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The p53 protein and tumor suppression

Proper coordination of p53-responsive gene expression 
provides a crucial barrier to tumor development, and more 
than 50% of human cancers harbor mutations in p53 (1,2). 
Moreover, in cancers bearing wild type p53 alleles, p53 
function is frequently compromised through mutations of 
associated positive regulators or amplification of negative 
regulators of p53 (1). A large number of p53-mutant mouse 
models have been developed to study p53 function and 
regulation. Mice homozygous for p53-null alleles rapidly 
developed spontaneous tumors (3-5). All p53−/− mice 
develop tumors by 10 months of age, with a mean time to 
tumorigenesis of approximately 4.5 months. These tumors 

are primarily lymphomas (~70–80%, largely T-cell in 
origin), with some incidence of sarcomas and other tumor 
types. p53+/− mice develop tumors later than p53−/− mice, 
with the earliest tumor presentation around 12 months of 
age (4-6). In contrast, the majority of p53+/− mice (~95%) 
develop tumors by 24 months of age, with a mean time to 
tumorigenesis of approximately 17 months. These p53-
heterozygous animals present with lymphomas (primarily 
of B cell origin), osteosarcomas, soft-tissue sarcomas and a 
range of carcinomas (7). Interestingly, one study observed 
that while the remaining wild-type p53 allele is deleted in 
approximately half of p53+/− tumors, the other half retain 
a functional wild-type allele (8). Thus, a reduction in p53 
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dosage is alone sufficient to increase the susceptibility of 
p53+/− cells to tumorigenesis (9).

In agreement with early observations that p53 impaired 
the ability the ability of oncogenes to transform cells (10,11),  
numerous studies have shown that combining the p53-null 
allele with mouse models of cancer, such as those driven by 
PTEN deficiency, activated BRAFV600E, or Myc overexpression, 
leads to accelerated tumor development (12-14). Early in 
vitro studies performed in human cells aimed at identifying 
the mechanism by which p53 impaired tumor formation 
identified p53 as a regulator of cell growth, senescence, and 
apoptosis (15-19). This was supported by subsequent work 
in mice, wherein p53 was found to regulate spontaneous 
immortalization of MEFs (20-22), and to be essential for 
oncogene-induced senescence in cells overexpressing Ras, 
E2F1 and constitutively active β-catenin (23-25). A role for 
p53-dependent senescence in tumor suppression in mice 
was highlighted using mice expressing a mutant p53 protein 
(p53R172P) that was defective for apoptosis but retaining 
growth arrest capabilities. These mice displayed delayed 
Eµ-myc-driven B cell lymphomagenesis compared to mice 
heterozygous for p53 (26).

The influence of p53 on growth arrest and senescence has 
been largely attributed to its ability to upregulate p21 expression. 
p21 protein levels increase in normal fibroblasts as they 
approach senescence (27) and p21−/− cells display reduced growth 
arrest in response to DNA damage (28,29). Furthermore, tumor 
cell lines lacking functional p53 failed to arrest in response to 
forced expression of p53 when the p21 gene was disrupted (30), 
and induced expression of p21 promotes senescence in tumor 
cells lacking functional p53 (31,32).

Studies in primary murine cells have also shown p53 
accumulation and stabilization can promote increased 
apoptosis (33,34), and p53-dependent apoptosis has been 
shown to suppress Eµ-myc-driven B cell lymphomagenesis (35),  
E2F1-driven skin carcinomas (36), and brain tumorigenesis 
induced by a mutant SV40 T antigen (non p53-binding 
TgT121) (37). Interestingly, development of Eµ-myc-driven 
tumors is also accelerated in mice lacking the p53-responsive, 
pro-apoptotic genes Bax (38), or Puma (39-41).

Although p53-dependent growth arrest, senescence 
and apoptosis appear to be important tumor-suppressive 
mechanisms, the relative contribution of these mechanisms 
is likely to be tissue- or cell-type-dependent. This is 
exemplified by a series of studies in which p53 reactivation 
in established tumors resulted in apoptosis in lymphomas 
and senescence in sarcomas, respectively (42-44). More 
recently, a number of studies have implicated additional 

p53-dependent mechanisms in impairing tumor growth.  
Gu and colleagues have described a knock-in mouse in which 
three p53 acetylation sites in the p53 DNA-binding domain 
were mutated to arginine (p533KR mice) (45). p533KR mice and 
cells fail to transactivate the majority of p53 target genes, 
and induce growth arrest or apoptosis. However, these mice 
do not develop cancer, suggesting that spontaneous tumor 
suppression by p53 may occur independently of growth 
arrest or apoptosis. It is proposed that as these animals retain 
the ability to transactivate the metabolic targets Gls2 and 
TIGAR, p53 may display tumor suppressive activity through 
the regulation of energy metabolism and reactive oxygen 
species (ROS) levels (45). Similar findings have been reported 
using, triple knock-out mice deficient for p21, Puma, and 
Noxa (p21−/−puma−/−noxa−/− mice) (46). These mice are 
profoundly resistant to DNA damage-associated apoptosis 
and growth arrest, and largely (but not entirely) resistant to 
p53-dependent senescence, yet do not develop spontaneous 
tumors. These authors noted that induction of p53 target 
genes involved in DNA repair was unperturbed in p21−/−

puma−/−noxa−/− mice, and propose that coordination of DNA 
repair is an essential tumor suppressive activity of p53. More 
recently, Gu and colleagues have identified the ability of p53 
to transcriptionally repress the cysteine/glutamate antiporter 
SLC7A11 and induce ferroptosis [an iron-dependent 
mechanism of non-apoptotic cell death (47)] in response 
to ROS as another mechanism by which p533KR mice may 
suppress tumorigenesis (48).

