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Introduction
 

Radiotherapy is one of the major modalities of cancer 
treatment used to treat approximately 50% of all cancer 
patients with varying success. The dose of irradiation 
that can be given to the tumor is determined by the 
radiosensitivity of surrounding normal tissues (1) as well 
as intrinsic sensitivity/resistance of tumors. Resistance 
to radiotherapy can be either intrinsic radioresistance or 
an acquired resistance during fractionated radiotherapy. 
One of the molecular events by which tumors can become 
radioresistant is radiation-induced and potentially ligand-

independent activation of signal transduction pathways such 
as those regulated by membrane-bound receptor tyrosine 
kinases (RTKs). In this context the role of epidermal 
growth factor receptor (EGFR) has been extensively 
investigated. In tumor cells activation of EGFR stimulates 
signal transduction pathways that ultimately promote tumor 
cell proliferation, survival, invasion, and angiogenesis (2,3). 
This leads to both chemo- and radiotherapy resistance 
and consequently to a poor prognosis (4-6). The pro-
survival effect of EGFR is mediated by activation of various 
downstream signaling pathways, such as the phosphatidyl-
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inositol 3-kinase (PI3K)/Akt pathway, the signal transducer 
and activator of transcription (STAT) pathway and the 
Ras-mitogen-activated protein kinase (MAPK) pathway 
(7-9). Among the pathways activated by RTKs, PI3K/
Akt pathway is the major survival pathway in cancer cells, 
which is frequently upregulated in human tumors (10,11). 
PI3K/Akt pathway is constitutively active in tumor cells 
presenting mutation in one of the components of the EGFR 
downstream pathways, such as phosphatase and tensin 
homolog (PTEN), PIK3CA and RAS (12,13). Mutational 
activation of RAS and PI3K is accompanied with resistance 
to radio-/chemotherapy (14-17). Thus, the activation status 
of the PI3K pathway as a consequence of overexpression 
of RTKs or mutations of the signaling components might 
be a predictive marker for the response of tumor cells to 
radiotherapy. Akt, which is also known as protein kinase B 
(PKB), is a central transducer protein downstream of PI3K 
and is involved in a number of important cellular processes 
including cell growth, proliferation, survival, invasion, 
metastasis, and angiogenesis (18). In addition to these well-
described functions, accumulating evidence indicates that 
Akt is directly involved in the control of DNA repair and 
radioresistance. In this review, the expression and activity 
status of Akt isoforms in cancers from different origins 
will be summarized. We also review the role of Akt family 
members, especially, Akt1 in radioresistance of solid tumors, 
and briefly summarize the role of activated Akt in the 
context of DNA repair.

 

Role of Akt/PKB in human cancers

Akt/PKB is a serine/threonine kinase, which consists of 
three isoforms known as Akt1 (PKBα), Akt2 (PKBβ) and 
Akt3 (PKBγ). These isoforms are products of different genes 
with more than 80% homology on chromosomes 14q32, 
19q13 and 1q44, respectively (19). Different isoforms of 
Akt have different functions in normal physiology and 
development (20). Akt1 is required for normal growth (21)  
and mammary morphogenesis/function (22). Akt2 is 
essential for glucose metabolism, adipogenesis and β-cell 
function (23,24) and, as so far known, Akt3 is essential 
for attainment of normal brain size (25). For Akt over 40 
downstream targets have been reported, which contribute 
to the cellular roles of Akt, including cell survival, growth, 
proliferation, angiogenesis, metabolism, and migration (26).

In human malignancies, Akt activity plays a major role in 
tumor cell survival (27). Enhanced activation of Akt is one 
of the common molecular disregulations due to AKT gene 

