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Hepatocellular carcinoma (HCC) is the fifth most frequent 
cancer in the world and now the second leading cause of 
cancer related deaths (1). There are many treatments for 
people diagnosed with this tumor type, and part of the 
reason for this has to do with the heterogeneity of HCC at 
the cell and molecular levels. This idea may be the reason 
why a single therapeutic approach is successful in only a 
modest proportion of diagnosed patients (1). Thus, there 
has been great interest in identifying and in therapeutically 
targeting, molecular steps in the pathogenesis of 
HCC. The paper by Qin et al. (2) adds to the growing 
literature that attempts to better define the role of matrix 
metalloproteinase 8 (MMP-8) and transforming growth 
factor beta 1 (TGFβ1) in tumor pathogenesis.

Most HCC is associated with chronic hepatitis B virus 
(HBV) or hepatitis C virus (HCV) infections (3). While 
these viruses are essentially non-cytopathic, they do 
trigger immune responses that often inflict considerable 

liver damage without clearing infected cells. The host 
response to these repeated bouts of chronic liver disease 
(CLD) involves regeneration of hepatocytes (a cellular 
response), but over time, there is also an increase in 
stellate cell activation (4), with corresponding increases 
in extracellular matrix production (an acellular response) 
that is referred to as fibrosis (i.e., scarring). When fibrotic 
bundles accumulate and connect up in three dimensions, 
variably sized islands of hepatocytes become encased in 
nodules of extracellular matrix referred to as cirrhosis. At 
the molecular level, TGFβ1 is known to be strongly pro-
fibrogenic, and is likely to promote the pathogenesis of 
CLD (5). In addition, the paper by Qin et al. (2) shows 
that there is a reciprocal activation of TGFβ1 and MMP-8  
in HCC cell lines. Given that MMP-8 is a protease that 
contributes to the degradation of extracellular matrix, its 
up-regulation in cirrhotic and HCC nodules may promote 
tumor progression and metastasis.
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The paper by Qin et al. (2) points out that TGFβ1 
promotes epithelial-mesenchymal transition (EMT) 
and malignant progression in HCC, which is consistent 
with the role of TGFβ1 in other tumor types (6). 
Importantly, TGFβ1 expression is activated in the livers 
of mice that were transgenic for the HBV oncoprotein, 
hepatitis B x (HBx), prior to the appearance of tumors (7). 
Independently, TGFβ1 was up-regulated in hepatoma cell 
lines expressing HBx (8). Further evidence has shown that 
HBx expressing hepatocytes stimulate the production of 
TGFβ1 via paracrine mechanisms that activate hepatic 
stellate cells (9). Activated hepatic stellate cells developed 
increased expression of collagen I, connective tissue 
growth factor (CTGF), alpha smooth muscle actin, matrix 
metalloproteinase-2, and TGF-β1, together with enhanced 
proliferation (9). Given that HBx is abundantly expressed 
in the liver of chronically infected HBV carriers with 
cirrhosis (10,11), suggests that up-regulated expression of 
TGFβ1 occurs prior to the appearance of tumors and is 
involved in much more than EMT that accompanies tumor 
progression. In this context, the architecture of the acini in 
normal liver is almost completely missing in cirrhotic liver 
nodules, implying that EMT may also occur intrahepatically 
long before the appearance of HCC. Interestingly, HepG2 
(human hepatoblastoma) cells expressing HCV core protein 
also activated the expression of TGFβ1, TGFβ receptor II, 
alpha-smooth muscle actin and CTGF when co-cultured 
with primary hepatic stellate cells (12), suggesting that both 
HBV and HCV actively contribute to the development of 
fibrosis and cirrhosis that are known risk factors for HCC. 
In addition, significant increases of CTGF and TGFβ1 
were observed in a stable HCV E2-expressing Huh7 cell 
line (13), although it is not known whether E2 mediates 
these changes in vivo. Additional observations also suggest 
a tight correlation between HCV infection and altered 
TGFβ1 signaling in patients with CLD that promotes 
the appearance of fibrosis and cirrhosis (14). In this case, 
TGFβ1 signaling activates c-Jun N-terminal kinase (JNK), 
which converts the mediator Smad3 into two distinctive 
phospho-isoforms, which in turn, mediate a switch 
from TGFβ1 negative growth regulation to stimulation 
of growth and fibrogenesis (14). Similarly, HBx shifts 
hepatocyte TGFβ1 signaling from the tumor-suppressive 
to the oncogenic pathway in the liver (15), suggesting that 
altered TGFβ signaling is an early event in fibrogenesis. 
With regard to signaling pathways that promote fibrosis, 
HCV E2 stimulates Janus kinase (JAK), ERK1/2 and  
p38 (13). Importantly, HBx also up-regulates JAK (16) and 