The role of p53 responses in the DNA damage 
response

Following the identification of p53 as a tumor suppressor 
protein, and in concert with the aforementioned studies 
elucidating the tumor suppressive activities of p53, a series 
of studies showed that p53 levels and activity increased 
in response to DNA damage. Treatment of cells with 
DNA damaging agents such as ultraviolet light (UV), 
ionizing radiation (IR), and numerous cancer therapeutic 
and/or DNA damage-inducing compounds such as 
diamminedichloroplatinum (cisplatin), mitomycin C, 
etoposide, hydroxyurea (HU), methyl methanesulfonate 
(MMS) and actinomycin D results in increased p53 protein 
levels and associated cell cycle arrest (49-52). Furthermore, 
p53−/− MEFs are resistant to oncogene-sensitized apoptosis 
in response to serum withdrawal or a variety of genotoxic 
agents (53,54). Analyses of p53−/− mice determined that p53 
governs IR-induced apoptosis in both thymocytes (55-57)  
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and epithelial stem cells of the small intestine (58). Further 
studies have identified additional radiosensitive cell 
populations in the spleen, bone marrow, and hair follicles (59).

An early indication of the signaling pathways governing 
the p53 response to DNA damage came from analysis of from 
patients with ataxia-telangiectasia; an autosomal recessive 
disorder resulting in neuronal degeneration, sensitivity to IR, 
premature ageing, increased incidence of cancer and other 
pathologies. Patients’ cells do not display increased p53 levels 
and activity following IR exposure (60), and mice null for 
ataxia telangiectasia mutated (ATM) are extremely sensitive 
to IR-induced lethality, and show profound defects in DNA 
damage-induced growth arrest and apoptosis (61-64). 
Similar to AT patient cells, p53 is not stabilized in ATM−/−  
MEFs or thymocytes following IR (63,65). Furthermore, 
these animals succumb to T-cell lymphomas by 6 months of 
age (61,62). Research aimed at identifying the mechanism 
by which ATM leads to p53 stabilization is discussed below.

Regulation of p53 function

The chief negative regulator of p53 stabilization and activity 
is the Mdm2 oncoprotein. The murine double minute 2 
(Mdm2) gene was initially identified as an amplified DNA 
sequence present in a spontaneously immortalized mouse 
3T3 cell line (66). Mdm2 overexpression is capable of 
conferring tumorigenicity (67), and Mdm2 is amplified in a 
significant fraction (~30%) of soft tissue sarcomas (68-70).  
Further studies have identified Mdm2 amplification in a 
variety of other tumor types, including breast carcinomas (71), 
glioblastomas and astrocytomas (72), myeloid neoplasms (73), 
B cell lymphomas (74) and oral carcinomas (75).

Shortly after the identification of Mdm2’s interaction 
with p53, mapping of the p53 and Mdm2 interaction 
domains determined that the N-terminus of Mdm2 bound 
to and inhibited the transactivation domain of p53 (76,77). 
Accordingly, Mdm2 overexpression cooperates with Ras in 
transforming primary cells (78), and inhibits p53-dependent 
growth arrest and apoptosis in various cell lines (79-81).

It was subsequently shown that Mdm2 can also 
promote the proteasomal degradation of p53 (82,83) by 
functioning as an E3 ubiquitin ligase and directing p53 
polyubiquitination (84). This E3 activity of Mdm2 is 
dependent on its C-terminal RING finger domain (85), 
which also promotes the nuclear export of p53 by directing 
its monoubiquitination (86-89). It is proposed that low 
levels of Mdm2 activity induce monoubiquitination 
and nuclear export of p53, whereas high levels promote 

polyubiquitination and nuclear degradation of p53 (90). 
The principle sites on p53 of Mdm2-ubiquitin ligation are 
a series of C-terminal lysines also targeted by acetylation, 
creating one of many layers of regulation of p53 stability 
and activity (91-94). Notably, the Mdm2 gene is also a target 
of the p53 transcription factor (95,96). As p53 becomes 
stabilized and active, it increases the expression levels of its 
own negative regulator Mdm2, forming an autoregulatory 
feedback loop that returns p53 protein and activity to basal 
levels. Furthermore, Mdm2 has also been shown to be 
capable of directing its own degradation (85,97).

