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Introduction

Androgen receptor (AR) signaling axis seems deeply 
involved in prostate cancer (PCa) development and 
growth making androgen-deprivation the first therapeutic 
approach. However, PCa can temporarily benefit from 
androgen-deprivation, progressing to a castration-
resistant prostate cancer (CRPC) status after some 
months of treatment (1). Despite resistance to hormonal 
drugs, AR axis remains the favorite target for the next 
generation hormonal therapies, such as abiraterone and 
enzalutamide (2,3). Abiraterone inhibits cytochrome 
P450 17 α-hydrolase (CYP17A1) reducing  androgen 
production in the adrenal glands, testicles and tumor 

microenvironment (4). Enzalutamide has a great affinity 
for AR, inhibiting its interactions with dihydrotestosterone 
(DHT) (5). The use of these drugs has led to an increase 
in the overall survival of CRPC patients: their maintained 
efficacy after resistance to older anti-androgen drugs such 
as bicalutamide and hydroxyflutamide encouraged further 
testing of novel anti-androgen drugs (6-10).

AR aberrations such as AR copy number variations 
(CNVs), alternative splice variants and AR point mutations 
are among the main causes of resistance to anti-androgen 
treatment (3,11-13). AR mutations are directly related to 
protein changes, which could lead to an enhanced affinity for 
ligands, cofactors and DNA, resulting in increased activity (5). 
Mutations affecting the AR ligand binding domain (LBD) are 
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likely to be responsible for resistance to anti-androgen drugs 
which impair the interaction between the AR protein and its 
natural ligands such as DHT (14). Such mutations produce 
promiscuous AR mutants able to evade anti-androgen 
action converting AR-antagonists into AR-agonists (15), and 
allowing AR to bind with alternative ligands (16).

In the past years, many studies investigated primary, 
bioptic and autoptic tissues from CRPC patients in order to 
identify AR mutations causing treatment-resistance (17,18). 
The analysis of serum/plasma cell free DNA (cfDNA) 
can overcome the limitations of tissue-based approaches, 
giving a real time picture of disease evolution and treatment 
efficacy (11-13).

A study investigated CNVs of PCa-related genes 
(including AR) and mutational status of AR exon 8 in plasma 
from CRPC patients who had progressed on enzalutamide, 
abiraterone or other treatments (19). They identified 
AR amplification and three novel AR mutations (D879E, 
L881I and E893K) not as yet described in literature. They 
confirmed other well-known AR mutations, in particular 
H875Y, F877L, T878A. 

Unfortunately, data about AR mutational status were 
not available for some samples as AR sequencing was 
impossible to perform due to low DNA yield. Such data 
have been updated by Lallous et al. in their recent study 
featuring an improved sequencing pipeline with a whole-
genome pre-amplification step of cfDNA and characterized 
AR mutational status of all patients recruited in previous 
case series. Deep sequencing was performed for AR exon 
8, which codes for AR-LBD, detecting four additional 
novel AR mutations (H875Q, D891H, E898G, T919S). 
In addition, the authors performed in vitro AR functional 
studies evaluating the effects on AR-LBD of the mutations 
detected in CRCP patients and of other mutations already 
described in literature.

AR mutations and treatment resistance 

The majority of documented AR mutations falls in the LBD 
or cofactor binding regions (20). Alterations in the LBD can 
interfere with the action of AR-antagonists, turning them 
into AR-agonists and leading to treatment resistance, as it 
often happens with first-generation AR-antagonists such as 
hydroxyflutamide and bicalutamide (21). Such mutations 
are also able to alter AR specificity for ligands leading to 
a great affinity for other hormones, such as progesterone, 
with a pivotal role in the development of resistance against 
CYP17A1 inhibitors (16). Lallous et al. sequenced AR exon 

8 in order to identify mutations which alter the AR-LBD 
and that could be responsible for anti-androgen treatment 
resistance.

