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Introduction

Poly(ADP-ribose) polymerase 1 (PARP1) is the founding 
member of the poly (ADP-ribose) polymerase (PARP) 
enzyme superfamily. It consists of an amino terminal DNA-
binding domain which contains three zinc fingers, a central 
automodification domain that undergoes poly (ADP-
ribosyl) ation, and a C-terminal catalytic domain which 
utilizes NAD+ to generate poly (ADP-ribose) polymers 
on itself and its target proteins (1,2). PARP1 is activated 
in response to DNA damaging events, binds DNA strand 
interruptions and is involved in the detection and repair of 
DNA single strand breaks (SSBs) (1-3). The role of PARP 
in the detection of DNA damage led to the development of 
PARP inhibitors as chemo- and radiosensitizing agents (4,5). 
However, PARP1 inhibition as a potential major therapeutic 
strategy received a major boost in 2005 when studies from 
the Helleday and Ashworth laboratories revealed that small 
molecule inhibitors of PARP1 are cytotoxic in mammalian 

cells deficient for the breast and ovarian cancer susceptibility 
genes BRCA1 and BRCA2 (6,7). These observations were 
rapidly translated into the clinic. A small phase I clinical 
trial of patients with advanced ovarian, breast and other 
solid tumours treated with the PARP inhibitor olaparib 
(previously known as AZD2881) revealed anti-tumour 
activity in those with BRCA1 or 2 mutations (8). This study 
was supported by subsequent phase 2 trials, which showed 
clinical benefit in women with BRCA1 or BRCA2 deficient 
breast and ovarian cancers (9,10). Subsequent trials showed 
increased progression free survival in patients with advanced 
ovarian cancer treated with olaparib (11,12). 

Given that BRCA1 and BRCA2 are involved in the repair of 
DNA double strand breaks by the homologous recombination 
repair pathway (HRR), it was initially proposed that inhibition 
of PARP1 resulted in the accumulation of SSBs that, upon 
DNA replication, were converted to toxic DNA double strand 
breaks (DSBs) that required HRR for their repair (6,7). Thus, 
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cells compromised for HRR, for example by disruption of 
BRCA1 or BRCA2, were susceptible to PARP inhibition, a 
concept termed synthetic lethality (Figure 1). However, further 
studies revealed that many proteins, in addition to BRCA1 and 
BRCA2 are synthetic lethal or synthetic sick with PARP. These 
include not only proteins with critical roles in HRR, such as 
Rad51, Rad54, RPA and DSS1, but also proteins involved in 
DNA damage signaling in response to DSBs, such as Ataxia 
Telangiectasia Mutated (ATM), ATM and Rad3 related (ATR), 
cell cycle checkpoint kinase 1 (Chk1) and members of the 
Fanconi Anemia DNA damage response pathway (Table 1). 
Together, these studies suggest that the mechanism of PARP 
inhibitor cytotoxicity may be more complex than originally 
proposed (discussed further below) and that tumours with 
defects in DNA damage response genes other than BRCA1 
and BRCA2 may also be targeted by PARP inhibitors. In this 
review, we will discuss the potential for PARP inhibitors in the 
treatment of human cancers characterized by deficiency in the 
DNA damage activated protein kinase, ATM.

ATM

ATM is a member of the phosphatidyl inositol 3 kinase 
like (PIKK) family of serine threonine protein kinases  that 
phosphorylates its target proteins on serines or threonines that 
are followed by glutamines (SQ/TQ motifs) (23,24). ATM 
exists as an inactive dimer in the nucleus of mammalian cells 
and, upon DNA damage, is converted to an active monomer 
that is targeted to DSBs by the Mre11/Rad50/Nbs1 (MRN) 
complex, through interactions with the C-terminal region 
of Nbs1 (24-27). One of the hallmarks of ATM activation 
is autophosphorylation on serine 1981 (25), however, ATM 
undergoes DNA damage induced autophosphorylation 
at additional sites but whether autophosphorylation is a 
prerequisite for activation remains uncertain (28-31). Once 
activated, ATM phosphorylates multiple substrates resulting 
in regulation of cell cycle checkpoints and other cellular 
responses that together play critical roles in orchestrating 
the cellular response to DSBs. Some of the main targets of 
ATM in response to DNA damage include p53, Chk2, and 