The crucial role of Mdm2 in regulating p53 activity is 
illustrated by the p53-dependent lethality of Mdm2-null 
mice during early embryogenesis. Mdm2−/− mice display 
peri-implantation lethality due to unregulated p53 activity, 
and crossing these mice with the p53-null allele completely 
rescues Mdm2-null mice (98,99). Mice null for both Mdm2 
and p53 develop spontaneous tumors of similar incidence 
and spectrum as p53-null mice (100). Furthermore, primary 
p53-null and Mdm2/p53 double-null cells display similar 
growth characteristics in culture and in their response 
to genotoxic agents (100). Mdm2+/− mice display delayed 
Myc-driven lymphomagenesis (101), and hypomorphic-
Mdm2 mice expressing reduced levels of Mdm2 displayed 
p53-dependent sensitivity to radiation-induced lethality 
and apoptosis in lymphopoietic tissues (102). Thus, 
perturbations in the levels of Mdm2 can significantly impact 
p53 responses to oncogenes and DNA damage.

In contrast with Mdm2-null mice, mice overexpressing 
an Mdm2 transgene are viable and succumb to spontaneous 
tumors (103). The rate of tumorigenesis in Mdm2-transgenic  
mice is slower than that observed in p53−/− or p53+/− mice, likely 
due to the relatively modest levels of Mdm2 overexpression 
(approximately 4 fold)  in the Mdm2-transgenics.  
However, like p53-mutant mice, Mdm2-transgenics present 
with a large percentage of lymphomas and sarcomas. 
Notably, while presence of the Mdm2-transgene does 
not accelerate spontaneous tumorigenesis in p53−/− mice, 
it does increase their incidence of sarcomas, revealing a 
p53-independent contribution of Mdm2 overexpression 
to tumorigenesis. Mdm2 overexpressing mice also 
display accelerated Myc-driven lymphomagenesis (104).  
This same study showed that elevated levels of Mdm2 
resulted in reduced p53 protein levels and activity in B cells, 
and reduced B cell apoptosis following IR. 

Similar to Mdm2, the related protein MdmX (or Mdm4)  
is also capable of binding p53 and inhibiting p53 transactivation 
of target genes (105,106). MdmX and Mdm2 share 34% 
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protein homology and contain highly homologous  
p53-binding, acidic, zinc finger, and RING finger  
domains (105). As with Mdm2, the MdmX gene is amplified 
or overexpressed in a variety of tumor types (107-111). 
However, unlike Mdm2, MdmX does not possess the ability 
to directly ubiquitinate p53 (112,113).

Mice null for MdmX display a similar p53-dependent 
embryonic lethality as observed in Mdm2−/− mice, albeit later 
in development (E9.5–10.5), and are rescued by deletion of 
p53 (114-116). Notably, the lethality in MdmX−/− embryos 
appears to be predominantly associated with a lack of 
proliferation, as opposed to aberrant apoptosis [as reported 
for Mdm2−/− embryos (117)]. Accordingly, a subsequent 
study revealed that co-deletion of p21 can significantly 
delay the embryonic lethality of MdmX-null mice (118). 
MdmX+/− cells and mice display decreased oncogene-driven 
transformation and Eµ-myc-driven lymphomagenesis, 
respectively (119), and MdmX+/− mice are sensitized to 
radiation induced lethality (119).

Mdm2 and MdmX have been shown to interact via their 
C-terminal RING domains (120,121), and stabilization of 
Mdm2 by heterodimerization with MdmX increases the 
ability of Mdm2 to degrade p53 (122-125). Notably, the 
turnover of MdmX is mediated by Mdm2 (126-128).

Recently, a series of Mdm2 and MdmX knock-in mouse 
models have been generated that display altered Mdm2-
MdmX interactions and/or Mdm2 E3 ligase activity (129-132).  
Analyses of these models have revealed that Mdm2-MdmX 
interactions are crucial for inhibiting p53 activity during 
development and tissue homeostasis, whereas the E3 ligase 
function of Mdm2 is vital for regulating p53 protein levels 
and activity in cellular and organismal responses to DNA 
damage (132).

p53 stabilization and activation in response to 
cell stress

The inhibitory role of MDM proteins on p53 protein 
stabilization and activities must be interrupted in order for 
p53 to become elevated and activated in response to DNA 
damage or other forms of stress.

An important mediator of oncogene-dependent 
activation of p53 is the tumor suppressor protein p19ARF 
(p14ARF in humans). Oncogenes including c-Myc, Ras and 
E1A induce ARF and cause p53-dependent growth arrest 
and apoptosis (133-135). ARF binds to Mdm2 and can block 
its ubiquitin ligase activity towards p53 (136-141) as well as 
sequester Mdm2 in the nucleolus (142,143). This facilitates 

p53 protein stabilization and activation in order to limit the 
transformative effects of aberrant oncogene activity.

DNA damage-induced modifications of p53

The cellular response to DNA damage is primarily governed 
by the PI3K-related serine/threonine kinases (PIKKs) 
ATM and ataxia telangiectasia and Rad3-related protein 
(ATR). ATM is activated by DNA damaging agents that 
create DSBs, while ATR is activated following recruitment 
to ssDNA regions.  The related protein DNA-PK  
(DNA-dependent protein kinase) primarily regulates a 
smaller group of proteins involved in DSB end joining. 
Following the recognition of DNA damage by different 
sensor proteins, these kinases trigger the direct or indirect 
phosphorylation of numerous effector proteins involved in 
a multitude of signaling networks that promote different 
DNA repair processes, cell-cycle arrest and programmed 
cell death (144,145).