AR mutations in codon 878 (T878A and T878S) are 
among the most investigated mutations in PCa patients 
(22-26). Functional studies have shown that in presence 
of T878A and T878S mutations hydroxyflutamide acts 
as an AR-agonist (27-29). According to Lallous et al. also 
bicalutamide and high concentration enzalutamide and 
ARN509 exhibit an AR-agonist behavior in presence of 
these two mutations, with an important role also in new-
generation AR-antagonist treatments. In addition, T878A 
and T878S could be activated by estrogens (2). T878A is 
frequent in abiraterone-treated CRPC patients producing 
a progesterone-activated AR mutant protein leading to 
abiraterone-resistance (16). Similarly, H875Y is associated 
with elevated AR promiscuity, in particular with increased 
AR affinity for progesterone (30,31) and also estradiol 
and hydroxyflutamide (32). Lallous et al.’s findings are 
concordant with these previous studies. They found in 
vitro that T878A/S and H875Y mutants convert AR-
antagonists into AR-agonists, and obtain higher affinity 
for progesterone and estradiol binding. In fact, the authors 
frequently found these three mutations in cfDNA from 
both abiraterone- and enzalutamide-resistant patients.

L702H mutation was reported in abiraterone- and 
enzalutamide-resistant patients receiving glucocorticoid 
treatment (11,18). This agrees with Lallous et al. functional 
studies, showing that L702H is the only single mutant 
activated by hydrocortisone. The authors did not found the 
mutation in cfDNA, probably because none of the patients 
had undergone glucocorticoid-based treatment.

Another critical mutation is F877L: several studies 
reported its capacity of inducing resistance against new-
generation antiandrogens, converting both enzalutamide 
and ARN-509 into AR-agonists (33-36). Lallous et al. 
reported a partial agonist effect of these drugs on AR-
F877L in vitro, while F877L/T878A haplotype was far more 
sensitive to enzalutamide and ARN-509 agonist action. This 
finding agrees with a recent work reporting only a mild AR-
F877L affinity for enzalutamide and a strong agonist activity 
of enzalutamide against the F877L/T878A haplotype (37). 
Interestingly, only one patient carried the F877L/T878A 
haplotype after enzalutamide treatment, which was absent 
after bicalutamide, suggesting that it could be related to the 
enzalutamide resistance mechanism. On the other hand, 
bicalutamide showed no agonistic activity on F877L or 
F877L/T878A in vitro.
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Novel treatment strategies

Nowadays, direct anti-AR drugs target AR-LBD, which 
often acquires genetic variations as mechanism of resistance. 
In order to overcome treatment resistance, Lallous et al. 
highlighted the importance of developing novel therapeutic 
strategies with an impact on other AR domains than the 
LBD. The strategy proposed by the authors is to target 
the AR binding function-3 (BF3) pocket, i.e., a site distant 
from the LBD essential for AR transcriptional activity 
and for recruiting AR co-regulators such as FKBP52 and  
Bag-1 L (38,39).

VPC-13566 is a quinolone derivate with different 
pharmacodynamics from classical anti-androgen drugs, 
targeting BF3 functionality (40). According to Lallous et al., 
VPC-13566 proved effective also in presence of mutations 
which confer resistance to enzalutamide and ARN-509. 
The authors proposed it as a promising option against 
AR-mutants, either alone or in combination with LBD-
targeting agents. 

VPC-13566 is not the only novel drug targeting a region 
outside the LBD. Comparison of VPC-13566 activity with 
other drugs under investigation would be advisable: EPI-001 
and its trans isomer EPI-002 are able to bind covalently the 
AR N-terminus by blocking it from activating downstream 
signaling pathways (41,42). EPI-001 has proven effective 
in CRPC xenograft models, and an analogue of the EPI 
compounds is currently being evaluated in phase I/II trials 
(NCT02606123) (41). The goal of these compounds is to 
inhibit both ligand-dependent and -independent activation 
of AR (41,42). EPI-002 significantly reduced tumor growth 
even in presence of AR splice variants in a xenograft  
model (43). Unfortunately, no studies regarding EPI 
compounds effects and AR-mutants are available. However, 
thanks to the ability of EPI compounds to inhibit AR in a 
ligand-independent way, they are likely to maintain their 
effects also in presence of mutations in the LBD. 