amplification, amplification-independent overexpression 
and hyperactivation of Akt through activation of upstream 
pathways (28). Hyperactivation of Akt is a common 
mechanism of increased cell survival, proliferation and 
aggressiveness in tumors presenting overexpression of Akt 
upstream components such as expression of a specific EGFR 
mutant (EGFRvIII, also known as EGFR type III, de2-7, 
Delta EGFR) (29-31). Mutation in RAS family members, i.e. 
in K-RAS and H-RAS, also stimulate Akt phosphorylation 
and tumor cell survival (32-36) mainly through upregulated 
production of EGFR-ligands such as amphiregulin and 
transforming growth factor α. Additionally, in tumors from 
different origins point mutations, loss of heterozygosity or 
methylation of PTEN (a phosphatase that deactivates PI3K) 
as one of the most frequently inactivated tumor suppressor 
genes (37) leads to activation of downstream components 
of PI3K signaling (38,39) including Akt. Immunostaining 
of ovarian cancer samples revealed an inverse correlation 
between PTEN expression and the phosphorylation level of 
Akt (40). Likewise, loss of PTEN is associated with worse 
clinical outcome as shown for patients with esophageal 
adenocarcinomas (41).

Previous reports indicate that amplification, mutation, 
or overexpression of Akt in tumors from different origins 
are Akt isoform-specific phenomena (28) which result in 
Akt hyperactivation. Hyperactivation of Akt correlates with 
various clinicopathologic parameters and is a prognostic 
indicator for cancers from different origins such as oral, 
pancreatic, thyroid and lung cancers (42-45). Amplification 
of AKT1 in general is a rare phenomenon in cancers, which 
was demonstrated for the first time in a primary human 
gastric adenocarcinoma (46) and later in a small population 
of estrogen receptor-positive breast carcinomas and 
prostate cancers (47). A somatic AKT1-E17K mutation has 
been reported in different cancers such as in breast; high-
grade endometrial, bladder, lung and colorectal cancers 
(48-51). Similar to hotspot mutation, several non-hotspot 
mutations in AKT1 have also been identified, which cause a 
constitutive membrane localization of Akt1. This results in a 
permanent Akt1 kinase activity and phosphorylation at T308 
and S473 and consequent activation of downstream target 
proteins independent of growth factor stimulation (52).  
Mutation in AKT1 (Glu17Lys)  can also regulate 
tumorigenesis (51). 

Similar to Akt1, Akt2 through amplification and 
overexpression exerts oncogenic activity as well. For the 
full activation, Akt2 needs to be phosphorylated on T309 
and S474 (53). Amplification of Akt2 is more frequent 
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than amplification of Akt1 and has been demonstrated for 
human malignancies such as pancreatic, colorectal, ovarian 
and breast cancers (54-60). Interestingly, in ovarian cancer 
cells Akt1 is phosphorylated/activated and the activation/
phosphorylation is Ras-, src- and PI3K-dependent when 
cells are stimulated with growth factors (61). Mutation 
analyses of AKT2 revealed that somatic mutations in 
AKT2 kinase domain can occur in a subset of stomach, 
lung, colon and breast cancers. These observations indicate 
that alterations in various signaling cascades depending on 
mutated AKT2 contribute to tumorigenesis (62). 

AKT3 amplification and overexpression may play a 
role in the genesis of different cancers as described for a 
subset of ovarian cancers through modulation of cell cycle 
progression (63), thyroid cancer (45) and the estrogen 
receptor-negative breast cancers as well as androgen- 
insensitive prostate carcinomas (64). But so far, the most 
studies for the carcinogenic role of Akt3 and its impact 
on treatment outcome have been performed in melanoma 
(65,66). For the full activity, Akt3 needs to be phosphorylated 
at S472 and T305 (67). Similar to AKT1 (see above) an 
E17K mutation in AKT3 gene leads to a constitutive activity 
of Akt3 (66) and stimulation of substrates such as PRAS40. 
As reported by Madhunapantula and colleagues (68), this 
leads to an Akt3-dependent survival advantage and resistance 
to chemotherapy of melanomas (68).