Included among the various PIKK substrates is p53. 
p53 is phosphorylated on a number of residues, primarily 
clustered in the N- and C-terminal regions (Figure 1), 
in response to various DNA-damaging agents (146,147). 
Phosphorylation of C-terminal residues is primarily thought 
to influence site-specific DNA binding by p53, whereas 
N-terminal phosphorylation events have been implicated in 
regulating the Mdm2-p53 interaction as well as p300/CBP 
recruitment (146,147). Seven serines (Ser6, 9, 15, 20, 33, 
37, 46) and two threonines (Thr18 and 81) in the N-terminal 
region of human p53 are phosphorylated in response to 
exposing cells to IR or UV light (146). The majority of 
these phosphorylation events occur directly by ATM, ATR, 
or DNA-PK (148-151) or indirectly by the ATR- and 
ATM-activated checkpoint kinases Chk1 or Chk2 (152-154). 
Additionally, casein kinase 1 (CK1) has also been shown to 
phosphorylate a number of these residues (155,156).

Of particular interest in the search for the mechanism of 
p53 stabilization following DNA damage were residues Ser15 
and Ser20 (Ser18 and Ser23 in mice). In vitro experiments 
revealed phosphorylation of Ser15, a target of both ATM 
and ATR, inhibits the p53-Mdm2 interaction (157) and 
coincides with p53 activation (158). Similar experiments 
have shown phosphorylation of Ser20, a target of Chk2, 
leads to reduced Mdm2-medated degradation of p53 and 
increased p53 activity (153,159,160). Furthermore, Thr18 
phosphorylation, which occurs through CK1 and can 
disrupt Mdm2-p53 binding, was shown to be dependent on 
prior Ser15 phosphorylation (155,161).
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As these p53 residues are located within, or immediately 
adjacent to, the Mdm2-p53 binding interface (162), it was 
hypothesized that phosphorylation of these residues was 
sufficient to account for p53 stabilization and activation 
following DNA damage. However, analysis of various 
genetically engineered mouse models, which allowed for 
the examination of these phosphorylation events under 
endogenous conditions, revealed that these phosphorylation 
events were insufficient to account for the full effects of 
DNA damage on p53 stabilization and activation or for p53 
tumor suppression. 

p53S18A mice in which serine 18 (Ser15 in humans) is 
replaced with alanine show no significant defects in p53 
protein stabilization in thymocytes or MEFs in response 
to DNA damage (163,164). MEFs from p53S18A mice show 
no defects in proliferation or growth arrest after DNA 
damage, while thymocytes show an intermediate (compared 
to p53−/−) defect in apoptosis. However, the ability of p53 
to transactivate a number of target genes is compromised 
in p53S18A mice. A recent report suggests that this may be 
due to a role for p53 Ser15 in transcription and promoter 

relaxation as opposed to p53 stabilization (165). Additionally, 
p53S18A mice develop Eµ-myc-driven B cell lymphomas at an 
accelerated rate, possibly due to their apoptotic defects (166).

p53S23A mice in which serine 23 (Ser20 in humans) is 
replaced with alanine, show a similar absence of defects in 
p53 stabilization or growth arrest MEFs (167,168). However, 
p53S23A mice do show reduced stabilization of p53 and apoptosis 
in thymocytes in response to IR, though intermediate 
compared to p53−/− thymocytes (168). Furthermore, p53S23A 
mice develop spontaneous tumors (predominantly B cell 
lymphomas) beginning at approximately 12 months, with 
70% of animals having developed tumors by 24 months. 
Interestingly, p53S18A/S23A mice, in which both Ser18 and 
Ser23 have been substituted, display more profound 
deficiencies in p53 stabilization and function, indicating 
an additive effect of phosphorylation of these two residues 
in regulating p53 function (169). While still intermediate 
to the phenotypes observed in ATM−/− and p53−/− cells, 
thymocytes from p53S18A/S23A mice show more significantly 
impaired p53 stabilization, transactivation of target genes, 
and apoptosis in response to irradiation than either single-

Figure 1 Diagrams of p53, Mdm2, and MdmX proteins. Shown are the major functional domains along with sites of phosphorylation relevant 
to the DNA damage response (P, yellow circles). TAD, transcriptional activation domain; PRD, proline-rich domain; TET, tetramerization 
domain; REG, C-terminal regulatory region; NLS, nuclear localization sequence; NES, nuclear export sequence; Zn, zinc finger.
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mutant alone. However, p53 stabilization and activities are 
still unperturbed in MEFs. These mice are similarly tumor 
prone as reported for Ser23 mutant mice, and again present 
primarily with lymphomas.

DNA damage-induced modifications of MDM proteins

As the in vivo results obtained from p53 knock-in mice failed 
to replicate the profound defects in DNA damage-induced 
p53 stabilization and activity predicted by in vitro studies, 
additional signaling events must contribute to this process. In 
addition to p53, its primary negative regulators Mdm2 and 
MdmX are also subject to a multitude of phosphorylation 
events in response to DNA damage (Figure 1).

