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Introduction

Cancer is amongst the leading causes of death worldwide, 
with the four most frequently occurring cancers being lung, 
breast, colorectal and prostate (1). Cancer arises through 
the sequential accumulation of mutations that develop due 
to damage to the genome (2). The process of carcinogenesis 
is extremely complex, though our understanding of cancer 
at the molecular level, including cellular signals, has rapidly 
progressed over the last two decades. This has led to the 
identification of novel targets for therapeutic intervention 
and the development of treatments to improve patient 
prognosis. 

Chemokines and their receptors are increasingly 
recognised to be involved in the process of tumour 

development and metastasis. Chemokines are small, 
secreted peptides that are important in mediating leukocyte 
migration to sites of inflammation and secondary lymphoid 
organs, in addition to other physiological and pathological 
processes (3,4). They are primarily produced by immune 
cells, but can also be produced by non-immune cells 
such as vascular endothelial cells for functions such as  
angiogenesis (5). The CXC chemokine receptor 2 (CXCR2) 
binds several different chemokines to trigger its function. 
It is expressed on immune cells including neutrophils, mast 
cells, monocytes and macrophages (6). However, CXCR2 
has also been found on endothelial and epithelial cells, and 
on numerous types of tumour cells (7,8). This receptor has 
been implicated in various disease states such as chronic 
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inflammation, sepsis, lung pathology, atherosclerosis and 
neuroinflammation (8). Inflammation is one of the major 
hallmarks of cancers and is linked to 15–20% of cancer 
deaths worldwide (9). CXCR2 has been associated with 
poor outcomes for different cancers through its effects 
on migration, invasion and angiogenesis (10-16). The 
aim of this review is to provide an up to date analysis 
on the contribution of CXCR2 to the progression of 
different cancer types, and describe how pharmacological 
intervention against CXCR2 may be beneficial to patient 
outcome. 

Chemokine superfamily classification

The chemokine superfamily consists of a large variety of 
ligands and their receptors; however not all ligand-receptor 
relationships are mutually exclusive. This superfamily is 
divided into four families related through structure and 
function—the largest family consists of CC chemokines, 
based on the four adjacent cysteine residues in their peptide 
sequence. The main function of CC chemokines is to 
attract mononuclear cells to sites of chronic inflammation. 
The second largest family consists of CXC chemokines, 
which have two cysteine residues and a single amino acid 
residue between them. Some members of this family, such 
as CXCL8, attract polymorphonuclear leukocytes to sites 
of inflammation. The third CX3C family consists of one 
member Fractalkine (CX3CL1), which has three amino acids 

separating the initial pair of cysteine residues. It is produced 
as a long protein with an extended mucin-like stalk fused to 
its chemokine domain, permitting binding to the surface of 
certain cells to form a cell-adhesion receptor. This cytokine 
can be cleaved to form a soluble chemoattractant (17,18). 
The fourth family also has a single member, lymphotactin 
(XCL1), which is similar to the members of the CC and 
CXC families but lacks two of the four characteristic 
cysteine residues found in most chemokines (19). There is 
a large amount of both redundancy and specificity within 
families in the chemokine system (20). 

Chemokine receptor structure

Chemokine receptors  are  members  of  the  seven 
transmembrane G-protein-coupled receptor (GPCR) 
family (Figure 1). They are differentially expressed on cells, 
with highly variable responses to specific chemokines. The 
receptors are generally composed of 350 amino acids in 
length, with a short acidic extracellular N-terminus domain 
that may contain sulfated tyrosine residues and sites for 
N-linked glycosylation. The intracellular C-terminus 
domain contains serine and threonine residues that 
regulate receptor activity through phosphorylation. The 
transmembrane domains are α-helical and the intracellular 
and extracellular loops contain hydrophilic amino acids. 
The first two loops have highly conserved cysteine residues 
linked by a disulfide bond (3). Each receptor is specific to 

Figure 1 General structure of chemokine receptors. Chemokine receptors are G-protein-coupled receptors (GPCRs) with seven 
transmembrane domains. Conserved motifs that are critical for signalling include: an aspartic acid residue, a Thr-X-Pro (TXP; X denotes 
any amino acid) motif in the second transmembrane domain, and an Asp-Arg-Tyr (DRY) motif at the boundary of the third transmembrane 
domain. 
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ligands from only one of the four chemokine families, hence 
they are also placed into four groups. There are multiple 
receptor-ligand combinations within these groups resulting 
in a wide array of biological outcomes (21,22).