Importance of Akt in radioresistance

A significant correlation between phosphorylated EGFR 
and phosphorylated Akt (69) indicates that EGFR is 
the major regulator of activation of PI3K/Akt pathway. 
Overexpression or mutation of EGFR has been reported 
in 40% to 50% of human solid tumors (70,71). Preclinical 
and clinical studies demonstrated that the hyperactivation 
of EGFR leads to both chemo- and radiotherapy resistance 
and consequently to a poor prognosis (4,6,31,63,72-75). 
Similar to ligand stimulations, exposure to ionizing radiation 
induces activation of EGFR and its downstream PI3K/Akt 
pathway (76-80). PI3K/Akt activity regulates cell growth, 
proliferation and survival, which will influence the response 
to ionizing radiation. The function of PI3K/Akt activity 
on radioresistance has been reported by several laboratories 
in different cancer cell lines including those from head and 
neck, colon, lung, brain cancers in vitro (36,76,77,80-82) 
independent of TP53 status (83) as well as in vivo (84). 
Although, stimulation of PI3K, in parallel to increased 
Akt activity, regulates the activation of other pro-survival 

substrates such as SGK (10), it has been demonstrated that 
Akt activation downstream of PI3K plays a major role in the 
radiation resistance of tumor cells with different entities. 
In this context Brognard and colleagues (85) reported 
that a constitutive phosphorylation of Akt, presumably 
Akt1, at S473 and T308 mediates radiotherapy resistance 
in NSCLC cells (85). In this study (85) and studies from 
others (34,80,84,86-89) radiosensitization was shown to be 
achieved either by pharmacological targeting of PI3K/Akt 
or genetic modulation of Akt. In a similar study conducted 
in bile duct cancer (BDC), Tanno et al. (90) described the 
expression of phosphorylated Akt at S473 in 84.2% of 
patients with BDC. Using BDC cell lines in vitro, these 
authors demonstrated that phosphorylation of Akt depends 
on PI3K activity (90). Targeting PI3K by LY294002 led 
to a similar degree of radiosensitization as observed in 
cells carrying a dominant-negative Akt (90). From these 
studies it can be concluded that Akt is a major mediator 
of PI3K-induced cellular resistance to radiotherapy. This 
conclusion is supported by reduced radiation sensitivity 
following overexpression of constitutively active Akt into 
tumor cells from different origins such as NSCLC (85), bile 
duct cancer (90) and colon cancer (40). In line with these 
preclinical findings, the prognostic value of activated Akt for 
the radiation response of solid tumors has been described in 
clinical investigations as well. Immunohistochemical analysis 
of phosphorylated Akt1 at S473 implies that activated Akt1 
is a potential predictive biomarker for the radiotherapy 
response as shown for patients with head and neck cancer (91) 
as well as patients with locally advanced cervical cancer (92). 
Although, the pro-survival effect of Akt activity in oncology 
is well accepted, the specific mechanism by which Akt 
improves cell survival, especially after radiotherapy, has not 
been understood so far. 

It has been postulated that inhibition of apoptosis is 
one of the mechanisms by which activated Akt improves 
cell survival. To inhibit apoptosis, Akt phosphorylates 
and inactivates pro-apoptotic proteins such as BAD, 
BAX and caspase-9. Akt-induced BAD phosphorylation 
prevents binding of BAD to BCL2 family members (93). 
Likewise, stimulating Akt upregulates the expression 
level of several intracellular antiapoptotic proteins such 
as FLIP, survivin, cIAP1; cIAP-2, A1/Bfl-1, and XIAPs 
(94,95). Akt-mediated inhibition of apoptosis abrogates the 
sensitivity of hematopoietic cells such as leukemia cells to 
therapeutic approaches inducing apoptosis (95). Ionizing 
radiation can also induce apoptosis through mitochondria-
dependent intrinsic pathway (96). In this pathway, activated 
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Akt phosphorylates proapoptotic proteins BAX and BAD. 
Phosphorylation of Bax at S184 which is regulated in Akt-
dependent manner inhibits Bax effects on the mitochondria 
by maintaining the protein in the cytoplasm (97). Yet, 
heterogeneous effects of Akt inhibition on radiation-induced 
apoptosis have been reported. We could show that neither 
in apoptosis-sensitive nor in apoptosis resistant NSCLC 
cell lines targeting Akt does results in enhanced radiation-
induced apoptosis. In both cell types, Akt targeting led to 
an inhibition of repair of radiation-induced DNA-DSB and 
subsequent enhancement of radiation sensitivity (98). In 
this context it has also been demonstrated that inhibition 
of Akt in malignant gliomas mediates radiosensitization 
which is independent of apoptosis (99). Although, in a 
previous report by Tanno et al. (90), inhibition of Akt was 
associated with increased apoptosis, this study did not 
investigate impact of apoptosis on radiosensitization (90). 
Thus, the role of apoptosis as a mechanism of cell death in 
radiosensitization mediated through Akt targeting in human 
solid tumors is rather questionable and needs further 
investigations. 