Phosphorylation of MDM proteins by ATM
In  r e sponse  to  DNA damage ,  human  MdmX i s 
phosphorylated at Ser342 and Ser367 by Chk2 (170-173) and 
Ser403 by ATM (174). These phosphorylation events lead 
to MdmX degradation, concurrent with p53 stabilization 
and activation (170,171). This phosphorylation-dependent 
degradation of MdmX is proposed to be directed by Mdm2, 
and possibly mediated by changes in MdmX binding by 
14-3-3 and the deubiquitinase HAUSP (171-173,175).  
Wahl and colleagues have generated an MdmX3SA mouse  
model in which all three of these serine residues are 
replaced with alanine (176). MdmX3SA mice display 
impaired p53 stabilization and decreased p53 activity in 
response to IR. Furthermore, MdmX3SA mice are resistant 
to lethal doses of IR, and though not prone to spontaneous 
tumorigenesis, these mice display increased Eμ-myc-driven  
l ymphomagenes i s .  Thus ,  DNA damage- induced 
phosphorylation of MdmX, a negative regulator of p53, can 
impact p53 stabilization and activity.

ATM-dependent phosphorylation of Mdm2 also 
precedes p53 stabilization after DNA damage (177). It 
was initially shown that ATM directly phosphorylates 
Ser395 of human Mdm2 (Ser394 in mouse) in response to 
DNA damage (178). Furthermore, in transfection-based 
assays, Mdm2 with an aspartic acid in place of Ser395 
(mimicking phosphorylation) shows a decreased capacity 
to induce p53 degradation and nuclear export (178). The 
phosphatase Wild-type p53-induced phosphatase 1 (Wip1) 
can dephosphorylate Mdm2 Ser395, and dephosphorylated 
Mdm2 has increased stability and affinity for p53, 
facilitating p53 ubiquitination and degradation (179). 
This result trends with another study that showed that 
DNA damage-induced p53 stabilization is preceded by the 

destabilization of Mdm2, which is a phenomenon that could 
be inhibited with the PIKK-inhibitor wortmannin (180). 
However, a subsequent study identified five additional 
residues in the C-terminal region of human Mdm2 that 
are phosphorylated by ATM (Ser386, Ser407, Thr419, 
Ser425 and Ser 429) (181) and in vitro work in which all 
six residues were replaced with alanine or aspartic acid 
suggests that ATM phosphorylation of this series of residues 
inhibits RING domain oligomerization and E3 ligase 
activity (181,182). Thus, ATM phosphorylation of Mdm2 
is proposed to influence both Mdm2 stability and activity 
towards p53. 

In order to examine the impact of Mdm2 Ser395 
phosphorylation under endogenous conditions, our lab has 
previously reported the generation and initial characterization 
of a mouse model wherein ATM phosphorylation of Mdm2 
at serine residue 394 (the equivalent of human Mdm2 
Ser395) was abolished (Mdm2S394A mice) (183). Cells and 
tissues in Mdm2S394A mice display profound defects in 
DNA damage-induced p53 protein stabilization and p53 
target gene activation. This failure to induce a robust 
p53 response translates to less p53-dependent apoptosis 
in hematopoietic tissues, radio-resistance, and increased 
spontaneous lymphomagenesis. Furthermore, replacing 
Mdm2 Ser394 with aspartic acid (Mdm2S394D mice) and 
mimicking constitutive phosphorylation at this residue result 
in prolonged p53 activity following damage and suggest 
dephosphorylation of this residue is involved in resolving 
the p53 response (183). Therefore, ATM phosphorylation of 
the negative regulator of p53, Mdm2, can profoundly impact 
p53 stabilization and activation in response to stress in vivo. 
In a subsequent study using Mdm2S394A mice we showed 
that phosphorylation of Mdm2-S394 regulates p53 activity 
and the DNA damage response in lymphatic tissues in vivo 
by modulating Mdm2 stability (184). Intriguingly, while 
Mdm2-S394 phosphorylation delays lymphomagenesis 
in Eμ-myc transgenic mice, and preventing Mdm2-S394 
phosphorylation obviates the need for p53 mutation in Myc-
driven tumorigenesis, irradiated Mdm2S394A mice display 
increased hematopoietic stem and progenitor cell functions, 
and decreased radiation-induced lymphomagenesis. These 
findings document contrasting effects of ATM-Mdm2 
signaling on p53 tumor suppression (184).

Phosphorylation of MDM proteins by c-Abl
Similar to ATM, the c-Abl tyrosine kinase is activated by a 
variety of DNA damaging agents (185-187). c-Abl interacts 
with ATM and is phosphorylated on Ser465, leading to its 
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activation (188,189). This initially led to c-Abl activities in 
the DNA damage response being viewed as downstream 
of ATM. However, more recent work has shown c-Abl 
to phosphorylate both ATM and ATR, and that these 
phosphorylation events are required for maximal activity of 
either PIKK (187). Overexpression studies indicate c-Abl 
promotes growth arrest in a p53-dependent manner, and 
apoptosis by p53-dependent and independent mechanisms 
(190-193). c-Abl mediated p53-independent apoptosis 
is attributed to the p53 homolog p73, which is directly 
phosphorylated by c-Abl on Tyr99 (194-196). However, no 
c-Abl target residues have been identified on p53.