CXC chemokines have a heparin-binding domain 
in their C-terminus and are involved in regulating the 
process of angiogenesis (23). Aside from the CXC motif 
that distinguishes this family of chemokines from others, 
CXC chemokines have a second structural motif that 
determines its functional activity. The N-terminus of most 
CXC chemokines has three amino acid residues (Glu-Leu-
Arg: the ELR motif) before the first cysteine amino acid 
residue in their primary structure (24,25). It has been found 
that some members that contain this ELR motif (ELR+) 
such as CXCL8 are not only potent angiogenic factors, 
but also neutrophil chemoattractants (26). On the other 
hand, CXC chemokines that lack the ELR motif (ELR−) 

are potent angiogenic inhibitors, such as CXCL4, CXCL9 
and CXCL10 (24,27-29). CXCL12 is an exception to this, 
as it is an angiogenic ELR− CXC chemokine. ELR+ CXC 
chemokines bind to CXCR1 and CXCR2, and ELR− CXC 
chemokines bind to CXCR3–7 (Table 1). 

CXC chemokines and cancer

Aside from the massive contribution of CXC chemokines and 
their receptors to the immune system, they have also been 
implicated in the processes of tumour growth, angiogenesis 
and metastasis (Figure 2). Many tumour cells produce a 
large variety of chemokines and their receptors (31,32). 
Chemokines can indirectly function to recruit tumour-
associated macrophages that support tumour development. 
They can also directly function as growth/survival factors, 
angiogenic factors and chemoattractants for cancer cells 

Table 1 CXC chemokines and receptors

Chemokine Alternative name(s) Receptor

ELR+

CXCL1 Growth related oncogene (GRO)-α CXCR2

CXCL2 GRO-β CXCR2

CXCL3 GRO-γ CXCR2

CXCL5 Epithelial neutrophil-activating peptide (ENA)-78 CXCR2

CXCL6 Granulocyte chemotactic protein (GCP)-2 CXCR1, CXCR2

CXCL7 Neutrophil-activating peptide (NAP)-2 CXCR2

CXCL8 Interleukin (IL)-8 CXCR1, CXCR2

CXCL15 Lungkine Unknown

CXCL17* Dendritic cell- and monocyte-attracting chemokine-like protein (DMC) CXCR8