Experimental and clinical evidence indicates that cancer-
initiating cells or cancer stem cells (CSC) are resistant 
to radiotherapy (100). In this context CD44 expression 
bears the potential to predict outcome of radiotherapy by 
assessment of CSC density (100). Moreover, it has been 
demonstrated that the expression of AKT1 and AKT2 
after irradiation is increased in the breast cancer MCF-7  
mammospheres CD24(-/low)/CD44(+) expressing cells, 
but not in the bulk population of MCF-7 CD24(+)/
CD44(+) expressing cells (101). In this study (101) tar-
geting of Akt did sensitize MCF-7 mammosphere cells, but 
not MCF-7 monolayer cells to ionizing radiation. Thus, 
it seems that Akt through a so far unknown mechanism 
is involved in radioresistance of CSC. The role of Akt 
activity in radioresistance of CSC has been demonstrated 
in both mammospheres in vitro as well as in syngeneic mice 
bearing tumors in vivo (102). Zhang et al. in this study (102) 
reported that inhibition of the Akt pathway inhibits ca-
nonical Wnt signaling as well as repair of DNA damage 
selectively in cancer initiating cells and sensitizes them to 
ionizing radiation in vitro and in vivo (102). With respect 
to the described functional role of PI3K/Akt pathway in 
CSC (99,103), inhibition of the Akt pathway might offer 
an improved radiation response of CSC (101,102). Based 
on the assumption that CSC are more radioresistant and 
present hyperactivation of the Akt pathway, we were able 
to show that selected radioresistant subpopulations of 

A549 cells which present the CSC marker ALDH1 can be 
radiosensitized by PI3K inhibitor LY294002 (104). The 
importance of PI3K/Akt signaling for radioresistance of CSC 
is also underlined by the data of Zhang et al. (102) indicating 
Akt dependence of accelerated repair of radiation-induced 
DNA-DSB 

In recent years autophagy has been recognized as an 
important process in carcinogenesis as well as in processes 
mediating the response of tumor cells to therapy, especially 
radiation therapy (105,106). Clear evidence exists that 
PI3K/Akt signaling plays an important role in the regulation 
of autophagy. Exposure of tumor cells to ionizing radiation 
induces autophagy and previous reports indicate that 
inhibition of autophagy either by autophagy inhibitors (107) 
or genetic approaches (105) induces radiosensitization. In 
contrast to the cytoprotective effect of radiation-induced 
autophagy, induction of autophagy via the PI3K/Akt/
mTOR pathway is a cytotoxic effect. This is supported by 
the radiosensitizing effect of Akt inhibition in malignant 
glioma cells through inducing autophagy (108). Further 
investigations are needed to identify the mechanism(s) 
involved in the cytoprotective effect of radiation-induced 
autophagy and cytotoxic effect of Akt induced autophagy on 
post-irradiation survival.

Control of DNA double-strand break 
repair by Akt as one major mechanism of 
radioresistance and a possible specific target 
for radiosensitization in tumor cells

Previous reports indicate a direct correlation between 
EGFR as the major regulator of Akt activity and DNA-
DSB repair (74,109-111). Moreover, impact of Akt activity 
on DNA-DSB repair and radioresistance in tumor cells 
from different origins has been demonstrated as well 
(15,79,98,112,113). DNA-DSBs are the most lethal type 
of DNA lesions that lead to cell death following exposure 
to ionizing radiation (114). Two pathways are involved in 
DNA-DSBs repair, non-homologous end-joining (NHEJ) 
and homologous recombination (HR) (115), but NHEJ 
is the predominant pathway in mammals. The DNA-
dependent protein kinase catalytic subunit complex (DNA-
PKcs) is a major enzyme in the NHEJ process and ra-
diotherapy response (116,117). Phosphorylation of DNA-
PKcs at specific amino acid residues including T2609 cluster 
and S2056 are required and essential for efficient repair 
of DNA-DSBs during NHEJ (118). Enhanced cellular 
sensitivity to IR after mutations in these phosphorylation 
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sites supports the specific function of DNA-PKcs 
phosphorylation in DNA-DSBs repair (119-121). Previous 
reports from our laboratory (98,112) and the report by 
Park and colleagues (122) demonstrated that Akt directly 
interacts with DNA-PKcs through its C-terminal domain. 
Akt1 and DNA-PKcs form a functional complex after 
radiation exposure (112,123). Using GFP-tagged DNA-
PKcs expressing cells, we were able to demonstrate for the 
first time that Akt1 promotes DNA-PKcs accumulation 
at the DNA-DSB site and stimulates DNA-PKcs kinase 
activity which is the necessary step for progression of DNA-
DSB repair (112). Akt1 dependent DNA-PKcs kinase 