ERK1/2 (17), further suggesting a common denominator 
that contributes to fibrogenesis at the molecular level. The 
finding that HBx (18) and HCV (19) activate ras (20), which 
is upstream of ERK1/2, further supports this hypothesis, 
and underscores the idea that therapeutic intervention in a 
few shared signaling pathways may be effective in slowing 
or inhibiting CLD progression among patients infected 
with either or both of these viruses.

The paper by Qin et al. points out that MMP-8 and 
TGFβ1 form a positive feedback loop through activation 
of PI3K/Akt/Rac1 signaling (2). While the activation of 
this signaling pathway promotes hepatocellular survival, 
proliferation and migration, independent observations 
have also shown that both HBV (through HBx) (17,21) 
and HCV (through NS5A) (21,22) constitutively activate 
this pathway in the pathogenesis of HCC. Importantly, 
constitutive activation of PI3K/Akt signaling mediates 
changes in gene expression which trigger EMT (23). In fact, 
HCV was shown to trigger EMT in primary hepatocytes via 
activation of PI3K/β-catenin signaling (24). If this occurs 
in infected liver, it may represent type II EMT, which 
mediates wound healing as well as tissue reconstruction, 
regeneration and fibrosis (25). This is distinct from type 
III EMT, which involves the transformation of epithelial 
cells into mesenchymal cells during tumor metastasis (26),  
and is the context in which the Qin et al. study was 
performed (2). Both viruses also activate ras and ERK 
signaling (15,18,27,28), which promote proliferation. 
Independent studies have shown that both viruses activate 
NF-κB (29,30) and β-catenin (31-33). Thus, it is proposed 
that the activation of these combined pathways (PI3K/Akt, 
ras, NF-κB, β-catenin and TGFβ1) trigger type II EMT 
in the infected liver and type III EMT in the tumor. In the 
chronically infected liver, these viruses may promote cellular 
survival and proliferation in order for virus infected cells 
to persist, and continue replicating virus, in the presence 
of ongoing immune responses aimed at eliminating virus 
infected cells. Although this study was not done in the 
context of HBV or HCV infection, these same pathways 
are also activated (or remain activated) during tumor 
progression. Given that TGFβ1 promotes fibrogenesis 
and that MMP-8 (and other MMPs) degrades the 
extracellular matrix that encase cirrhotic nodules, it seems 
likely that the expression levels and activity of HBV and 
HCV proteins may regulate the extent to which MMP-8  
and TGFβ1 are expressed. For HBV, this may reflect the 
extent to which integrated virus sequences exist and their 
ability to be transcribed and translated into HBx, while for 
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HCV, this may reflect the levels of HCV replication in the 
liver. Both HBV integration and levels of HCV replication 
would be influenced, in turn, by immune responses against 
virus infected cells. However, the fact that TGFβ promotes 
fibrogenesis while MMP-8 does the opposite (2) provides 
a dynamic model in which the extent of fibrosis may vary 
over time, and may help to explain how some patients have 
progressive CLD and die of end stage liver disease (cirrhosis) 
while the pathogenesis of CLD in others arrests or even 
reverses as in cases where the grade of fibrosis decreases or 
when cirrhosis becomes inactive. In this context, it can also 
be envisioned that the reciprocal activation between MMP-
8 and TGFβ1 may also play a significant role in EMT and 
the migration of hepatocytes that appear to take place as 
the architecture of the liver undergoes major changes in the 
course of CLD.

The environment in which hepatocytes exist within 
cirrhotic nodules is in stark contrast to that which existed 
in the normal liver. For example, the intimate association 
between hepatocytes and the portal blood supply is 
destroyed by the accumulation of extracellular matrix that 
is characteristic of fibrosis and cirrhosis. The fact that 
hepatocytes become surrounded by connective tissue in a 
cirrhotic nodule, characterized by the scarce presence of 
portal triads (hepatic artery, hepatic vein, and bile duct) as 
well as central veins (connecting to the systemic circulation), 
means that the cells within such nodules have to survive 
in regions of local hypoxia. Under these circumstances, 
the cells that are best able to survive and proliferate are 
hepatic progenitor or stem-like cells (34). In this context, 
the finding that HBx up-regulates the expression of stem 
cell markers (35,36) suggests a mechanism whereby HBx 
expression in the liver contributes to hepatocarcinogenesis. 
HCV also activates signaling pathways that promote the 
development of cancer stem cells (CSC) (37,38) in vitro (39)  
and in mouse models of hepatocarcinogenesis (39-41). 
Given that it takes several decades after infection to develop 
HCC, the activation of TGFβ1 seems to be a common 
event in the pathogenesis of CLD leading to HCC.