MdmX is phosphorylated by c-Abl on Tyr55 and Tyr99 
in response to DNA damage. These residues are located 
within the p53 binding domain of MdmX, and Tyr99 
phosphorylation impairs p53 binding in a transfection-
based assay (197). Similar co-expression studies have shown 
that c-Abl protects p53 from Mdm2 mediated degradation, 
and overcomes the inhibitory effect of Mdm2 on p53 
transcriptional activity and p53-dependent apoptosis (198). 
Additionally, c-Abl is required for maximal p53 accumulation 
in response to IR, doxorubicin, and mitomycin C in MEFs, 
and co-expression of c-Abl overcomes Mdm2 mediated 
ubiquitination and nuclear export of p53 (199). In vitro 
studies have shown that c-Abl phosphorylates human 
Mdm2 on Tyr394 (Tyr393 in mouse) as well as Tyr276 and 
Tyr405 (200,201), and that c-Abl phosphorylation of Mdm2 
Tyr394 impairs Mdm2’s ability to inhibit p53’s stabilization 
and transactivation, and p53-mediated apoptosis (200). 
It has since been proposed that c-Abl phosphorylation of 
Mdm2 increases Mdm2-MdmX binding and promotes 
Mdm2-directed MdmX ubiquitination. This increase in 
MdmX ubiquitination ultimately destabilizes the Mdm2-
MdmX complex, promoting p53 stabilization (202). 
Recently, our lab has very recently generated Mdm2-
Tyr393 knock-in mice to explore the physiological role of 
c-Abl phosphorylation of Mdm2 on p53 stabilization and 
activation. However, analysis of the DNA damage response 
and tumorigenesis in these mice is presently ongoing.

Other phosphorylation events on Mdm2
Located in the acidic domain of Mdm2 is a cluster of 
residues that are phosphorylated under homoeostatic 
conditions (203). Phosphorylation of these residues is 
known to occur through the activities of the kinases—
glycogen synthase kinase 3 beta (GSK-3β), CK1, and CK2 
(204-207). Phosphorylation of these residues improves 
Mdm2-mediated turnover of p53 in the absence of stress 

stimuli (204,207,208), and hypo-phosphorylation of this 
region of Mdm2 is reported to coincide with DNA damage-
induced p53 stabilization (208). Accordingly, inhibition of 
GSK-3β leads to p53 stabilization in cells (207). Notably, 
GSK-3β is inhibited through phosphorylation by Akt, which 
is activated by DNA-PK following DNA damage (209).  
Akt-mediated inhibition of Mdm2 activity in this 
context contrasts with other reports in which the direct 
phosphorylation of Mdm2 Ser166 and Ser186 by Akt 
is proposed to inhibit p53 activity by facilitating Mdm2 
translocation into the nucleus (210,211) and by inhibiting 
Mdm2 self-ubiquitination and degradation (212).

Effects of Mdm2 phosphorylation on p53 function

Previous studies have suggested that ATM phosphorylation 
of the analogous residue on human MDM2 (Ser395), either 
alone or in combination with several other ATM-target 
serine residues in the same region, impacts the ability of 
Mdm2 to promote p53 degradation and nuclear export, 
and governs Mdm2 RING-domain oligomerization and 
polyubiquitination of p53 (178,181). It is likely that DNA 
damage-induced p53 activity is caused not only by reduced 
Mdm2-mediated p53 degradation (due to destabilization 
of Mdm2) but also by reduced Mdm2 steric inhibition of 
p53. As Mdm2 binds to the amino-terminal, transcriptional 
activation domain of p53 and inhibits p53 target gene 
expression, reduced Mdm2-p53 complex formation after 
Mdm2 phosphorylation by ATM may account for an 
increase in p53 activity even when p53 protein stability is 
only modestly altered (76,213).

As discussed above, we and others have demonstrated that 
Mdm2 phosphorylation can reduce Mdm2 stability, but it 
remains unclear how Mdm2 phosphorylation facilitates Mdm2 
destabilization. One study has suggested that Mdm2 stability 
is primarily mediated through self-ubiquitination (180). This 
study reached this conclusion by overexpressing an Mdm2 
mutant with abrogated RING E3 activity (Mdm2C464A) in 
U2OS cells. However, a subsequent study in which MEFs 
from the corresponding Mdm2C462A knock-in mice were 
examined showed that Mdm2 RING E3 activity was in fact 
dispensable for Mdm2 destabilization after IR (129). 