activity results in DNA-PKcs autophosphorylation at  
S2056 (112) which is essential for efficient repair (121) as 
well as the release of DNA-PKcs from the damage site. The 
role of Akt in DNA-DSB repair is further substantiated 
by co-localization γH2AX foci with P-Akt after irradiation 
(112,113,123,124). Based on these results, a detailed 
mechanism of activation of DNA-PKcs by Akt (summarized 
in Figure 1) can be proposed. Akt activity through mutation 
or overexpression of upstream components such as erbB 
receptors (30,79,109,125), PTEN (15,126), RAS (35,88,127) 
and PI3K (109) results in increased radiation-induced 
DNA-PKcs activity and enhance repair of DNA-DSB. 

Figure 1 Illustrates the potential interaction of Akt1 and DNA-PKcs. After irradiation activated Akt translocates from the cytoplasm to 
the nucleus. Yet, Akt1 can also be activated in the nucleus by the MRE11-ATM pathway (113). Akt1 in the nucleus interacts and forms a 
functional complex with DNA-PKcs. In this complex, Akt1 stimulates DNA-PKcs kinase activity, DNA-PKcs autophosphorylation and 
DNA-PKcs accumulation at the DNA-double strand break. This leads to efficient repair of DNA-DSB and consequently radioresistance. 
Thus, inhibition of Akt activity either by targeting of receptor tyrosine kinases such as erbB receptors or targeting of PI3K as well as specific 
targeting of Akt can inhibit repair of radia-tion-induced DNA-DSB and improve radiotherapy outcome
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Thus, in the case of dysregulation of these molecules such 
as mutated PI3K direct targeting of PI3K or inhibition 
of downstream components like Akt, but not targeting 
of upstream components such as EGFR, can result in 
radiosensitization. Based on this argument, it is proposed 
that targeting of PI3K in combination with radiotherapy 
leads to heterogeneous responses depending on the Akt 
genotype, i.e., radiosensitization in Akt wild-type tumor 
cells and the lack of radiosensitization in Akt-mutated 
tumor cells.

An alternative pathway regulating DNA-DSB repair Akt 
is the upregulation of MRE11 expression after Akt activation 
through Akt/GSK3β/β-catenin/LEF-1 pathway (117). 
MRE11 is a central protein which binds to RAD50 and 
NBS1. It has been proven that the MRE11, RAD50 and 
NBS1 (MRN) complex after irradiation rapidly accumulates 
to damage site and remains until the damage has been 
repaired. MRN complex appears to be the major sensor 
of the breaks and subsequently recruits ATM where it is 
activated to phosphorylate in turn members of that complex 
and a variety of other proteins involved in cell-cycle control 
and DNA repair (128). Approximately 85% of DNA-DSBs 
induced by ionizing radiation are repaired within the first 
2-3 h post-irradiation via the fast component of DNA-DSB 
repair, which has been shown to be independent of ATM 
function (129). The remaining 15% of DNA-DSBs, which 
are mainly composed of complex lesions, are repaired in an 
ATM-dependent manner via the slow component (130,131). 
Since targeting Akt leads to downregulation of MRE11 at 
the transcriptional level, role of Akt1 on DNA repair under 
this mechanism might be due to regulating slow components 
of DNA repair and is a complementary mechanism to Akt/
DNA-PKcs dependent fast repair process. As reported 
by Viniegra et al. (132), full activation of Akt in response 
to insulin and ionizing radiation is ATM-dependent. In 
this context Fraser and colleagues (113) showed that the 
activation of MRE11-ATM-RNF168 pathway induce 
Akt phosphorylation and this leads to an Akt-dependent 
enhanced repair of DNA-DSB repair (113). In line with the 
role of ATM in Akt activity after irradiation (133), it has 
been reported that ATM-dependent Akt signaling regulates 
DNA-DSB repair in cells exposed to clinical relevant doses 
of irradiation (134,135). The dependence of DNA-PKcs activity 
through transphosphorylation at T2609 on ATM (121) as well 
as Akt (88,98) indicates that activation of Akt/DNA-PKcs in 
the nucleus can at least partially be ATM-dependent (Figure 
1). Together, Akt-dependent activation/phosphorylation 
of DNA-PKcs (88,98,112) indicates that Akt is involved in 