Figure 1 Models for the effects of PARP inhibitors on ATM-deficient cells [adapted from (13)]. Top left, endogenous SSBs are repaired by 
SSB repair pathways that involve PARP1. Inhibition of PARP (for example by olaparib), would be predicted to inhibit PARP-dependent SSB 
repair causing SSBs to be converted to DSBs during DNA replication; Top right, recent studies suggest that PARP is required for replication 
fork restart and that PARP inhibitors cause replication fork collapse, leading to toxic DSB ends that require ATM and components of HRR 
and Fanconi Anemia pathways for their repair; Lower right, in ATM-proficient cells, PARP-inhibitor induced damage is repaired regardless 
of p53 status; however, in ATM-deficient cell lines with mutant p53 or in ATM-deficient cells in which p53 function has been abrogated, 
PARP inhibitors induce cell death by apoptosis (lower left). In addition, inhibition of ATM kinase activity using KU55933 induces PARP-
inhibitor dependent apoptosis in cells with inactivation or mutation of p53 (lower right). See text for details
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H2AX (23,24), however recent phosphoproteomics studies 

suggest that the total number of ATM substrates may be in the 

hundreds, if not thousands (32-34). Through phosphorylation 

of KAP-1, ATM also plays a critical role in the repair of DSBs 

that occur in heterochromatic regions (35,36). ATM is also 

the major sensor of reactive oxygen species (ROS) in the cell 

(37,38). Recent studies reveal that ATM also plays critical roles 

in mitochondrial integrity (39) and additional cytoplasmic 

roles have been reported (40). Thus, ATM plays critical roles 

in multiple cellular processes (41). 

Table 1 Genes shown to be synthetic lethal or synthetic sick with PARP

Protein name Protein symbol Function Ref.

Ataxia telangiectasia and Rad3 related ATR Cell cycle checkpoint signalling (14,15)

Ataxia telangiectasia mutated ATM DSB damage signalling, repair of DSBs 

in heterochromatin

(14-16)

Breast and ovarian cancer susceptibility gene 1 BRCA1 Tumour suppressor, transcription, DSB signaling (6)

Breast and ovarian cancer susceptibility gene 2 BRCA2 Tumour suppressor, HRR (7)

Checkpoint kinase 1 CHEK1 Cell cycle arrest (14,15)

Checkpoint kinase 2 CHEK2 Cell cycle arrest (14)

Cyclin-dependent kinase 1 Cdk1 Cell cycle control (17)

Cyclin-dependent kinase 5 CDK5 Neuronal cell cycle arrest and differentiation (15)

Damage-specific DNA binding protein 1 DDB1 Nucleotide excision repair (18)

Fanconi anemia, complementation group A FANCA DNA crosslink repair (14)

Fanconi anemia, complementation group C FANCC DNA crosslink repair (14)

Fanconi anemia, complementation group D2 FANCD2 DNA crosslink repair (14)

Ligase 1 Lig1 DNA replication, base excision repair (18)

Mitogen-activated protein kinase 12 MAPK12 Transduction of extracellular signal (15)

Nibrin NBS1 DSB repair (14)

Nicotinamide phosphoribosyltransferase NAMPT Biosynthesis of nicotinamide adenine dinucleotide (19)

Phosphatase and tensin homolog PTEN Dephosphorylates phosphatidylinositides (20)

Polynucleotide kinase 3'-phosphatase PNKP Base excision repair, NHEJ (15)

RAD51 RAD51 HRR (14)

RAD54 RAD54 HRR (14)

Replication protein A1 RPA1 SSB repair (14)

Serine/threonine kinase 36 STK36 Possible role in sonic hedgehog (Shh) signaling (15)

Split hand/foot malformation (ectrodactyly) type 1 DSS1 Limb development, HRR (14)

Testis-specific serine kinase 3 STK22C Germ cell differentiation (15)

Ubiquitin specific peptidase 11 USP11 Deubiquitinating enzyme (21)

X-ray repair complementing defective repair 

in Chinese hamster cells 1

XRCC1 SSB repair (18)

XPA binding protein 2 XAB2 Transcription coupled repair, pre-mRNA splicing (18)

X-ray repair complementing defective repair 

in Chinese hamster cells 2

XRCC2 HRR (22)

X-ray repair complementing defective repair 

in Chinese hamster cells 3

XRCC3 HRR (22)

RAD18 RAD18 Post replication repair (22)

Ubiquitin-conjugating enzyme E2N UBC13 Post replication repair (22)
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Potential for targeting ATM-deficient 
malignancies with PARP inhibitors