Degradation of Mdm2 in the absence of Mdm2 ubiquitin 
ligase function is indicative of other ubiquitin ligases being 
capable of regulating Mdm2 stability. One study has shown 
that the p300/CBP-associated factor (PCAF) is capable 
of promoting Mdm2 ubiquitination, and that PCAF can 
impact Mdm2 levels under unstressed conditions as well as 
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Mdm2 destabilization in response to DNA damage (214). 
Similarly, the anaphase-promoting complex/cyclosome 
(APC/C) E3 ubiquitin ligase complex has been shown 
to ubiquitinate Mdm2, with siRNA-mediated depletion 
of APC2, the Mdm2-binding member of the APC/C 
complex, leading to Mdm2 accumulation and diminished 
p53 stabilization in response to DNA damage (215). 
Other studies have identified the F-box proteins β-TRCP 
and FBXO31 as mediators of Mdm2 degradation by the 
SCF complex (216,217). β-TRCP mediated degradation 
of Mdm2 is dependent on Mdm2 phosphorylation by 
CK1 and promotes Mdm2 turnover in response to DNA 
damage (216). This is seemingly in contradiction with 
previous studies showing hypo-phosphorylation of CK1 
target residues on Mdm2 following DNA damage (208). 
Notably, knockdown of β-TRCP does not appear to impact 
the initial DNA damage-induced stabilization of p53, but 
rather Mdm2 stability and p53 levels at later time points in 
the damage response (216). It has subsequently been shown 
that ATM phosphorylates CK1, and that this promotes 
CK1 nuclear localization and Mdm2 degradation (218). It 
is conceivable that the phosphorylation state of Mdm2 at 
CK1 target residues has opposing effects on Mdm2 stability 
depending on the damage response phase and differing 
active signaling events. Contrastingly, FBXO31 knockdown 
in cell lines abolishes the initial Mdm2 destabilization and 
p53 stabilization following DNA damage (217). FBXO31 
can direct the polyubiquitination and degradation of Mdm2, 
and the FBXO31-Mdm2 interaction appears dependent 
on ATM phosphorylation of Mdm2 (217). However, the 
requirement for ATM phosphorylation was determined 
through the expression of an Mdm2 protein lacking all 
6 proposed ATM target residues, and conversely, the 
treatment of lysates with phosphatase or cells with an ATM 
kinase inhibitor. Consequently, the precise mechanism of 
how ATM phosphorylation of Mdm2 Ser394 specifically 
promotes Mdm2 degradation under endogenous conditions 
remains to be determined.

In opposition to Mdm2 destabilization, a number of 
different mechanisms are proposed to promote Mdm2 
stability. These mechanisms include modifications of 
Mdm2 with the small, ubiquitin-like proteins SUMO 
(Small ubiquitin-related modifier) and NEDD8 (Neural 
precursor cell expressed developmentally down-regulated 
protein 8), which are separately proposed to have Mdm2 
stabilizing effects and to decrease in response to DNA 
damage (219,220). Additionally, Mdm2, MdmX and p53 can 
be deubiquitinated by the HAUSP (herpesvirus-associated 

ubiquitin-specific protease) protein (175,221,222). DNA 
damage has been shown to reduce the affinity of Mdm2 
and MdmX for HAUSP, leading to their enhanced 
ubiquitination (175). A proposed mechanism for the 
dissociation of Mdm2 from HAUSP involves ATM 
phosphorylation of Daxx (death domain-associated 
protein 6) triggering its dissociation from Mdm2, and 
relieving Daxx mediated promotion of Mdm2-HAUSP 
interaction (223,224). MDM2 is also been reported to be 
deubiquitinated by the ubiquitin-specific proteases USP2a 
and USP15 (225,226). Notably, USP2a also acts as a 
deubiquitinating enzyme for MdmX, and is downregulated 
in response to cisplatin (227). 

Therapeutic implications

That the overwhelming majority of tumors display loss of p53 
function has led to massive efforts to develop cancer therapies 
that either exploits p53 tumor suppressive function, or its 
propensity for mutation or inactivation. These efforts have 
included, but are not limited to, the development of gene 
therapies involving viral delivery of p53 expression vectors 
into tumors (228), therapies employing siRNA-mediated 
knockdown of negative regulators of p53 such as viral E6 
protein (229) and Mdm2 (230), and immunotherapies 
targeting elevated levels of p53 protein observed following 
p53 mutation (231).