ELR−

CXCL4 Platelet factor (PF)-4 CXCR3

CXCL9 Monokine induced by interferon-γ (MIG) CXCR3

CXCL10 Interferon-γ-inducible protein (IP)-10 CXCR3

CXCL11 IFN-inducible T-cell α-chemoattractant (I-TAC) CXCR3, CXCR7

CXCL12 Stromal cell-derived factor 1 (SDF1)-α CXCR4, CXCR7

CXCL13 B-cell attracting chemokine (BCA)-1 CXCR5

CXCL14 Breast and kidney-expressed chemokine (BRAK) Unknown

CXCL16 Small inducible cytokine B16 CXCR6

*, CXCL17 is not yet confirmed to have an ELR+ motif—however, it is functionally classified as such due to its pro-angiogenic and neutrophil 
chemoattractant functions (30).
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Figure 2 Chemokines and their receptors in tumour development. Primary tumours are supported by a network of cells in their 
microenvironment, including immune cells. These cells produce chemokines along with the tumour cells themselves. The chemokines 
regulate leukocyte migration along the endothelium, by binding their cognate G-protein-coupled receptors (GPCRs) on the leukocytes. 
Leukocytes migrate through the endothelial layer in response to the chemokine gradient. As a result, inflammatory cells including 
neutrophils, macrophages, T lymphocytes and dendritic cells infiltrate the tumour. The formation of new blood vessels is also affected 
through the production of chemokines that are either angiogenic (CXCL1–3, 5–8, 12, 15, 17) or angiostatic (CXCL4, 9–11, 13, 14, 16). The 
process of angiogenesis is critical in the provision of oxygen and nutrients to stimulate tumour growth and metastasis. 
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through autocrine effects that enhance tumour development 
and metastasis. ELR+ CXC chemokines in particular act as 
growth factors for tumour cells. Overexpression of CXCL1 or 
CXCL8 in melanoma cells has been shown to promote their 
growth and enhance metastatic capacity in vivo; inhibiting 
their receptor CXCR2 abolishes these effects (33-35).  
Overexpression of CXCR4 by breast cancer cells results in 
an enhanced response to its ligand CXCL12, promoting 
cell survival in vivo. This has been shown in primary and 
metastatic breast cancer (36,37). CXCL8 acts a direct 
autocrine growth factor in a number of different tumours 
including pancreatic, liver, ovarian, colon and melanoma  
(38-41). The receptors for CXCL8 are CXCR1 and CXCR2, 
which share 77% sequence homology, though they have 
different binding affinities and selectivity for chemokines; 
CXCR1 is highly selective for CXCL8 and has very low 
binding affinities to other ligands (42). The study of CXCR2 
gene-deficient mice has shown that CXCR2 is activated by 
ELR+ CXC chemokines including CXCL1–3 and CXCL5–8 
to mediate their angiogenic activity, though its most potent 
ligand is CXCL8 (43,44). Despite the difference in ligand 
binding affinities, CXCR1 and CXCR2 have both been 
shown to interact with the epidermal growth factor receptor 
(EGFR) signalling pathway, critical in regulating growth, 
survival, proliferation and differentiation in mammalian cells 
(39,45). CXCR2 in particular has been associated with the 
migration, invasion and angiogenesis of different cancers 
(10-16). The following sections describe the involvement 
of CXCR2 in the progression of four of the most common 
cancers worldwide, including lung, prostate, breast and 
colorectal, in addition to recent relevant data on pancreatic 
and ovarian cancer.

Lung cancer 

Lung cancer is the leading cause of cancer deaths, with lung 
adenocarcinoma representing the most common histologic 
subtype of non-small cell lung cancer (NSCLC) (1,46). 
CXCR2 expression has been found to be upregulated 
in lung cancer in several studies (47-49). In one of these 
studies, CXCR2 expression was analyzed in tumour cells 
from over 260 human NSCLC and it was found that 
poorly differentiated tumours had significantly greater 
cytoplasmic CXCR2 levels compared to moderately 
and well-differentiated tumours. CXCR2 expression 
in lung adenocarcinomas was associated with smoking 
and poor prognosis, implicating the CXCR2 axis as a 
potential therapeutic target for in smoking-related lung 

adenocarcinoma (48). In a different study, inhibiting 
CXCR1 and CXCR2 using a mutant CXCL8 analogue 
(G31P) in two lung cancer cell lines showed decreased 
cell proliferation and migration, and enhanced apoptosis. 
Similar inhibition in an in vivo orthotopic xenograft mouse 
model of human lung cancer showed suppressed tumour 
growth, metastasis and angiogenesis (47).

Airway inflammation has been associated with the 
progression of lung cancer, particularly in cigarette smokers 
(50-52). Increased neutrophil infiltration as a result of the 
immune response is linked to poorer outcome in patients 
with lung cancer (53). Tazzyman et al. found that neutrophil 
recruitment into A549 tumours in vitro and in vivo is largely 
dependent on CXCR2 activation (54). Supporting these 
findings, a more recent study by Gong et al. showed that 
CXCR2 inhibition in a K-RAS mutant mouse model of 
lung cancer suppressed neutrophilic inflammation and 
significantly reduced tumour progression (55).

In a preclinical mouse model of lung cancer, ELR+ 
chemokines were found to mediate angiogenic activity via 
CXCR2 and depletion of CXCR2 inhibited tumour growth 
and angiogenesis (56). On the other hand, the previously 
mentioned study by Tazzyman et al. demonstrated no 
reduction in microvascular density in CXCR2-deficient mice, 
leading to their conclusion that angiogenesis was CXCR2-
independent (54). It is important to note that in the first study, 
Lewis lung cancer cells were injected into CXCR2-deficient 
C57BL/6 mice; in the second study A549 lung cancer cells 
were injected into CXCR2-deficient SCID mice. Therefore 
the differences seen in the results of these studies may be 
attributable to the different murine models or cancer cell lines 
used. It is also possible that perhaps an intact immune system 
is required for CXCR2-dependent angiogenesis.