the fast component of DNA-DSBs repair. Likewise, since 
ATM phosphorylates Akt (133) and Akt activity upregulates 
MRE11 (117) which is a rather slow process, it can be 
concluded that Akt is also part of the slow component of 
DNA-DSB repair. These two aspects needs to be further 
investigated.

In contrast to NHEJ, which in general is active 
throughout the cell cycle and does not rely on a template, 
HR is restricted to the S- and G2-phases of the cell cycle 
only due to the requirement for a sister chromatid as 
template: while the balance between both pathways is 
essential for genome stability, disturbance of that balance 
can lead to cancer (136). BRCA1, BRCA2 and RAD51 are 
the major proteins regulating HR repair. As described for 
hereditary breast and ovarian cancers, BRCA1 and BRCA2 
are frequently mutated in these cancers (137,138) which 
might be due to genomic instability as a consequence of 
HR deficiency. A link between Akt1 activity and HR has 
also been demonstrated. HR deficiency is associated with 
increased phosphorylation of Akt1 at S743 as shown in 
breast cancer patients. Likewise, tumor formation by BRCA1 
deficiency is reduced by Akt1 depletion (139). Inhibition of 
HR by Akt1 activity in BRCA1 proficient breast cancer cells 
has been demonstrated to be due to induction of cytoplasmic 
retention of BRCA1 and RAD51 (140). In HR-deficient 
cells, Akt1 mediated inhibition of HR is through impaired 
Chk1 nuclear localization and subsequently disruption of 
Chk1-Rad51 interaction (141). Thus, from these studies 
it becomes clear that in contrast to the stimulatory effect 
of Akt1 on NHEJ, in tumor cells aberrant activation of 
Akt inhibits HR and generates genetic instability (140). 
Regarding the role of Akt activity regulated by PTEN in 
DNA-DSB repair conflicting reports exist. Puc et al. (142) 
have demonstrated that PTEN knockdown generates 
DNA damage due to insufficient inactivation of CHK1 un-
der non-irradiated basal condition. In this report by Puc 
et al. (142), although γH2AX foci assay in control-siRNA 
transfected and irradiated cells was used as positive control, 
the effect of PTEN-siRNA on residual DNA-DSB was 
not investigated. Thus, this study does not provide strong 
evidence that inhibition of HR is mediated through Akt 
activity. With respect to the role of PTEN in DNA-DSB 
repair, Kao et al. (15) demonstrated that overexpression 
of PTEN results in decreased Akt1 phosphorylation and 
increased residual DNA-DSB. The study and results by 
Kao et al. do not support the role of Akt activity in HR as 
suggested by other groups (139-141), i.e. that reduced Akt 
activity following PTEN overexpression leads to an increase 
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in HR and consequently accelerated repair of DNA-
DSB. Overexpression of PTEN, associated with reduced 
Akt activation, resulted in an impaired repair of DNA-
DSB (15). Since the effect of Akt on DNA-DSB repair is 
a combination of both NHEJ and HR repair pathways, 
it can be assumed that the effect of Akt stimulated repair 
of DNA-DSB by NHEJ is dominant over Akt mediated 
impairment of DNA-DSB repair in HR-deficient cells. A 
study by Li et al. (143) indicates that EGFR tyrosine kinase 
inhibitor erlotinib attenuates homologous recombinational 
repair of chromosomal breaks in human breast cancer 
cells after irradiation (143). Since erlotinib inhibits Akt 
phosphorylation, from this study as well as from a study by 
Kao et al. (15) it may be concluded that Akt has a differential 
effect on HR after irradiation on tumor cells compared to 
non-irradiated condition. Nevertheless, the distinct role of 
Akt in repair of DNA-DSB through the HR pathway needs 
to be further investigated.

