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Renal cell carcinoma (RCC)

RCC arise from the tubules of the nephron and account 
for over 90% of kidney cancers. The most common RCC 
subtypes are clear cell (cc)RCC (70–75% of cases), papillary 
(p)RCC (10–15% of cases), and chromophobe (ch)RCC (5% 
of cases). Other less frequent subtypes include oncocytomas 
and carcinomas of the collecting duct (1). Patients with 
stage I or II (localized) RCC have a >70% 5-year survival 
rate following radical or partial nephrectomy, however 
prognosis is poor in patients with stage III (regional spread) 
or IV metastatic (m)RCC. mRCC is resistant to chemo- 
and radio-therapies and virtually incurable (1).

Genome-wide association studies (GWAS) have 
identified components of the VHL-HIF pathway as major 

drivers of ccRCC pathogenesis. Under normoxic conditions, 
hydroxylation of HIF-1α at two conserved proline residues 
facilitates VHL binding and subsequent cullin-RING ligase 
(CRL)-type E3 ligase complex-mediated degradation by the 
ubiquitin-mediated proteasomal pathway. However, under 
hypoxia, HIF-1α degradation is blocked by the failure of 
non-hydroxylated HIF-1α to bind VHL, and thus interact 
with the CRL-type E3 ligase complex. HIF-1α then forms 
a transcriptional activator complex with HIF-1β, promoting 
target genes expression relevant to angiogenesis, glycolysis, 
cell proliferation, invasion and metastasis (2). Loss-of-
function VHL mutations are common in ccRCC and lead to 
hypoxia-independent stabilization of HIF-1α and enhanced 
expression of downstream target genes including vascular 
endothelial growth factor (VEGF) A, glucose transporter 
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(GLUT) 1, epidermal growth factor receptor (EGFR), and 
platelet-derived growth factor (PDGF) B (1-4).

Epigenetic regulators are the second most commonly 
mutated genes in ccRCC, these include PBRM1 (SW1/
SNF chromatin remodeling gene), SETD2 (histone 
H3K36 methyltransferase), and BAP1 (BRCA1-interacting 
deubiquitinase). It is not clear how mutations in these 
epigenetic regulators drive the development of ccRCC, but 
breakdown of genomic stability appears to be involved in 
the process (1).

The PI3K-AKT-mTOR signaling pathway is a key 
regulator of cell growth and proliferation and PI3K 
associated genes are commonly overexpressed or mutated 
in many types of cancer, including ccRCC. The tumor 
suppressor, PTEN, acts as a negative upstream regulator 
of PI3K, and PTEN deficiency and activation of AKT are 
associated with poor cancer prognosis. The mTOR pathway 
acts as an upstream translational activator of HIF-1α (1). 

Several drugs have been approved for treating patients 
with ccRCC, including high-dose interleukin-2 (IL-2), 
anti-programmed cell death protein 1 (PD1) antibody 
(nivolumab), mTOR inhibitors (everolimus, temsirolimus), 
and small molecule/antibody inhibitors of the VEGF and 
PDGF β pathways (axitinib, bevacizumab, cabozantinib, 
lenvatinib, pazopanib, sunitinib and sorafenib). Although 
drugs targeting mTOR and VEGF/ PDGF β pathways 
show better therapeutic responses than conventional IL-2 
therapy, it remains important to continue improving 
patient outcomes by developing new combinations of 
existing treatments and identifying new targets for drug 
development.

Targeted protein degradation

The selective promotion of specific protein degradation 
using degron technology may have therapeutic potential 
(5,6). In this methodology, target proteins are linked to 
a destabilization domain (DD) and subsequent exposure 
to small molecules or light promotes the degradation of 
the target-DD fusion proteins by the ubiquitin-mediated 
proteasome pathway (7-12). Although degron technology 
has many diverse chemical biology applications, the 
requirement to molecularly engineer target proteins has so 
far limited the development of therapeutic reagents. 

To circumvent the limitations of degron, several 
groups have developed small molecules, peptides, and 
proteins that promote the selective degradation of target 
proteins without prior molecular engineering. Small 

molecules such as protein-targeting chimeric molecule 1 
and phthalimide-conjugated compounds simultaneously 
bind to both E3 ligase and a target protein, inducing target 
polyubiquitylation and subsequent degradation by the 26S 
proteasome (13,14). Similarly, a synthetic death associated 
protein kinase (DAPK)-binding peptide containing a 
chaperone-mediated autophagy-targeting motif was shown 
to promote lysosomal DAPK degradation (15). E3 ligases 
can also be engineered to selectively bind target proteins, 
resulting in specific target degradation by the ubiquitin-
proteasome pathway (16,17). Synthetic E3 ligases have 
been developed by the fusion of a target protein-specific 
nanobody to a truncated form of E3 ligase, in which the 
substrate-recognition domain was deleted. In the case of 
the Ab-speckle-type POZ protein (SPOP) synthetic ligase, 
target proteins were depleted in the cell nucleus, but not 
in the cytoplasm, and protein degradation occurred more 
efficiently than treating cells with the corresponding 
siRNA (17). 