As extensive research has provided an ever-improving 
understanding of the structures and activities of the various 
p53-interacting proteins involved in the p53 signaling 
network, a host of small-molecule and peptide therapeutics 
have also been identified that facilitate the pharmaceutical 
control of p53 signaling. Approximately 50% of tumors 
retain expression of wild-type p53. Accordingly, these tumors 
are potential targets for therapies that stimulate the tumor 
suppressive activities of p53 by freeing it from negative 
regulation. An obvious target for this approach is the 
interaction of p53 with its primary negative regulator, Mdm2. 
Aided by the compact, “druggable” p53-Mdm2 interface, 
which involves a short helical fragment of p53 binding 
in a deep hydrophobic pocket of Mdm2 (162), a series of 
small-molecule inhibitors of the p53-Mdm2 interaction 
have been developed. Both high throughput screening 
and structure based design methods have yielded three 
classes of small-molecule inhibitors, the Nutlins (232), the 
benzodiazepinediones (233), and the spiro-oxindoles (234).  
By interfering with p53-Mdm2 binding, these compounds 
have been shown to activate p53 function, and optimized 
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derivatives of these compounds are currently in a number 
of clinical trials (235). However, these compounds do 
not strongly inhibit the MdmX-p53 interaction, due 
to differences in the p53 binding pocket of MdmX as 
compared to Mdm2, and do not always show effects on 
cancer cells expressing high levels of MdmX (236,237). 
More recently, several small-molecules that target the  
p53-MdmX interaction have been reported (WK 298 and  
SJ-172550) (238,239), as well as molecules that inhibit MdmX 
transcription (NSC 207895) (240) or stability (17-AAG) (241).  
Furthermore, compounds that inhibit both p53-Mdm2 and 
p53-MdmX binding have been generated and are being 
studied (RO-5963) (242). Finally, the small-molecule RITA 
(reactivation of p53 and induction of tumor cell apoptosis) 
was identified in a high-throughput screen as inducing p53 
accumulation and activation by binding p53 itself. RITA 
binding is proposed to induce a conformational change in 
p53, resulting in its dissociation from Mdm2 (243). However, 
it has also been shown that RITA causes DNA-protein  
crosslinks and is metabolized to a reactive species, leading 
to p53-independent toxicity (244-246).

A separate class of inhibitors of p53-Mdm2 and p53-MdmX  
binding are the stabilized small peptides termed “stapled 
peptides” (247,248). These compounds employ a chemical 
strategy termed “hydrocarbon stapling” that fixes an 
all-hydrocarbon crosslink within synthetic peptides 
to preserve their α-helical structure, confer protease 
resistance, and promote their cellular uptake (249). One 
of these compounds, SAH-p53-8 is capable of binding 
to both Mdm2 and MdmX with high affinity (247,248). 
However, despite a higher affinity for Mdm2 than Nutlin 
3a, SAH-p53-8 is less potent at disrupting the p53-Mdm2 
interaction in cells, possibly due to prevailing issues with 
bioavailability (250). 

Compounds have also been developed that inhibit 
the ubiquitin ligase function of Mdm2, such as HLI98 
compounds (251) and the related MPD compounds (252), 
and MEL23 and MEL24 (253). These compounds stabilize 
p53 and Mdm2 promote p53 transcriptional activation and 
growth arrest and apoptosis. However, these inhibitors also 
elicit some p53—independent cytotoxicity, particularly at 
higher concentrations, possibly due to inhibition of other 
RING domain-containing E3 ligases.

Separate from therapies aimed at combating tumor 
growth through p53 induction, research has also focused 
on regulating the p53 response in non-malignant tissues, 
in an effort to reduce the side effects of cytotoxic cancer 
therapies such as cytopenia and hair loss. In one approach, 

using the concept of cyclotherapy, an initial nongenotoxic 
p53 inducing compound is used to promote a reversible cell 
cycle arrest in normal proliferative tissues, before a second 
drug is employed to kill proliferating cells, presumably 
only the p53 mutant tumor cells. This approach has shown 
promise in cell lines, using Nutlin compounds for p53 
induction (254,255). However, this approach is specific 
for chemotherapeutics that target S or M phase, such as 
nucleoside analogs β-D-arabinofuranoside (Ara-C) and 
gemcitabine, or paclitaxel, and does not show effectiveness 
when Nutlins are used in combination with doxorubicin or 
cisplatin. Conversely, the compound Pifithrin-α (PFT-α, an 
abbreviation for “p-fifty-three inhibitor”), a p53-inhibiting 
compound identified in a high-throughput screen, has 
been shown to protect p53 wild-type cells from apoptosis 
induced by irradiation and the cytotoxic drugs doxorubicin, 
etoposide, Taxol, and Ara-C (256). 

In another approach that exploits the propensity for 
p53 inactivation in tumor cells, Yuan and colleagues have 
identified a phenomenon in which pre-treatment of cells 
with low-dose arsenic induces p53 stabilization and a p53-
dependent metabolic shift from oxidative phosphorylation 
to anaerobic glycolysis which confers protection to normal 
tissues from 5FU and radiation-induced toxicities (257-259). 
This approach has recently shown hematopoietic protection 
in humans receiving myelosuppressive chemotherapy in a 
recently reported clinical trial (260).

Our recent findings suggest an avenue for an additional 
layer of pharmaceutical control of the p53 pathway. We have 
shown Mdm2 phosphorylation to significantly impact the 
capacity to repopulate bone marrow following irradiation 
and (in the case of Ser394 phosphorylation) simultaneously 
protect against lymphomagenesis induced by repeated IR 
exposure (184). Similar effects have been observed in the 
absence of appropriate MdmX phosphorylation (176). 
While broad inhibition of DNA damage responsive kinases 
such as ATM, Chk2 and c-Abl would likely be undesirable 
due to their involvement in additional processes such as 
DNA repair, small-molecule therapeutics that inhibit DNA 
damage-induced Mdm2 or MdmX phosphorylation events 
may be useful in reducing unwanted chemotherapeutic 
side effects without compromising p53 tumor suppressive 
function.
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