In contrast to the findings that CXCR2 is associated with 
tumourigenesis, a recent study by Ryan et al. identified a 
functional single nucleotide polymorphism (SNP) in the 3' 
untranslated region (UTR) of CXCR2 that alters binding of 
a specific miRNA (miR-516a-3p), affecting CXCR2 mRNA 
and protein expression (57). Surprisingly, this SNP gives 
rise to increased CXCR2 expression but is associated with 
reduced risk of lung cancer. Initial studies by Ryan et al. of 
primary samples showed the reduction of CXCR2 in lung 
cancer compared to non-involved lung tissue. They carried 
out further studies using RNA-seq data from TCGA on 
lung adenocarcinoma and squamous cell carcinoma, which 
also showed decreased expression of all three CXCR2 
mRNA isoforms. It is known that CXCR2 may mediate 
p53-dependent senescence in the lung, highlighting the 
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potential tumour-suppressive role of CXCR2 (58). A 
mutation found in the C-terminus of CXCR2 (G354W), 
identified in the NCI-H1395 lung cancer cell line, prevents 
autocrine CXCL8-induced receptor internalization and 
alleviates senescence (58,59). Reduced CXCR2 expression 
has been suggested to be another mechanism of avoiding 
senescence in lung cancer. 

Prostate cancer

Prostate cancer is the most frequently diagnosed cancer in 
males, and the fifth leading cause of cancer-related deaths in 
men (1). Hypoxia is one of the key features of solid tumours 
as found in prostate cancer, leading to the selection of cells 
with a more malignant phenotype (60). Elevated CXCL8, 
CXCR1 and CXCR2 expression has been detected in 
human prostate cancer (61). Hypoxia was found to further 
increase expression of CXCL8 and its receptors in a time-
dependent manner, and inhibition of transcription factors 
hypoxia-inducible factor (HIF-1) and nuclear factor-κB 
(NF-κB) abrogated these effects (62). In another study, the 
effects of CXCL8 mutant analogue G31P were investigated 
on the proliferation, migration and invasion of androgen-
independent prostate cancer cells in vitro and on growth 
and angiogenesis in nude mouse xenografts of prostate 
cancer. They found that G31P treatment suppressed 
tumourigenesis both in vitro and in vivo. G31P also inhibited 
tumour tissue vascularization, which was associated with 
decreased expression of vascular endothelial growth factor 
(VEGF) and NF-κB expression in the xenograft tissues (63).  
In CXCR2-deficient mice, Shen et al. also found smaller 
tumour size and reduced angiogenesis compared to normal 
mice (64). These findings are similar to those described in 
ovarian cancer by Yang et al. whereby CXCR2 inhibition 
in nude mice xenografts resulted in decreased blood 
vessel density and increased VEGF expression (10). This 
combined data, amongst others, provides evidence for a 
clear association between CXCR2 and angiogenesis, a 
mechanism that may be manifested across different cancers. 

Breast cancer 

Breast cancer is the second most common cancer in the 
world and the most frequent cause of cancer death amongst 
women (1,65). Polymorphisms in CXCL8 and CXCR2 
genes are associated with increased breast cancer risk (66).  
CXCR2 expression has been shown to be higher in 
malignant breast cancer tissues compared to benign 

ductal epithelial samples (67). CXCR2 has further been 
found to promote breast cancer cell invasion in vitro and 
enhance tumour metastasis in vivo (68). Bone metastasis is 
common during breast cancer progression, and CXCR2 
has been implicated in this process as well (69). In addition, 
infiltrating macrophages in the tumour microenvironment 
were found to have increased expression of CXCR2 ligands, 
inhibited by activation of the TGF-β signalling pathway. 
Co-culture studies showed that these macrophages can 
promote both epithelial and tumour cell migration via 
CXCR2 activation (70). However, the phenomenon of 
oncogene-induced senescence through CXCR2 signalling 
has also been observed in breast cancer cells, as described in 
pancreatic and lung cancers in this review (71).