Several groups have developed small molecules that 
prevent interactions between E3 ligase and its substrate, 
inhibiting protein degradation. The interaction between 
p53 tumor suppressor and MDM2 E3 ligase for example, 
has been inhibited by synthetic small molecules (chalcone 
derivatives and some polycyclic compounds), chlorofusin 
(a fungal metabolite), and by synthetic peptides (18). 
Similarly, the small molecule inhibitor MLN4924 prevents 
the ubiquitin-like polypeptide NEDD8 from activating 
E3 CRLs (19). CRL-dependent protein degradation is 
selectively inhibited by MLN4924, leading to the death of 
human tumor cells (20). 

Virtual drug design/screen identified a small molecule 
that inhibits the interaction between Skp2, a substrate-
binding subunit of SCF E3 ligase, and p27, a tumor 
suppressor that acts as an inhibitor of cell cycle dependent 
kinase (CDK) (21). Since Skp2 is overexpressed in several 
cancers, particularly those with poor prognosis and highly 
metastatic, Skp2 inhibitors could restrict cancer stemness 
and potentiate sensitivity to chemotherapeutic agents (6). 

SPOP and RCC

Ubiquitylation of a specific protein is achieved by the 
sequential activity of three different classes of enzymes 
(22,23). Firstly, ubiquitin-activating enzyme (E1) activates 
the C-terminal carboxyl group of Ub to form a thioester 
linkage with the active-site cysteine of E1. Next, ubiquitin-
conjugating enzyme (E2) transfers the Ub molecule from 
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E1 to its own active-site cysteine. Finally, ubiquitin-
ligating enzyme (E3) binds to both E2 and the target 
protein, bringing the target close to the E2 enzyme. Thus, 
E3 helps E2 transfer Ub from its charged cysteine to the 
lysine amino group of the target protein. Subsequently, 
proteins tagged with polyubiquitin chains are degraded by 
the proteasome (24,25).

In humans, there are two E1 genes, about 40 E2s, 
and more than 600 E3s (26,27). Thus, the fate of most 
intracellular proteins is generally determined by temporal 
and spatial expression patterns, intracellular localization, 
and substrate specificities of E3 ligases (26,28). There are 
around 30 HECT domain E3 ligases, in which active-
site cysteine forms an Ub-thioester intermediate during 
the transfer of Ub from E2 to substrate (29,30). The vast 
majority of E3 ligases belong to the group of RING and 
RING-related E3s that serve as a scaffold to bring E2 and 
substrate together, enabling the direct transfer of Ub from 
E2 to substrate (22,28). CRLs form a prominent subclass 
of RING-type E3 ligases, they consist of cullin (CUL) 
isoforms, RING-BOX (RBX)-containing proteins, and 
various adaptor-substrate recognition proteins that bind to 
a variety of substrates for ubiquitylation (31,32). NEDD8-
activating enzyme (NAE) inhibitor studies suggest that at 
least 20% of all proteasome-mediated protein degradation 
is CRL-dependent (20). 

Structural analysis indicates that all CRLs share a 
common elongated molecular architecture: CUL is bound 
to RBX at the C-terminal domain, and to an adaptor 
protein at the N-terminal domain. Interaction with target 
proteins usually occurs via a separate substrate-recognition 
protein that binds to the adaptor protein, the exception 
being CUL3, where both substrate-recognition and adaptor 
proteins are merged in a single “broad complex-tramtrack-
bric-a-brac” (BTB)-domain-containing polypeptide (33-35). 

SPOP is a subunit of the CRL-type E3 ligase complex, 
containing domains for substrate-recognition (MATH) and 
CUL3-binding (BTB-3-box) in single polypeptide (34). In 
normal cells, SPOP is localized in the nucleus through a 
nuclear localization signal at its C-terminus (36). The BTB 
domain is involved in homo- or hetrodimerization with 
other BTB-containing proteins, which is necessary for its 
E3 ligase activity (17,34,37). The C. elegans SPOP ortholog, 
MEL-26, degrades MEI-1 to promote the meiotic-to-
mitotic transition (38), and in Drosophila, SPOP degrades 
Cubitus interruptus (Gli transcription factor) and Puckered 
(JNK phosphatase) to regulate Hedgehog (Hh) and tumor 
necrosis factor (TNF) pathways (39,40). In addition to its 

conserved role in Hh and TNF pathways, human SPOP 
plays important roles in cell death and proliferation, as 
well as epigenetic regulation by degrading several proteins 
including death domain-associated protein (Daxx) (41), 
the Polycomb group protein BMI1 (42), the variant 
histone MACROH2A (42), the proto-oncogene DEK (43), 
tripartite motif-containing (TRIM) 24 (44), and Nuclear 
receptor coactivator (NCOA) 3 (45). Wild-type SPOP also 
appears to enhance homology-directed DNA repair (HDR) 
presumably by degrading an unidentified substrate (46).  
Thus, when SPOP is mutated, non-homologous end 
joining predominates, resulting in more genomic errors and 
rearrangements (47). 

