al. (35). However, the usage 
of VOC-filter would potentially increase the diagnostic 
accuracy as inhalation through a VOC-filter prior to 
collection could prevent contamination by ambient air and 
eliminate the potential confounding effect of collection in 
different environments (36). 

This study has several limitations. First, we could 
not determine the exact concentration of exhaled alkane 
compounds. Even though the sensor was largely water-
resistant, it was possible that the condensation of water (30) 
on the sensor could become a barrier between the non-
soluble exhaled alkanes molecules and certain areas of the 
composite film. This could have led to less alkane molecules 
being absorbed into the composite film and induce 
smaller change in resistance in comparison to preclinical 
calibration result for same concentration for alkane, where 
no condensation had occurred. Although this would 
hypothetically reduce the limit of detection and sensitivity 
of the sensor, our clinical study showed that the sensor was 
still able to detect the alkanes in the exhaled breath. Besides, 
different alkane molecules may induce different magnitudes 

of change in resistance of the sensor. Secondly, the exact 
composition of the alkane mixture in the exhaled breath 
is unknown since the sensor assessed how the mixture of 
all the endogenous alkane compounds varies between the 
study groups. In other words, the sensor was unable to 
investigate the qualitative difference of the alkanes exhaled 
by the three groups of study subjects. Both the limitations 
can be overcome by conducting GC-MS and incorporating 
a drying chamber in the equipment. In spite of the implicit 
limitations, assessing the level of alkane mixture in exhaled 
breath suffices in diagnostic assessment. 

Although the sensor yielded promising results in 
diagnosing lung cancer patients with high accuracy, we do 
not know how it will perform in the diagnosis of early lung 
cancer because 10 out of 12 our patients with NSCLC were 
in advanced stages (stage III or IV) of the disease. Further 
study with a larger sample size of all three groups of study 
subjects and a mix of patients with early and advanced 
stage lung cancer is warranted to confirm the results of this 
study. Besides the sensitivity of the sensor, the ability of the 
alkane sensor in distinguishing the different histological 
subtypes of NSCLC should be studied with a larger sample 
size. Another limitation with the small sample size was 
that we could not split the study subjects into training and 
testing datasets. Leopold et al. (38) outlined the necessity of 
including an external validation set, which is an independent 
cohort of study subjects that is separated from training 
cohort by either time or place, to determine the true 
diagnostic ability of an electronic nose. 

In future recruitment of study subjects, population with 
pneumonia, pulmonary fibrosis, asthma and tuberculosis 
should be included. Denholm et al. (39) found that apart 
from chronic bronchitis and emphysema, which are 
grouped as COPD, a positive association was observed 
between lung cancer and pneumonia diagnosed 2 years 
or less before lung cancer, while Li et al. (40) reported 
high prevalence rates of lung cancer in patients with 
idiopathic pulmonary fibrosis (IPF), which suggested that 
IPF would increase the risk of lung cancer. Alkane is not 
a breath biomarker characteristics of pneumonia (41,42), 
whereas the concentration of exhaled ethane was found 
to be higher in the patients with IPF compared to the 
healthy subjects (43). On the other hand, although there 
is no independent association between lung cancer and 
smoking-related respiratory diseases, namely tuberculosis 
and asthma (39,44), alkanes are associated with oxidative 
stress resulting from infection by Mycobacterium tuberculosis 
as well as airway inflammation by asthma (45,46).
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The clinical importance of this study is the alkane sensor 
is inexpensive and any medical personnel can operate it 
and interpret the results generated. Additionally, it can 
detect lung cancer from raw untreated exhaled breath. 
It overcomes the cost, complexity and standardisation 
problems that are associated with the clinical use of 
electronic noses. To attain maximum discrimination of 
patients from controls, laboratory-grade instruments have 
to be used which are expensive and too complicated for 
medical personnel and industry technicians to operate and 
interpret the data generated (47). Standardisation of breath 
sample collection and analysis methods for electronic nose 
is also needed, which may be difficult to achieve and this 
remains the key challenge of full-scale introduction of 
breath tests into clinical practice (48).