Colorectal cancer

Colorectal cancer is one of the most common causes of 
cancer mortality and is often associated with the Western 
lifestyle (72). Increased expression of CXC chemokines 
and their receptors in colorectal cancer cells correlates 
with poor prognosis (73). A higher constitutive expression 
of CXCL8, CXCR1 and CXCR2 has been associated with 
greater metastatic potential of colorectal cancer cells (74,75). 
A recent study comparing CXCR2 expression in colorectal 
tumour tissues to benign tumour and normal mucosa 
tissues found a significantly higher expression in the tumour 
tissues. CXCR2 expression was also observed to be higher 
in patients either with lymph node metastasis or in advanced 
cancer stages (76). This data adds to the accumulating 
evidence that CXCR2 enhances cancer progression and 
could worsen patient outcome. 

Pancreatic ductal adenocarcinoma (PDAC)

PDAC is a leading cause of cancer deaths worldwide with 
minimal treatment options available (77). Due to multiple 
studies implicating CXCR2 in cancer and inflammation, 
research has been carried out recently on the involvement 
of CXCR2 and its ligands in pancreatic cancer. CXCR2 is 
expressed in various PDAC cell lines and has been found to 
increase their proliferation and survival via autocrine and 
paracrine effects (38,78-80). Immunohistochemical analysis 
showed positive staining for CXCL8 (50%), CXCR1 (55%) 
and CXCR2 (65%) in surgically resected human pancreatic 
cancer, with 40% being positive for both CXCL8 and 
its receptors (80). ELR+ CXC chemokines mediate their 
angiogenic activity through CXCR2 and have been found 
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at increased levels in both pancreatic cancer cell lines and 
pancreatic secretions of pancreatic cancer patients (81-83).  
It has been suggested that the role of CXCR2 and its 
chemokines as angiogenic factors for pancreatic cancer 
may be dependent on the tumour microenvironment and 
tumour-stromal interactions (11,84). The expression of 
ELR+ CXC chemokines increases when pancreatic cancer 
cells are co-cultured with stromal cells (11). In addition, 
Ijichi et al. found higher CXCR2 expression in fibroblasts 
from PDAC stroma, implying that PDAC expression of 
CXCR2 ligands could be important in the formation and 
maintenance of the stroma. Using a murine model of 
aggressive PDAC disease similar to the human disease, they 
found that PDAC cells secreted higher levels of CXCL1, 
2, 5 and 16 compared to preinvasive mouse pancreatic 
intraepithelial neoplasia cells. These chemokines stimulated 
stromal fibroblasts to induce connective tissue growth factor 
(CTGF), a pro-tumourigenic factor, resulting in accelerated 
tumour growth in vivo. Inhibition of CXCR2 improved 
overall survival of the mice by suppressing tumour 
angiogenesis (85). These studies highlight the importance of 
the CXCL-CXCR2 axis in tumour-stromal interactions in 
the progression of PDAC. However, there have been other 
recent studies that have reported targeting of the stroma 
may be detrimental to the patient by accelerating disease 
progression (86,87). This emphasizes the caution that must 
be undertaken when targeting PDAC-associated fibroblasts. 

Another function of CXCR2 is regulating the migration 
of myeloid-derived suppressor cells (MDSCs) (88). 
Increasing evidence suggests that neutrophils, MDSCs 
and CXCR2 play a role in pancreatic cancer. Neutrophil 
infiltration in pancreatic cancer is associated with poorer 
prognosis, and the accumulation of MDSCs in patients 
with advanced pancreatic cancer also correlates with disease 
stage (89,90). Recent studies by Steele et al. showed the 
upregulation of CXCR2 signalling in human pancreatic 
cancer, predominantly in neutrophils and MDSCs. 
Inhibiting CXCR2 reduced metastasis and improved 
the overall survival of mice with established disease. 
Interestingly, it is reported that only peptide inhibition, 
not germline deletion of CXCR2, improved survival (91).  
This suggests that CXCR2 may have multiple roles in 
the initiation and progression of pancreatic cancer, a 
phenomenon that has been previously described (59,84).