SPOP is mutated in 8% to 14% of prostate and 
endometrial cancers; in prostate cancer, the mutations 
are confined to the substrate-binding MATH domain, 
suggesting that the mutations affect its interaction with 
substrates (48,49). An ubiquitylome analysis measuring the 
interactions between the mutated SPOP proteins and their 
interacting proteins showed that SPOP mutations found in 
prostate cancer caused a dominant negative effect (repressing 
the function of the wild-type SPOP), and did not result in 
a gain-of-function effect (increasing the binding affinity 
for the same substrates), nor a neomorphic effect (binding 
to new substrates) (37). Since SPOP homodimer, not 
monomer, ubiquitylated substrates (17,34), SPOP mutations 
that form heterozygous dimers with the wild-type allele 
are able to decrease the ubiquitylation and subsequent 
degradation of substrates in a dominant-negative manner. 

Tissue microarray screening has shown that SPOP is 
overexpressed, without mutation, in kidney cancer (85%, 
17/20), uterus/endometrial cancer (71%, 10/14), and testis/
germ cell cancer (90%, 18/20) (40). In corresponding 
normal tissues, SPOP was expressed very weakly or not at 
all. When expression levels were measured in different types 
of RCC, most ccRCC cells overexpressed SPOP protein 
(179 positive and 1 negative), but penetrance was low in 
other types of RCC cells (40), suggesting that overexpressed 
SPOP could drive the pathogenic development of ccRCC. 
In normal kidney cells and non-ccRCC cell lines, SPOP 
is predominantly localized within the nucleus, however in 
ccRCC, SPOP accumulates predominantly in the cytosol (50). 
Cytoplasmic SPOP appears to promote tumorigenesis by 
degrading DAXX, Gli2, and other targets including the 
tumor suppressors, PTEN and DUSP7 (an ERK-specific 
MAPK phosphatase that acts as a negative regulator of 
the ERK pathway) (50). Under hypoxic conditions, HIF 
proteins directly activate SPOP transcription and SPOP 
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protein accumulates in the cytosol (50). Since hypoxic stress 
and HIFs play important roles in a wide range of tumors, 
the mechanisms permitting targeted overexpression and 
mislocalization of SPOP in particular cell types, such as 
RCC, endometrial and germ cell tumor cells should be the 
focus of future research. 

The work of Guo et al. is based on a virtual drug 
design/screening and has led to the development of small 
molecules that inhibit the interaction between SPOP 
E3 ligase and tumor suppressors, including PTEN and 
DUSP7 (51). Using a computational screen that combined 
pharmacophore modeling, molecular docking, and chemical 
scaffold diversification, 109 small-molecule candidates 
predicted to inhibit the interaction between SPOP and a 
peptide containing a SPOP binding consensus (SBC) were 
identified. From these candidates, the small molecules 6a 
(initial-hit compound, KD: 62 µM) and 6b (lead compound 
after synthetic optimization, KD: 35 μM) were confirmed 
to physically interact with SPOP and PTEN in vitro and 
inhibit the proliferation of the A498 ccRCC cell line.

Several assays were performed to assess the suitability of 
compound 6b as a potential therapeutic reagent. Circular 
dichroism (CD) spectra analysis suggests that 6b does not 
dramatically perturb the structure of SPOP, and HPLC 
analysis has confirmed its purity.

Dynamic light scattering showed that 6b is highly soluble 
in cellular assay media, does not aggregate to form particles, 
is not itself fluorescent, has excellent cellular permeability, 
and accumulates rapidly inside cells. Compound 6b directly 
binds to SPOP in vitro, as indicated by surface plasmon 
resonance and NMR techniques, and in vivo cellular 
thermal shift assay. Binding to SPOP inhibits not only 
ubiquitylation and subsequent degradation of the tumor 
suppressors, PTEN and DUSP7, but also the proliferation 
of ccRCC cell lines and primary human ccRCC cells. 
Evidence supporting the specific targeting of SPOP in 
ccRCC by 6b is provided by experiments using ccRCC lines 
treated with shRNA to reduce SPOP expression; in these 
modified cells 6b does not inhibit cellular proliferation. 
Finally, 6b inhibits the growth of A498 tumor cell 
xenografts in nude mice, without histological changes in 
multiple organs except kidney. Combined with the very 
low level of toxicity to mice (toxicity was not observed by 
daily treatment of 120 mg/kg for 6 days), 6b appears to be 
a promising therapeutic reagent for treating patients with 
ccRCC (51). 

Ubiquitin-mediated protein degradation and modification 
pathways play major regulatory roles in maintaining 

genome integrity, gene expression, and various cellular 
processes including cell cycle, death, differentiation, 
proliferation, and signaling (27,28). E3 ligases are 
implicated in a number of disease pathologies, making them 
attractive therapeutic targets (52-55). Ubiquitin-mediated 
pathways are regulated by the selective binding of over 600 
E3 ligases to a variety of intracellular proteins. Of over 600 
E3 ligases in the human genome, physiological roles are 
understood for only a small number. Thus, as shown in the 
case of SPOP, systematic efforts are necessary to identify E3 
ligase target proteins, determine their expression patterns 
in normal and pathological cells and tissues, and correlate 
their distribution with that of target proteins, providing 
opportunities to develop new targeted therapeutics. 
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