Conclusions

This study has demonstrated for the first time that a simple 
alkane sensor can distinguish the exhaled breath of lung 
cancer patients from that of COPD patients and people 
with no lung disease without the need for prior treatment of 
the breath. The clinical study demonstrated that the sensor 
could achieve a sensitivity of 83.3% and a specificity of 
88.0% in diagnosing lung cancer by using a 2.20% sensor 
peak output and a 90-s time to peak value as threshold 
values. The concentration of alkane mixture was higher 
in the exhaled breath of lung cancer patients than that of 
subjects without lung cancer. Future studies should assess 
the accuracy of the alkane sensor in detecting lung cancer 
at its early stage and the ability of the sensor in identifying 
histological subtypes of lung cancer.
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Supplementary

Assumptions of multivariate analysis of variance 
(MANOVA)

The main objective of using MANOVA is to determine 
if the response variables are altered by the observer’s 
manipulation of the independent variables. There are 
nine assumptions (49,50) to be met by the data before 
they undergo MANOVA so that the analysis can produce 
valid result. The data which were sensor peak output and 
time to peak resistance collected from the clinical study 
were checked if they “passed” all the assumptions. All the 
nine assumptions followed by pre-MANOVA assumptions 
analysis results are shown below:
(I) The dependent variables used for MANOVA should 

be continuous data. All the sensor peak output and 
the time to peak values were continuous data.

(II) The independent variables should consist of two 
or more categorical independent groups. In this 
study, groups of lung cancer patients, COPD 
patients and controls without lung disease were the 
three categorical independent variables. They were 
categorical data and each group was independent of 
the other two.

(III) The observations must be independent, meaning that 
there must be different participants in each group 
with no participants being in more than one group. 
Our data fitted the independence of observations.

(IV) There are more cases in each group of independent 
variables than the number of dependent variables. 

In this study, we were analysing two dependent 
variables while the three groups had 12 or 13 study 
subjects, so the sample size was adequate. 

(V) There are no multivariate or univariate outliers. We 
used cumulative chi-squared test of Mahalanobis 
distance with a degree of freedom of two to check 
for multivariate outliers for the combination values 
of sensor peak output and time to peak; none of the 
multivariate values in the raw data was considered 
anomalous as all the p-values of the Mahalanobis 
distance were greater than 0.001. Boxplots were used 
to detect univariate outliers in the raw data and we 
found two data which were shown as unfilled circles 
in Figure S1, were outliers. They were removed from 
the data used for further assumption-analysis and 
MANOVA.

(VI) There is multivariate normality. Shapiro-Wilk test of 
normality was used to analyse our data with P<0.05 
as criterion and it showed that our data did not reject 
the null hypothesis, meaning the data were normally 
distributed. The P-significance values for the time to 
peak and the peak output on the three groups were 
greater than 0.05. 

(VII) There is a linear relationship between each pair 
of dependent variables for each group of the 
independent variable. Scatterplot matrix in Figure 
S2 shows that there was a general pattern of top left 
passing through central of origin to bottom right in 

Figure S1 shows the boxplots for the time to peak resistance and the sensor peak output data of the three groups of study subjects, namely 
lung cancer patients, COPD patients and controls without lung disease. The box represents the interquartile (IQ) range which contains the 
middle 50% of the data while the line across the box indicates the median. We can see that there were no outliers, which lies outside the 
whiskers of the box, in the sensor peak output data but there were two outliers which were the two unfilled circles in the boxplots for the 
time of peak data; one was in the group of COPD patients while the other was in the group of control subjects without lung disease. COPD, 
chronic obstructive pulmonary disease.
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all the three scatterplot diagrams, illustrating the 
linear relationship between the sensor peak output 
and the time to peak in all the three groups of study 
subjects.

(VIII) There is a homogeneity of variance-covariance 
matrices. Box’s M test of equality of covariance 
checks the homogeneity of covariance across the 
groups using P<0.001 as criterion while Levine’s Test 
of Equality of Error Variances tests if the variances 
of each variable are equal across the groups using 
P<0.05 as criterion. If insignificant P values are 
obtained from both tests, then the assumption is not 
violated.

 We obtained a Box’s M (18.962) with P=0.008, 
indicating that there was no significant difference 
between the covariance matrices. However, in the 
Levine’s Test, both the sensor peak output data 
(P=0.006) and the time to peak data (P=0.002) 
violated the assumption of homogeneity of variances. 
Hence, Pillai’s Trace test in the MANOVA had to be 
used instead of Wilk’s Lambda test as the former is 
very robust and not highly linked to the assumptions 
about the normality of the distribution of the data.

(IX) There is no multicollinearity, which means the 
dependent variables should have a low to moderate 
correlation among themselves. The Pearson 
correlation coefficient between the sensor peak 
output and the time to peak was 0.735. The 
correlation value was considered moderate so there 
was no multicollinearity in our data.
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Figure S2 shows the scatterplot matrix of time to peak resistance and sensor peak output measured in the group of lung cancer patients (right), 
COPD patients (middle) and subjects without lung disease (left). The three scatterplots represent the correlations of the two variables in 
the three groups of study subjects. We can see that there was a general trend that went from the central origin to top left corner and bottom 
right corner in each scatterplot; this indicates that there was a linear relationship between the data of time to peak and sensor peak output. 
COPD, chronic obstructive pulmonary disease.