Further study into the molecular mechanisms of CXCR2 
signalling in pancreatic cancer cells both in vitro and in vivo 
showed that CXCR2 is coupled to downstream effector 
phospholipase C-β3 (PLC-β3), mediated by a specific motif 

at its C-terminus called PSD-95/DlgA/ZO-1 (PDZ). This 
motif enables interactions with PDZ scaffold protein Na+/
H+ exchange regulatory factor 1 (NHERF1) to create a 
macromolecular signalling complex (92). This interaction is 
thought to be important for the regulation of intracellular 
signalling and cell functions in neutrophils (93,94). The 
disruption of this complex was found to significantly inhibit 
pancreatic cancer cell proliferation and invasion (92). 
Recent advances in research on the involvement of CXCR2 
in pancreatic cancer demonstrate that CXCR2 provides 
an important contribution to the progression of PDAC 
through multiple avenues.

Ovarian cancer

Ovarian cancer is the most lethal gynaecological cancer and 
the fifth leading cause of cancer-related deaths in women 
in the United Kingdom (95). CXCR2 overexpression has 
been found in high-grade serous ovarian carcinomas to be 
an independent prognostic factor of poor overall survival 
and early relapse (10). A study by Yang et al. found that 
ovarian cancer cells frequently express CXCR2, which 
promotes growth by enhancing angiogenesis, reducing 
apoptosis and dysregulating the cell cycle. The study 
then went further to investigate the mechanisms behind 
CXCR2-mediated ovarian cancer growth. They found that 
CXCR2 promoted cell cycle progression by affecting a host 
of cell cycle regulatory proteins including cyclin D1 and 
its cyclin-dependent kinase (CDK)-6. Silencing CXCR2 
expression increased cell apoptosis at least 2-fold, possibly 
due to increased p53 phosphorylation, increased expression 
of Puma and Bcl-xS (pro-apoptotic proteins) and reduced 
expression of Bcl-xL and Bcl-2 (anti-apoptotic proteins). 
CXCR2 inhibition in xenograft mouse tumour tissues 
generated from animals with ovarian cancer resulted in 
decreased overall blood vessel density, increased expression 
of VEGF and decreased expression of thrombospondin-1 
(TSP-1) ,  impl ica t ing  CXCR2 in  ovar ian  cancer 
angiogenesis. Yang et al. then identified the involvement 
of multiple signalling pathways in these processes, 
including the mitogen-activated protein kinase (MAPK), 
phosphoinositide 3-kinase (PI3K), signal transducer 
and activator of transcription 3 (STAT3) and NF-κB  
pathways (10). Several studies have previously shown that 
activation of these pathways may be involved in the CXCR2 
signalling network in other cell types (96-99). 

A recent study by Dong et al. explored in further detail 
the impact of NF-κB signalling on the contribution 
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of CXCR2 to the progression of ovarian cancer (100). 
Ovarian cancer consists of a proinflammatory tumour 
microenvironment that may be in part regulated by tumour 
necrosis factor (TNF) (101,102). TNF has previously been 
shown to regulate chemokine networks though the NF-κB 
signalling pathway in ovarian cancer (103,104). CXCR2-
driven ovarian cancer progression was found to upregulate 
its own ligands including CXCL1 and CXCL2. Both basal 
and TNF-induced levels of NF-κB activation were found 
to be higher in CXCR2 expressing cells. These cells had 
increased proliferation, migration and invasion compared to 
CXCR2-deficient cells. Knocking down CXCR2 resulted 
in decreased TNF-induced NF-κB activation (100). This 
is consistent with previous findings whereby in colorectal 
cancer cells, a CXCR2 antagonist decreased NF-κB 
phosphorylation and in ovarian cancer cells, the stimulation 
of angiogenesis by CXCR2 was suggested to involve NF-κB 
(10,105). Dong et al. also showed that CXCR2 expressing 
cells had greater transactivation of EGFR, causing higher 
Akt activation. Inhibiting PI3K blocked Akt activation and 
attenuated NF-κB promoter activity (100). Interestingly, 
several CXCR2 ligands, including CXCL1–3 and CXCL5–
8 contain NF-κB binding sites in their promoters (6). 
Therefore, it has been suggested that CXCR2-mediated 
NF-κB activation can modulate the chemokine network 
thereby altering cellular function (100). 