The potential therapeutic relevance of ATM in this context 
can be inferred from a number of clinical and epidemiological 
observations. Mutation or deletion of both copies of the ATM 
gene result in Ataxia-Telangiectasia (A-T), a condition which 
becomes apparent in early infancy with the development of 
progressive cerebellar ataxia, but which is also characterized 
by radiation sensitivity, cancer predisposition and immune 
deficiencies (41-43). The latter three characteristics can be 
explained by an aberrant capacity to process DSBs while 
the ataxia is thought to be due to the toxic effects of ROS 
on Purkinje cells of the cerebellum in affected individuals. 
This cancer predisposition seems to extend to obligate 
A-T heterozygote blood relatives of A-T patients; indeed, 
ATM heterozygotes likely make up about 1% of the general 
population. Female A-T carriers have an increased risk 
of breast cancer, with some evidence of increased risk 
of colon and gastric cancers in men and women (44,45). 
Furthermore, recent evidence shows that a number of 
human malignancies have mutation or deletion of ATM. 
These include the B-cell lymphoid malignancies mantle 
cell lymphoma (MCL) and B-cell chronic lymphocytic 
leukemia (CLL), as well as carcinomas such as lung and 
gastric cancer (Table 2). The mechanism by which this arises 

is not defined (loss of heterozygosity is clearly a candidate), 
but the frequency with which ATM aberrations can be 
seen in tumours suggests that ATM deficiency is common 
enough to represent a numerically meaningful proportion 
of patients (Table 2).

Our laboratory has a long standing interest in ATM 
and other members of the PIKK family and their roles in 
the DNA damage response. Given that depletion of ATM 
using siRNA (14) confers sensitivity to PARP inhibitors and 
disruption of the genes for both ATM and PARP-1 in mice 
is lethal (56), we hypothesized that human cancers with 
deficiencies in ATM might be sensitive to PARP inhibitors. 
To test this hypothesis, we assayed a panel of human MCL 
cell lines for ATM protein expression and function. Of the 
cell lines tested, two, Granta-519 and UPN2 were shown 
to have very low levels of ATM protein expression, low 
ATM serine 1981 phosphorylation, and low KAP-1 serine 
824 phosphorylation, indicating defective ATM function. 
Moreover, Granta-519 and UPN2 were more sensitive to 
the PARP inhibitors PJ34 and olaparib than their ATM 
proficient counterparts. Olaparib also reduced tumour 
growth and enhanced survival in RAG2-deficient mice 
bearing xenografts of Granta-519 (57). Similar observations 
were reported by Stankovic and colleagues (58). 

More recently we showed that ATM-deficient MCL 

Table 2 Frequency of ATM mutation in various human cancers

Cancer type
Incidence 

(new cases per year)

Rate of ATM alteration given as % 

with reference source in parenthesis

Estimated number of potential 

ATM-deficient patients

Breast 22,900 3 (46) 687

Chronic lymphocyte Leukemia (CLL) ~546 9 (47) 50

Colorectal 23,300 7 (48) 1,631

Diffuse large B cell lymphoma (DLBCL) ~2,340 20 (49) 468

Gastric 3,330 6.7 (50) 223

Lung 25,600 7 (51,52) 1,792

MCL ~468 50 (53) 234

Ovarian 2,600 1.7 (54) 44

Pancreas 4,600 8 (55) 368

Total 85,684 n/a 5,497

Statistics for cancer incidence were taken from estimated new cases of cancer in 2012 provided by the Canadian Cancer Society 

(available on the Canadian Cancer Encyclopedia at http://info.cancer.ca/cce-ecc/default.aspx?Lang=E&toc=88). The incidences of 

MCL, DLBCL and CLL were estimated from the percentage of non-Hodgkin lymphoma cases reported by the Canadian Cancer So-

ciety (http://www.cancer.ca). The rate of alteration of the ATM gene was taken from the various publications cited and the total num-

ber of ATM deficient patients estimated from these values. The total population of Canada in 2011 was approximately 34 million (http://

www.statcan.gc.ca/pub/12-581-x/2012000/pop-eng.htm), therefore the number of ATM-deficient patients in the USA is estimated to 

be approximately 10 fold higher than in Canada. Abbreviations: DLBCL, diffuse large B cell lymphoma; n/a, not applicable
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cell lines with inactivation or mutation of p53 were more 
susceptible to PARP inhibitors than those with wild type p53 
(13) (Figure 1). Moreover, inhibition of ATM kinase activity 
using KU55933 enhanced olaparib sensitivity in MCL cells 
with mutant p53, opening the door to the possibility of 
sensitizing ATM-proficient human tumours with disruption 
of p53 to PARP inhibitors (13). This possibility is of 
particular interest given over 50% of human tumours have 
disruption or deletion of p53 (59). However, testing of this 
hypothesis will require the development of ATM inhibitors 
suitable for in vivo studies. It will also be interesting to 
determine whether other human cancers with deficiencies 
in ATM, such as gastric and lung, are also sensitive to PARP 
inhibitors, as these could account for many thousands of 
patients in Canada and North America alone (Table 2).