One of the pathways that HBx constitutively activates 
in vivo that contributes importantly to the appearance of 
HCC is Hedgehog [Hh; (42)] which normally regulates 
tissue homeostasis, cellular proliferation and contributes 
to stem cell maintenance (43). Constitutive activation 
of Hh signaling up-regulates the expression of Kras, 
c-myc, TGFβ1 and β-catenin (44), which also activate 
the Hh signaling molecule and transcription factor, 
Gli (44). In early hepatocarcinogenesis, Gli may block 

apoptosis in DNA damaged, immortalized cells, thereby 
further promoting tumor development. Activated Kras, 
c-myc, TGFβ1 and β-catenin are associated with either 
EMT and/or “stemness”, again suggesting early roles in 
carcinogenesis. Given that a fibrogenic response is common 
in both chronic HBV and HCV infections, one would 
also expect Hh activation in HCV infections. Elevated 
production of Hh ligands were observed in the liver of both 
HBV and HCV patients, and the presence, frequency and 
distribution of these ligands directly correlated with the 
extent of liver fibrosis (45). Hh signaling was also activated 
in human liver cancer cell cultures shortly after infection 
with HCV (46). In fact, it has been proposed that activated 
Hh signaling may be a prognostic marker for HCC (47), 
further implicating Hh signaling in the pro-fibrogenic 
response that accompanies the expansion of liver progenitor 
cells that eventually develop into cancer stem cells.

In the normal liver, TGFβ1 is a negative growth regulator, 
but in the context of carcinogenesis, TGFβ1 signaling 
is altered and TGFβ1 becomes a tumor promoter (48).  
These differences may result from mutational inactivation 
of the TGFβ1 signaling pathway. However, negative growth 
regulatory signaling may be blocked by non-canonical 
kinases that promote growth and survival, such as MAPK, 
which inactivates the TGFβ signaling molecules smad2/3 
by phosphorylation (49). In this context, perhaps it is not 
coincidental that both HBV and HCV are tumor associated 
viruses that constitutively activate MAPK (50). MMP-8, 
which degrades collagen, also demonstrates dual functions, 
such as pro- and anti-inflammatory properties, as well as 
pro- and anti-tumor effects, depending upon the biological 
system used and the experimental design (51). For example, 
production of MMP-8 by neutrophils increases the access 
of inflammatory cells to sites of tissue damage. Chronic 
tissue damage is an important risk factor for promoting 
the development of many tumor types, including HCC. 
In contrast, MMP-8 has been shown to promote the 
differentiation of monocytes into M2 macrophages (52). 
Although M2 macrophages contribute to tumor associated 
inflammatory responses, these responses protect the 
tumor from immune elimination. If M2 macrophages are 
generated during CLD, they would block the elimination of 
infected hepatocytes in chronically infected patients, as well 
as the elimination of HCC cells in tumor bearing patients. 
Independent observations have shown that tumor associated 
macrophages promote cancer stem cell-like properties 
via TGFβ1-induced EMT (53). The fact that altered 
TGFβ1 signaling is also mildly immunosuppressive (48),  
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suggests that MMP-8 and TGFβ1 may work additively or 
synergistically in promoting chronic virus infection, and 
later on, in tumorigenesis. However, MMP-8 production 
may also contribute to wound healing by slowing down or 
preventing the progression of CLD to fibrosis and cirrhosis 
(54,55), thereby acting as a tumor suppressor (51,56). The 
study by Qin et al (2), suggests that TGFβ1 and MMP-
8 promote tumor progression, although most of the data 
shown is from in vitro experiments, and the relevance of 
these observations to in vivo data remains to be elucidated 
in future work. Having said that, the Qin et al. study (2) 
brings attention to the roles that TGFβ and MMP-8 plays 
in the pathogenesis of HCC, although as discussed above, 
this may only be the tip of the iceberg.
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