The reports discussed in this chapter underline the role 
of Akt in repair of DNA-DSB via NHEJ repair process. 
So far, to our knowledge no clinical study combining Akt 
inhibitor treatment with radiotherapy has been conducted. 
However, data obtained for the combination of dual PI3K 
and mTOR inhibitors such as BEZ235 with radiotherapy 
in animal systems suggest that inhibition of PI3K/Akt 
pathway is an effective strategy to improve radiotherapy, 
especially in tumors with K-RAS mutation (144). This study 
also indicates the importance of constitutive Akt activity 
stimulated in K-RAS mutated cells for effective DNA-DSB 
repair.

With respect to the approach to use the inhibitors 
of NHEJ pathway to improve radiotherapy of tumors, 
the effect on normal tissue should not be ignored. Since 
the NHEJ repair pathway is also the major pathway for 
repair of DNA-DSB in normal cells; targeting of the 
components of this pathway will inhibit repair of DNA-
DSB simultaneously in tumor cells as well as in normal cells. 
Therefore, in spite of efficient radiosensitization by using 
targeting of the components of NHEJ repair pathway such 
as DNA-PKcs, molecular targeting of NHEJ due to normal 
tissue damage cannot be applied to improve radiotherapy. 
Since dysregulations of PI3K/Akt pathway due to mutation, 
gene amplification or overexpression is a tumor-specific 
phenomenon; inhibition of Akt-dependent DNA repair 
pathway might be a selective approach to kill tumor cells. 

Akt inhibitors are either ATP mimetics or allostric 
inhibitors which bind to the pleckstrin-homology domain 
of Akt. The current clinical trials in oncology are testing 

the feasibility and applicability of these inhibitors such as 
Perifosine, MK2206 and Nelfinavir (allosteric Akt inhibitor) 
or GSK690693 (ATP-competitive inhibitor) (10,145). 
Most of the so far described Akt inhibitors target all 3 Akt 
isoforms. Depending on the outcome of clinical trials in 
oncology with the Akt inhibitors, Akt targeting strategies, 
especially, targeting of Akt1 prior to radiotherapy might 
be highly effective to overcome PI3K/Akt-dependent 
radioresistance of solid tumors. 

Conclusions 

Molecular targeting approaches in oncology are based on 
understanding the function of cellular signaling pathways 
in tumor growth, proliferation and survival. Activation of 
EGFR/PI3K/Akt signaling pathway is crucial for post-
irradiation cell survival. Most of the small-molecule inhibitors 
used for targeting signal components within this pathway are 
cytostatic rather than cytotoxic. Likewise, hyperactivation 
of the downstream components of this pathway such as 
mutations in PTEN, PI3K, or Akt related genes results in 
a lack of response to inhibitors of upstream molecules, e.g., 
EGFR. Although EGFR is the major regulator of the PI3K/
Akt pathway, this pathway can also be regulated by many 
other receptors like G-protein coupled receptors, integrin 
receptors and insulin receptors. Thus, based on the preclinical 
studies combining Akt inhibitors with radiotherapy can shift 
the cytostatic effect of Akt inhibitors towards an increased 
cytotoxicity of radiotherapy. Likewise, as a consequence of 
targeting Akt as the key player of PI3K/Akt signaling, the 
crosstalk between several membrane-bound receptors cannot 
result in reactivation of Akt signaling. 

Thus, based on the described role of Akt in repair of 
DNA-DSB, Akt rather than EGFR or PI3K should be 
the prime molecule to be targeted in order to overcome 
radiotherapy resistance of solid tumors presenting enhanced 
PI3K/Akt signaling. 
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