Mechanism of PARP inhibitor cytotoxicity

As discussed above, in early models it was proposed that PARP 
inhibitors induced the accumulation of SSBs that were converted 
to DSBs during replication and that the BRCA1/2-dependent 
HRR pathway was required for cellular survival. However, cells 
with depletion of many other genes, including those for ATM, 
PNKP and Fanconi Anemia -A, -D2 and -C were also shown 
to be susceptible to PARP inhibitors. Since these genes have no 
clear role in classical HRR, this suggested that the mechanism 
of PARP inhibitor induced cytotoxicity might be more complex 
than originally thought. Indeed, several studies have found 
that SSBs do not accumulate in PARP inhibitor treated cells 
[discussed in (60)], as predicted by the original model, and new 
studies suggest that PARP inhibitor synthetic lethality results, 
at least in part, from direct trapping of PARP at replication 
forks (22,60,61) (Figure 1). Resolution of these trapped DNA-
PARP replication forks is proposed to require not only the 
traditional BRCA1/BRCA2-dependent HRR pathway, but also 
components of the Fanconi Anemia pathway, ATM, the FEN1 
nuclease and DNA polymerase β (22).

Potential clinical application of PARP inhibitors 
in ATM-deficient malignancies

As discussed above, since the first demonstration of synthetic 
lethality between PARP and the BRCA genes in 2005, PARP 
inhibitors have rapidly advanced into the clinic with promising 
preliminary results. Indeed, over 85 clinical trials utilizing 
various PARP inhibitors are currently listed on the clinical 
trials registry ClinicalTrials.gov (http://clinicaltrials.gov/
ct2/results?term=PARP+inhibitor&Search=Search). These 

ongoing trials cover a wide range of solid and hematopoietic 
malignancies, and utilize PARP inhibitors alone, in 
combination with other chemotherapeutic agents and with 
newer targeted agents (for example, bortezomib plus PARP 
inhibitor in multiple myeloma, NCT01495351). Although it 
is still early days, it seems likely that PARP inhibitors will have 
significant benefit to a subpopulation of cancer patients with 
defects in DNA damage response pathways (62,63). 

However, clinical use of PARP inhibitors still faces 
several significant hurdles. One problem is the lack of 
an accurate predictive marker of PARP inhibitor utility. 
Experiments suggest that the genetic make up of the 
tumour will have confounding effects on susceptibility to 
PARP inhibitors. As discussed above, wild type p53 partially 
protects from olaparib sensitivity in ATM-deficient human 
cell lines (13), while depletion of 53BP1 confers resistance 
to PARP inhibitors (64). Moreover, the non-homologous 
end-joining (NHEJ) pathway has been shown to enhance 
PARP inhibitor sensitivity in HRR and ATM-deficient cells 
(13,65), suggesting that tumours with defects in NHEJ 
genes may influence PARP inhibitor sensitivity under some 
conditions. However, double deletion of Ku and PARP 
is lethal in mice (66), and the combination of inhibition 
of PARP and DNA-PKcs sensitize cells to the effects of 
IR (67) , so the relationship of PARP and NHEJ in DSB 
repair may be complex. Regardless, these observations point 
to the need for a thorough assessment of the molecular 
composition of human tumours prior to selection for PARP 
inhibitor treatment. However, determining how to make 
such an assessment is challenging. Immunohistochemical 
analysis may help delineate the presence or absence of the 
target (PARP), members of DNA repair pathways such as 
ATM and modulating factors such as p53 within the tumour. 
Interpreting the multiple potential combination of results, 
in contrast will be difficult. Determining functionality, 
likely the key predictive factor, is even more challenging. 
Ex-vivo FACS-based methodologies for assessing ATM 
functionally have been described (68,69), but their utility 
in the clinic for the management of solid tumors will be 
difficult unless applicable to viable circulating tumour cells. 
A second hurdle is that of acquired resistance. In the case 
of BRCA2, one way in which this can be induced is by 
mutations that revert tumours to wild type BRCA2 (70). 
It has also been suggested that altered catalytic activity of 
PARP via, for example, small nucleotide polymorphisms, 
could decrease the effectiveness of PARP inhibition. Other 
potential problems include multidrug resistance via the 
efflux activity of p120 transporters as has been demonstrated 
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in vitro (64). Another significant hurdle, common to 
the personalized medicine approach in general, is intra-
tumour heterogeneity, which will need to be addressed if 
personalized medicine is to reach its full potential (71,72).

In summary, PARP inhibition has shown promise in the 
treatment of cancers with deficiency in DNA repair pathways. 
Evidence suggests that ATM deficiency also renders cancer 
cells vulnerable to PARP inhibitors and that ATM deficiency 
is very common in a broad range of malignancies. The 
main hurdle to the translation of these observations to new 
clinical interventions are the lack of predictive markers and 
the potential evolution of resistance. Nevertheless, targeting 
DNA damage response deficient tumours, such as ATM 
deficient malignancies with PARP inhibitors and other 
interventions remains an exciting possibility and highly 
relevant topic for further investigation.
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