Another novel drug under trial is galeterone, a next 
generation CYP17 inhibitor similar to abiraterone with 
an additional inhibitory action against AR. It is able to 
compete with DHT in binding to AR LBD (42), to impair 
AR binding to DNA (44) and to mediate AR degradation (1).  
Interestingly, galeterone showed a degrading effect also 
against the T878A mutant (42). Thanks to its multiple 
actions galeterone can potentially overcome constitutively-
active AR splice variants:  this  is  currently under 
investigation in a phase III clinical trial (ARMOR3-SV) (6).

The next-generation AR-antagonist ARN-509 is 
structurally and mechanistically similar to enzalutamide (7); 

in fact, according to Lallous et al., it suffers the negative 
effects of certain AR-mutations as well as enzalutamide 
does. Other promising novel anti-androgens, such as the 
CYP17 inhibitor VT-464 and the AR-antagonist ODM-
201, have different biochemical structures than, respectively, 
abiraterone and enzalutamide (8-10). Therefore it would 
be interesting to investigate if AR-LBD mutations impair 
their activity just as it happens with abiraterone and 
enzalutamide.

Conclusions

Based on the work of Lallous et al., several AR mutations in 
exon 8 showed a strong effect on AR protein promiscuity, 
causing resistance to anti-androgen drugs. 

In particular, the authors highlighted that H875Y and 
T878A/S mutations are involved in resistance to AR-
antagonists (hydroxyflutamide, bicalutamide, enzalutamide 
and ARN-509) and abiraterone in vitro. These data 
suggested that the detection of these mutations in cfDNA 
could lead to alternative therapeutic strategies, which target 
another AR domain. 

In addition, F877L mutation also caused resistance 
to enzalutamide and ARN-509 in vitro, maintaining its 
sensitivity to bicalutamide. The authors hypothesized that 
switching back to a bicalutamide-based treatment could be 
an option for a carrier of this mutation.

Due to the effect of the mutations analyzed on AR-LBD, 
the authors also proposed the use of VPC-13566 drug, with 
proven efficacy also against the AR-mutants investigated 
in vitro. Further studies could compare the effects of VPC-
13566 with those of other novel anti-androgen drugs in 
clinical trials.

However, in CRPC, mechanisms of resistance may 
be also associated with deregulation of other pathways 
as PTEN/PI3K/AKT or with the activation of AR-
independent pathways as neuroendocrine differentiation, 
suggesting the importance of targeting both AR and other 
pathways (45-49).

The cfDNA from CRPC patients was characterized for 
predictive information about different treatments such as 
abiraterone and enzalutamide. As Lallous and coworkers 
collected plasma samples at abiraterone and other 
treatments progression, but not at enzalutamide progression 
for all patients, no data are available on the AR mutational 
status subsequent to enzalutamide treatment. However, the 
few data available on the samples of three patients collected 
during enzalutamide treatment showed interesting mutation 
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status: two of them carried additional mutations, absent 
during previous treatments, suggesting that they could have 
developed after the administration of enzalutamide. 

In addition to other well-known AR mutations, Lallous 
et al. found four new AR-LBD mutations (H875Q, D891H, 
E898G, T919S) in cfDNA of CRPC patients, potentially 
important for predicting treatment efficacy. Further studies 
are needed to better understand how these mutations are 
involved in disease evolution.

In conclusion, a biological characterization of CRPC 
is pivotal to better select tumor treatments, in addition 
to clinical poor prognostic factors, such as presence of 
visceral metastases, early PSA progression, early metabolic 
progression, or increase of inflammatory biomarkers (50-56).

On the basis of Lallous et al.’s research, the monitoring 
of AR mutations in cfDNA could provide additional 
information about timely treatment change, aiming to 
improve patient survival. 
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