Therapeutic benefits of CXCR2 functional 
intervention

The importance of CXCR2 has been highly emphasized 
in tumourigenesis. ELR+ CXC chemokines are known 
to mediate their angiogenic effects through the CXCR2 
receptor, and indeed its inhibition has shown several anti-
tumourigenic effects as previously described. This provides 
the opportunity to intervene in key processes in tumour 
development, including growth, invasion, angiogenesis and 
metastasis. Interestingly, previous studies have shown that 
many cellular signals including CXCR2 and HIF-1α are 
upregulated by volatile anaesthetic exposure to cancer cell 
lines, although the implications of these findings remain 
elusive (106-109). 

CXCR2 has also been identified to play a role in the 
chemoresistance of numerous cancers including prostate, 
breast and colorectal. CXCL8 signalling has been shown 
to confer metastatic prostate cancer cells with resistance 
to specific chemotherapeutic agents. Administration 
of 5-fluorouracil (5-FU) to prostate cancer cells (PC3) 

caused the increase of CXCL8 secretion and upregulation 
of CXCR1 and CXCR2 gene expression. Inhibition 
of CXCL8 signalling in prostate cancer cells using the 
CXCR2 inhibitor, AZ10397767, was found to increase the 
cytotoxicity of 5-FU, a key anti-metabolite in solid-tumour 
chemotherapy (110). In breast cancer, malignant cells 
surviving initial chemo- and radiation therapy were found 
to have higher expression of CXCR2 ligands. Knocking 
down CXCR2 increased toxicity of chemotherapy agents 
paclitaxel and doxorubicin. It also enhanced paclitaxel 
antitumour activity in an in vivo breast cancer model. 
Spontaneous lung metastases in animals with CXCR2 
knockdown and treated with paclitaxel were significantly 
reduced compared to control animals (111). Furthermore, a 
study investigating the involvement of CXCL8 and CXCR2 
in a 5-FU chemoresistant colorectal cell line (HCT116/5-
FU) found that both were upregulated in comparison to 
their chemosensitive parental cell line (HCT116). Inhibiting 
CXCR2 caused reduced cell proliferation in both cell lines. 
In response to 5-FU treatment, HCT116 upregulated 
CXCL8, CXCR1 and CXCR2, but HCT116/5-FU only 
upregulated CXCL8 and CXCR1. On the other hand, 
treatment with another chemotherapy agent oxaliplatin 
resulted in no significant differences in either cell line (112). 
Ning et al., however, reported that CXCL8 overexpression 
by CXCL8-transfected clones of HCT116 and an additional 
cell line CaCo2 conferred significant resistance to the 
chemotherapeutic drug oxaliplatin; inhibiting CXCL8 
overexpression reversed this observed chemoresistance. 
The transfected cell lines also had a greater expression 
of CXCR2 compared to their normal counterparts (113). 
These examples highlight the importance of CXCR2 
in chemotherapy resistance and provide evidence that 
targeting CXCR2 signalling can enhance the antitumour 
and antimetastatic activity of chemotherapeutic drugs. 

Conclusions

The role of CXCR2 has been investigated in different cancer 
types, and there is a plethora of evidence that shows the 
profound effect that CXCR2 has on tumour progression. 
Deeper research into the molecular mechanisms of CXCR2 
activity has shown its effects on numerous key signalling 
pathways, including MAPK, NF-κB, Akt and STAT3. 
Through these pathways, CXCR2 is able to modulate tumour 
growth, angiogenesis and metastasis, potentiating tumour 
development. There is a potential tumour suppressive 
role for CXCR2 that has also been highlighted, possibly 
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depending on the stage of the tumour. Although CXCR2 
could be an excellent molecular target for the treatment 
of cancer, due to the complexity of carcinogenesis and the 
tumour microenvironment, it is unlikely that a single CXCR2 
inhibitor would be curative. Perhaps the use of multiple 
therapeutic regimens would be more beneficial in the control 
of tumour development and metastasis.
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